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Elastic p̄d scattering is studied within the Glauber theory based on the single- and double p̄N scattering
mechanisms. The full spin dependence of the elementary p̄N scattering amplitudes is taken into account and
both the S- and D-wave components of the deuteron are considered. The treatment of the spin dependence is done
in a (properly modified) formalism developed recently by Platonova and Kukulin for the pd → pd scattering
process. Predictions for differential cross sections and the spin observables Ad

y , Ap̄
y , Axx , Ayy are presented for

antiproton beam energies between 50 and 300 MeV, using amplitudes generated from the N̄N interaction model
developed by the Jülich group. Total polarized cross sections are calculated utilizing the optical theorem. The
efficiency of the polarization buildup for antiprotons in a storage ring is investigated.
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I. INTRODUCTION

The present investigation is motivated by the plans of the
PAX Collaboration [1] to measure the transversity of the proton
(antiproton) in double-polarized Drell-Yang processes at an
upgrade of the FAIR facility in Darmstadt. In order to achieve
this aim an intense polarized beam of antiprotons is required. A
possibility to overcome the experimental challenge to obtain
such a polarized beam is seen in scattering of antiprotons
off a polarized 1H target in rings [2]. Analogous experiments
performed for the proton case by the FILTEX Collaboration [3]
at 23 MeV and a recent COSY study where protons were
scattering off a polarized hydrogen at 49 MeV [4] showed
that indeed a polarized (proton) beam can be achieved via the
so-called spin-filtering effect, i.e. by exploiting the fact that
via the scattering process protons are removed (lost) from the
ring at different rates for different initial polarization states
[3]. According to theoretical interpretations [5] of the data
[3,4], the polarization buildup effect appears solely due to the
hadronic interaction of the incoming proton with the target.

Whereas the spin dependence of the nucleon-nucleon (NN )
interaction is very well known at the considered energies,
which allows one to calculate reliably the spin-filtering effect
for protons, there is practically no corresponding information
for the antiproton-nucleon (N̄N ) interaction. For this reason a
test experiment for the spin-filtering effect in the antiproton-
hydrogen interaction is planned at the AD ring at the CERN
facility [6,7].

In view of the unknown spin dependence of the p̄N
interaction, the interaction of antiprotons with a polarized
deuteron is also of interest for the issue of the antiproton
polarization buildup. This option was discussed in a previous
paper by us [8]. In that work the single-scattering approx-
imation was used for the calculation of the polarized total
p̄d cross sections for energies in the region 50–300 MeV.
The spin dependence of the elementary p̄N amplitudes was
taken into account in this approximation only in collinear
kinematics using the N̄N interaction model of the Jülich

group [9–12]. The p̄N double-scattering effects were only
accounted for in the computation of the unpolarized total and
differential cross sections, and were found to be in the order
of 10%–15% [8]. Spin observables for p̄d elastic scattering
and shadowing effects (double scattering) in polarized total
cross sections were not considered in that work. A calculation
of such observables, including double-scattering effects, is the
main aim of the present work. Indeed corresponding results are
certainly desirable, specifically in view of the prospect that a
discrimination of existing models of the p̄N interaction could
be feasible on the basis of a comparison with expected data [7].
Antiproton polarization buildup in the context of p̄d scattering
was also studied in a recent work by Salnikov [13], utilizing
the results from the Nijmegen p̄p partial wave analysis [14]
from 1994. (Note that an updated partial wave analysis has
been presented recently by Zhou and Timmermans [15].)

In the present paper we consider elastic p̄d scattering
within the Glauber theory of multistep scattering [16–18],
taking into account the full spin dependence of the elementary
p̄N scattering amplitudes. There are several studies of the
accuracy of the Glauber theory in the literature [19–24] which
demonstrate that corrections to the eikonal approximation,
which is the basis of this theory, are small in the region
of intermediate energies about ∼1 GeV. The reliability of
the Glauber approach at intermediate energies was studied
recently in Ref. [25] via a comparison with rigorous Faddeev
calculations for the case of identical spinless bosons interacting
by means of a simple Malfliet-Tjon interaction potential. The
results of Ref. [25] for such a “bosonic” nd system show
that even at rather low energies, 100–200 MeV, the difference
between the Faddeev and the Glauber calculations is just
about 10%–15% for the total cross section. Rather good
agreement was found also for the differential cross section in
the forward hemisphere, excluding the region of the diffraction
minimum [25].

For antiproton-nucleus scattering the Glauber theory can
be applied at lower energies [26,27] as compared to the
proton-nucleus reaction. The amplitude for elastic scattering
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of antiprotons off nuclei is strongly peaked in the forward di-
rection due to strong annihilation effects in the p̄N interaction,
supporting the applicability of the eikonal approximation (see
Ref. [8] and reference therein). In the present work the S-
and D-wave components of the deuteron and both the single
and double p̄N scattering mechanisms are taken into account.
The treatment of the spin dependence is based on a proper
modification of the formalism developed recently by Platonova
and Kukulin [28,29] for pd elastic scattering. In their papers
the formalism was successfully applied for describing spin
observables of the pd → pd process at 250–1000 MeV. An
independent confirmation of the findings of [28] was reported
recently by us [30].

The spin dependence of the p̄d → p̄d amplitude is very
similar to that for pd → pd scattering, except for the
contribution of the charge-exchange channel p̄p ↔ n̄n which,
however, can be taken into account straightforwardly. In the
present work we consider the differential cross section and
the spin observables Ad

y , A
p̄
y , Axx , Ayy for the p̄d → p̄d

process. Those observables are evaluated here for antiproton
beam energies from 50 to 300 MeV employing p̄N amplitudes
generated from the Jülich N̄N model [11]. The total polarized
cross sections σ1, σ2, and σ3 are calculated on the basis of
the optical theorem. We also investigate the efficiency of the
polarization buildup for antiprotons in a storage ring. Here
Coulomb effects are taken into account within the formalism
described in Ref. [8].

The paper is structured in the following way: In Sec. II we
introduce briefly the used formalism. In particular, we point
out the differences that occur between its application to the pd-
and to the p̄d systems. In Sect. III results for p̄d scattering
are presented. First we discuss the issue of the applicability of
the Glauber theory. Specifically, we assess the angular range
for which differential observables can be reliably calculated
within this approach. Then predictions for the differential cross
section and the spin observables Ad

y , A
p̄
y , Axx , Ayy are given

based on elementary p̄N amplitudes taken from the Jülich
N̄N models A and D. Finally, our results for the total p̄d
cross section are provided, including those for the polarized
case. We also provide predictions for the polarization degree
of the antiproton beam which is the decisive quantity for the
spin-filtering method. The paper ends with a short summary.
Relations between amplitudes and considered observables are
given in The Appendix.

II. ELEMENTS OF THE FORMALISM
FOR p̄d → p̄d SCATTERING

For the p̄d → p̄d process we use the formalism developed
in Ref. [28] for the process pd → pd, taking into account
the specific differences that arise for the p̄d collision. Within
the Glauber theory [18] the scattering matrix for elastic p̄d
scattering is given by the following matrix element:

Mp̄d (q) = 〈f |M̂(q, s)|i〉, (1)

evaluated between definite initial |i〉 and final |f 〉 states of
the p̄d system. Here q is the momentum transferred from
the initial to the final deuteron in the p̄d collision and s is

the impact parameter of the projectile. In Eq. (1) and in the
following we suppress the dependence of Mp̄d on the total
energy to simplify the notation. The transition operator M̂ can
be written as

M̂(q, s)

= exp

(
1

2
iq · s

)
Mp̄p(q) + exp

(
− 1

2
iq · s

)
Mp̄n(q)

+ i

2π3/2

∫
exp (iq′ · s)[Mp̄p(q1)Mp̄n(q2)

+Mp̄n(q1)Mp̄p(q2) − Mp̄p→n̄n(q1)Mn̄n→p̄p(q2)]d2q′.
(2)

Here Mp̄N (q) (N = p, n) is the p̄N scattering matrix, Mp̄p→n̄n

(Mn̄n→p̄p) is the scattering matrix of the charge-exchange
process p̄p → n̄n (n̄n → p̄p), and q1 = q/2 − q′ and q2 =
q/2 + q′ are the transferred momenta in the first and second
p̄N collisions, respectively, in the double-scattering terms. The
first two plane-wave terms correspond to the single-scattering
mechanism, while the three terms in the integral represent the
double-scattering mechanism. These transitions correspond to
the diagrams depicted in Fig. 1. It is assumed in Eq. (2) that the
deuteron wave function in the matrix element of this operator
does not contain the isospin part explicitly. Therefore the last
term in Eq. (2) appears with a negative sign coming from the
product of the isospin factors at the dpn vertices.

The elementary scattering matrix for elastic p̄N scattering
is given by the following expression:

Mp̄N = AN + (CNσ 1 + C ′
Nσ 2) · n̂ + BN (σ 1 · k̂)(σ 2 · k̂)

+ (GN − HN )(σ 1 · n̂)(σ 2 · n̂)

+ (GN + HN )(σ 1 · q̂)(σ 2 · q̂). (3)

d d
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FIG. 1. Mechanisms for p̄d elastic scattering: single scattering
(a), double scattering (b), and charge exchange (c).
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Here σ 1 (σ 2) is the Pauli matrix acting on the spin of the
p̄ (N ) states, N = p, n. The unit vectors are defined by
k̂ = (ki + kf )/|ki + kf |, q̂ = (ki − kf )/|ki − kf |, and n̂ =
[k̂ × q̂], where ki (kf ) denotes the momentum of the incident
(outgoing) antiproton. The one for charge-exchange, Mp̄p↔n̄n,
has the same spin structure as given in Eq. (3). We denote the
corresponding amplitudes on the right-hand side of Eq. (3) by
Ac, Cc, etc. in the following for simplicity reasons.

The amplitudes in Eqs. (1)–(3) are normalized as in
Ref. [28] and related to the corresponding differential cross
sections via

dσ

dt
= 1

6
trMp̄dM

+
p̄d , (4)

dσ

dt
= 1

4
trMp̄NM+

p̄N , (5)

where t = −q2 is the squared four-momentum transfer in the
p̄d or p̄N systems, respectively. The factor in front of the
integral in Eq. (2) differs from that in the original Glauber
theory [18] due to a different normalization of the invariant
scattering matrices M used in Eqs. (1)–(5).

In general, there are 36 transitions in the p̄d → p̄d process
for the different spin states. When accounting for rotational
invariance and invariance under parity- and time-reversal
transformations, the number of transition matrix elements for
the p̄d → p̄d process reduces to twelve independent complex
amplitudes Ai (i = 1, . . . , 12), which can be introduced in the
same way as for the pd → pd process [8,28] (see also the
Appendix). The amplitudes Ai can be written in the form

Ai(q) = A
(s)
i (q) + i

2π3/2

∫
d2q ′(A(d)

i (q, q′) − A
(c)
i (q, q′)

)
.

(6)

Here we introduced the scalar amplitudes for single scattering
[Fig. 1(a)], A

(s)
i (q), double scattering [Fig. 1(b)], A

(d)
i (q, q′),

and double-scattering involving charge exchange [Fig. 1(c)],
A

(c)
i (q, q′), using the same notations as in Ref. [28].
The amplitudes A

(s,d,c)
i can be expressed via the elastic

form factors of the deuteron corresponding to the transitions
S → S, S → D, D → S, D → D, from the initial to the
final deuteron state, and the elementary amplitudes of p̄N
scattering. The explicit expressions can be found in Ref. [28]
in the Appendices A and B and, therefore, we refrain from
reproducing those lengthy formulas here. Specifically, the
formulas for the single-scattering mechanism A

(s)
i [Fig. 1(a)]

are the same as those for the pd → pd processs given in
Ref. [28] in Table I with the replacement of the elementary
amplitudes of pN elastic scattering by the corresponding ones
for p̄N . However, the integral in Eq. (6), accounting for the
double-scattering mechanisms differs from that in Eq. (A.1)
in Ref. [28] by two aspects. First, the term A

(d)
i in Ref. [28]

has an additional factor 2. Second, the permutations n ↔ p

are taken into account here for A
(s)
i (q) and A

(d)
i (q, q′), as in

Ref. [28], but they do not apply for A
(c)
i (q, q′).

In order to explain the reason for these two differences
between the p̄d → p̄d and pd → pd amplitudes, let us
discuss first the pd → pd process following Ref. [28].

In the pd → pd process there are three double-scattering
amplitudes, which we denote symbolically as

Mpp(q1) × Mpn(q2) + Mpn(q1) × Mpp(q2)

−Mpn→np(q1) × Mnp→pn(q2). (7)

The small-angle charge-exchange scattering matrix
Mpn→np can be rewritten in terms of the small-angle scattering
matrices Mpp→pp ≡ Mpp and Mpn→pn ≡ Mpn in the form [31]
Mpn→np(q) = Mnp→pn(q) = Mpp(q) − Mpn(q). [The double-
charge-exchange scattering matrix vanishes in the approxi-
mation Mpp(q) = Mpn(q), i.e. if one disregards the isospin
dependence of the pN amplitude.] Therefore, the third term
in Eq. (7) can be written as

Mpn→np(q1) × Mnp→pn(q2)

= Mpp(q1) × Mpp(q2) + Mpn(q1) × Mpn(q2)

−Mpp(q1) × Mpn(q2) − Mpn(q1) × Mpp(q2). (8)

The term Mpn→np(q1) × Mnp→pn(q2) enters the full pd
amplitude with opposite sign with respect to the first two terms
given in Eq. (7) due to the additional permutation p ↔ n in the
deuteron vertex. Furthermore, the first and the second terms
on the right-hand side of Eq. (8) constitute the term called
the “charge-exchange” amplitude in Ref. [28] and are denoted
by A

(c)
i . The third and the fourth terms from Eq. (8) can be

absorbed into the first and second terms in Eq. (7), respectively,
and this leads to the factor 2 in front of the A

(d)
i amplitude

in [28].
Coming back to the process p̄d → p̄d, one should mention

that in this case there are also three double-scattering terms in
Eq. (2), namely

Mp̄p(q1) × Mp̄n(q2), Mp̄n(q1) × Mp̄p(q2),
(9)

Mp̄p→n̄n(q1) × Mn̄n→p̄p(q2).

The first two terms constitute the amplitude A
(d)
i in Eq. (6).

The detailed formulas for A
(d)
i (i = 1, . . . , 12) coincide with

those given in Table II of Ref. [28] for pd → pd, where
each term (AN, BN, CN, C ′

N, GN, HN ) from the pN → pN
amplitude (N = p, n) has to be replaced by the corresponding
term of the scattering matrix Mp̄N→p̄N given in Eq. (3).

The last term in Eq. (9) gives rise to the A
(c)
i amplitude

in Eq. (6) and, like for the pd → pd process, enters the full
amplitude also with the opposite sign with respect to the first
two amplitudes in Eq. (9) for the same reason as in pd → pd.
In the present calculation the term with the charge-exchange
amplitudes p̄p ↔ n̄n is not expressed through the small-angle
scattering amplitude, as in the pd → pd case, but calculated
straightforwardly and, therefore, does not lead to the factor 2
in front of A

(d)
i in Eq. (6) in contrast to Ref. [28]. The formulas

for A
(c)
i (i = 1, . . . , 12) are the same as those given in Table III

of Ref. [28], where each product An(q2)An(q1), etc., has to be
replaced by the corresponding terms Ac(q2)Ac(q1), etc., of
the charge-exchange scattering matrix Mp̄p↔n̄n. Finally, we
want to emphasize that contrary to Ref. [28] the total double-
scattering term enters Eq. (6) with positive sign. The relations
of these amplitudes Ai(q) with the spin observables considered
in the present paper are given in the Appendix.
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III. NUMERICAL RESULTS AND DISCUSSION

A. General remarks and differential observables

Earlier studies [26,27,32] and also our previous calculations
[8,33] were all done within the spinless approximation for
the elementary p̄N amplitude; i.e., they used only AN

from Eq. (3), parameterized in the Gaussian form, and they
considered only the S-wave part of the wave function of
the target nucleus. Those investigations suggested that the
Glauber theory allowed one to explain the differential cross
sections in the forward hemisphere and the total unpolarized
cross section for the reactions p̄d, p̄3He, and p̄4He even at
rather low energies, i.e., down to 20–50 MeV of the incident
antiproton. For p̄4He elastic scattering the first and the second
diffraction peaks were explained by these calculations [33]. On
the other hand, attempts to describe the second peak observed
in p̄d elastic scattering at 179 MeV [34] were not quite that
successful as documented in some papers [27,32].

In the present calculation we include the S- and D-wave
components of the deuteron wave function and we keep the
full spin dependence of the p̄N amplitude as given in Eq. (3).
With regard to the wave function we use here the one of the
CD-Bonn potential as parameterized in Ref. [35] and, for test
calculations, also the one of the Paris potential [36]. The p̄N
amplitude is taken from two models developed by the Jülich
group, namely A(BOX) introduced in Ref. [9] and D described
in Ref. [11]. Results for the total and integrated elastic (p̄p)
and charge-exchange (p̄p → n̄n) cross sections and also for
angular dependent observables for both models can be found
in Refs. [9,11] while specific spin-dependent observables are
presented in [12]. Model A as well as D provide a very good
overall reproduction of the low- and intermediate-energy N̄N
data as documented in those works.

An exemplary p̄d result demonstrating the role of the
single-scattering (SS) and double-scattering (DS) mechanisms
is presented in Fig. 2. There, cross sections based on the SS-
and the DS mechanisms and their coherent sum (SS + DS) are
displayed separately. One can see that the SS mechanism alone
fails to explain the forward peak. However, the sum SS + DS
describes it rather well. Obviously, the DS mechanism,
neglected in Ref. [8] in the calculation of the spin-dependent
total cross sections, has a sizable influence even in the region
of the forward peak.

When accounting for the spin dependence of the p̄N
interaction one has to address also the reliability of the
employed Glauber approach, specifically, as far as the angular
range is concerned. In contrast to the spin-independent part
of the amplitude Eq. (3) given by AN (N = p, n), most of
the other amplitudes that give rise to the spin dependence
[BN , CN , C ′

N , GN , HN in Eq. (3)] do not exhibit a very
pronounced diffractive behavior for antiproton beam energies
50–200 MeV; i.e., they do not decrease rapidly with increasing
center-of-mass (c.m.) scattering angle θc.m.. In fact, some
of these amplitudes even increase with increasing θc.m. and
their magnitude is larger at θc.m. > 90◦ than at θc.m. < 90◦.
The typical behavior of the differential p̄N cross section
can be seen in Fig. 3 for 179 MeV. This behavior is basically
the same for both Jülich models A and D and, therefore, we
consider only model D in the following. The visible rise of
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FIG. 2. (Color online) Differential cross section of elastic p̄d

scattering at 179 MeV versus the transferred momentum squared. Re-
sults based on single-scattering (dash-dotted line), double-scattering
(dashed), and the full (solid) Glauber mechanisms are shown. For
the calculation the p̄N amplitude predicted by the Jülich model D is
utilized. The data points are from Ref. [34].

the cross section for backward angles is partly due to those
spin-dependent pieces of the p̄N amplitude and is reflected in
the corresponding p̄d results by the appearance of a second,
broad peak at large transferred momenta q2 ∼ 0.35 (GeV/c)2

coming from the SS contribution alone, as is seen in Fig. 2. As
a consequence, the second (“diffraction”) peak that appears in
the full calculation, including now the SS and DS mechanisms,
originates not only from the interference between the SS and
DS amplitudes, as is usually the case for typical diffractive
scattering, but is also related to that backward peak seen in the
cross section of the (elementary) p̄N reaction. We confirmed
in test calculations within the SS mechanism, utilizing just
the amplitudes AN in Eq. (3) or a standard Gaussian-type
representation of the total p̄N amplitude in the spinless
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FIG. 3. Differential elastic p̄p (a) and p̄n (b) cross sections at
179 MeV as predicted by model D (solid lines). The dashed line
shows the result with the smooth cutoff with q2

0 = 0.21 GeV/c and
ν = 10, corresponding to θ p̄N

c.m. = 105◦, as explained in the text.

054003-4



ELASTIC p̄d SCATTERING AND TOTAL . . . PHYSICAL REVIEW C 87, 054003 (2013)

approximation, that then the differential cross sections do not
demonstrate this behavior.

One should note that the Glauber diffraction theory of multi-
step scattering is not suitable for taking into account backward
scattering in the elementary hadron-nucleon collision, because
its basis is the eikonal approximation. The deuteron elastic
form factor suppresses the contribution of the p̄N amplitudes
at large angles, but at the considered low and moderate energies
this effect is not as strong as at significantly higher energies
for the same scattering angle.

The authors of Refs. [28,29] approximate all amplitudes in
Eq. (3) as a sum of Gaussians, e.g.,

AN (q) =
n∑

j=1

cAN ,j exp(−dAN ,j q2), etc., (10)

where cAN ,j and dAN ,j are parameters fixed by a fit to the
original NN amplitudes. With such a series of Gaussians they
are able to reproduce the original amplitudes quite well in the
forward hemisphere, i.e., up to angles of θc.m. = 80◦–90◦, as
reported in [29]. For larger angles the differential NN cross
section based on those Gaussians drop off very quickly, in
accordance with the requirements by the Glauber model, as
shown in Fig. 4 of Ref. [29]. However, it remains unclear
how and, specifically, how fast the individual (parameterized)
amplitudes drop off. In particular, issues such as the influence
of the backward tail on the results, or the related question
of up to which angles one can trust the predictions for pd
observables, are not addressed in Ref. [28].

In the following we investigate this subject in the context
of elastic p̄d scattering. For this purpose we perform various
calculations of this reaction within the Glauber theory in order
to scrutinize the sensitivity of the considered p̄d observables
to the large-angle region of the employed elementary p̄N
amplitudes. Clearly, any such sensitivity is in contradiction
with the assumptions of the Glauber theory and tells us that the
corresponding p̄d results are no longer reliable. We use also a
Gaussian ansatz for representing the amplitudes generated by
the N̄N models A and D in analytical form. However, we aim
at an excellent reproduction of the original amplitudes over the
whole angular range. This means that typically we have to use
10 or even 12 terms in the sum in Eq. (10), instead of n = 5
which was taken in [28,29].

We examine the sensitivity by varying the large-angle be-
havior of the N̄N amplitudes that enter our Glauber calculation
for p̄d. In a first series of calculations a smooth cutoff on the
angular region is introduced by multiplying the employed p̄N
amplitude by the factor F (q) = 1/[1 + (q2/q2

0 )ν]. This is done
in the evaluation of the SS mechanism as well as for the DS
mechanism, i.e. in the two-dimensional integral in Eq. (6). The
lowest value for the cutoff momentum q0 is chosen in such a
way that it corresponds to a p̄N c.m. scattering angle which
is close to the position of the minimum of the elementary
p̄N cross section. For the case of 179 MeV, shown in Fig. 3
(see dashed line), this amounts to θc.m. ≈ 105◦. This choice
for q0 makes sure that at least the p̄N cross section produced
by those modified p̄N amplitudes shows a clear diffractive
behavior. We then increase the cutoff momentum q0 until the

corresponding angle θc.m. reached 180 degrees. In the actual
calculations the exponent ν was varied in the range ν = 10–15.

As an alternative to variations of q0 we performed also
calculations with a sharp cutoff at the maximum transferred
momentum in the physical region q = 2kp̄N , where kp̄N is the
p̄N c.m. momentum.

Finally, we employed different Gaussian parametrizations,
varying the number of terms between 6 and 12, and without
cutoff. Those parametrizations of the p̄N amplitudes differ
from the ones considered above in the angular range 90◦ �
θc.m. � 180◦ but, more importantly, for larger transferred
momenta q outside of the physical range, i.e., q > 2kp̄N . Note
that the integration in Eq. (6) requires the p̄N amplitudes at any
(large) q; however, as already said above, the deuteron wave
function strongly suppresses contributions to the integral from
that region.

The result of our analysis is summarized in Figs. 4–9. The
bands represent the variation of the calculated p̄d observables
due to the cutoff procedures described above. We regard these
bands as a sensible guideline for estimating the angular region
where the Glauber theory is able to provide solid results for a
specific observable and where this approach starts to fail. In
particular, they indicate when contributions from large angles
start to become significant. Since such contributions are in
contradiction with the basic approximations underlying the
Glauber model, any sizable influence from them undoubtedly
marks the breakdown of this approach.

The above considerations suggest that within the Glauber
approach reliable predictions can be obtained for the differen-
tial cross section (Figs. 4–6) and also for the spin observables
Ad

y , A
p̄
y , Axx , and Ayy (Figs. 7, 8, and 9) for c.m. scattering

angles up to 50◦–60◦ in the p̄d system. Obviously, within this
angular region there is practically no sensitivity to the p̄N
amplitudes in the backward hemisphere, in accordance with
the requirements of the Glauber approach. As expected, for
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FIG. 4. (Color online) Differential cross section of elastic p̄d

scattering at 179 MeV versus the c.m. scattering angle. Results of
our full calculation (including the SS + DS mechanisms) are shown
based on the N̄N models model A (green/grey) and D (red/black).
The bands represent the sensitivy to variations of the large-angle tail
of the p̄N amplitudes as discussed in the text. The data points are
taken from Ref. [34].
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FIG. 5. (Color online) Differential cross section of elastic p̄d

scattering at 282 MeV versus the c.m. scattering angle. Same
description of curves as in Fig. 4.

larger angles where such a sensitivity is observed, the width
of the corresponding bands are smaller for higher energies
(Fig. 5) and larger at lower energies (Fig. 6). This feature can
be seen in case of the differential cross sections and also for the
spin observables Ay , Ayy , Axx presented in Figs. 7, 8, and 9.

A comparison of our calculation with experimental
data is only meaningful for such p̄d scattering angles
where the Glauber approach works well. According to our
calculations this region includes the whole diffractive peak
in the differential cross section dσ/dt at forward angles,
for energies from around 50 MeV upwards. This finding
is important for the issue of the polarization buildup of
antiprotons, because it validates the application of the optical
theorem for evaluating the total polarized cross sections based
on the obtained forward p̄d amplitude.

With regard to the measured differential cross section
at 179 MeV, see Fig. 4, our Glauber calculation describes
quite well the first diffractive peak, for p̄N amplitudes
generated from model A as well as for those of model D.
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FIG. 6. (Color online) Differential cross section of elastic p̄d

scattering at 50 MeV versus the c.m. scattering angle. Same
description of curves as in Fig. 4.

The first minimum in the differential cross section, located
at q2 ≈ 0.12–0.13 (GeV/c)2 (i.e. θc.m. ≈ 55◦), and the onset
of the second maximum, are explained only by model D.
The obvious strong disagreement with the data at larger
transferred momenta, q2 > 0.15 (GeV/c)2, corresponding to
θc.m. > 60◦, lies already in the region where the Glauber
theory cannot be applicable anymore—for the case of the
spinless approximation for the p̄N amplitudes as well as when
the spin-dependent amplitudes are included—and, therefore,
no conclusions can be drawn. Note that at lower energies,
specifically at 50 MeV, the first minimum lies outside of the
region where the Glauber approach can be trusted. In this
context let us also mention that the results shown in Fig. 2
were obtained without any cutoff.

Some remarks on the spin-dependent observables presented
in Figs. 7, 8, and 9: The results obtained for the vector
analyzing powers A

p̄
y and Ad

y indicate a strong model de-
pendence. In contrast, the tensor analyzing powers Axx and
Ayy exhibit a very similar behavior for both models A and
D. We found that the spin-independent amplitudes dominate
the latter observables and the inclusion of the spin-dependent
amplitudes has only a minor influence. Thus, the results
obtained here for Axx and Ayy seem to be quite robust up to
scattering angles of 60◦–70◦. When the spin-dependent terms
of the elementary p̄N amplitude (BN , CN , C ′

N , GN , HN ) are
excluded, then the vector analyzing powers A

p̄
y andAd

y vanish.
At 50 MeV the uncertainties in the considered spin-

dependent observables increase dramatically for angles around
65◦, in accordance with the strong variations that one sees in
the differential cross section (Fig. 6), and, therefore, we do not
show those quantities beyond 70◦.

We looked also at the influence of the D-wave component
of the deuteron on the obtained results. In the differential cross
section the contribution due to the D wave is rather small in
the forward direction, but increases with increasing scattering
angle. For example, at 179 MeV the contribution by the D wave
amounts to around 30% of the absolute value in the region of
the first minimum. The tensor analyzing powers Axx and Ayy

are considerably reduced (by one order of magnitude) when the
D wave is neglected. Actually, these observables practically
vanish if, in addition, the spin-dependent terms of the elemen-
tary p̄N amplitude are omitted. For observables that exhibit a
larger sensitivy to the D-wave component, we performed also
test calculations with the wave function of the Paris potential
which has a somewhat larger D-wave probability [36]. It
turned out that the sensitivity to differences in wave functions
is, in general, fairly small. Even in case of those tensor analyz-
ing powers they amount to variations in the order of 2%–4%
only and they occur predominantly at the minima (maxima).

B. Total spin-dependent cross sections

The total p̄d cross section is defined by [8]

σtot = σ0 + σ1Pp̄ · Pd + σ2(Pp̄ · k̂)(Pd · k̂) + σ3Pzz, (11)

where k̂ is the unit vector in the direction of the antiproton
beam, Pp̄ (Pd ) is the polarization vector of the antiproton
(deuteron), and Pzz is the tensor polarization of the deuteron
(OZ||k̂). The total unpolarized cross section σ0 and the spin-
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FIG. 7. (Color online) Spin observables of elastic p̄d scattering at 179 MeV versus the c.m. scattering angle: Ad
y (a), Ap̄

y (b), Ayy (c), and
Axx (d). Results of our full calculation (including the SS + DS mechanisms) are shown based on the N̄N models model A (green/grey) and D
(red/black). The bands represent the sensitivity to variations of the large-angle tail of the p̄N amplitudes as discussed in the text.

dependent cross sections σi (i = 1, 2, 3) are calculated using
the generalized optical theorem as described in Ref. [8]. Note,
however, that erroneous expressions for the σi have been given
and used in that work [in Eqs. (19)-(20)]. Specifically, the
correct σ1 and σ2 which are shown in the present work are of
opposite sign to those given in Ref. [8], see the Appendix for
details and for the correct expressions.

Results for the total unpolarized p̄d cross section are
displayed in Fig. 10 together with experimental information

[37–41]. Obviously the unpolarized cross section is described
rather well by both Jülich models A and D [11] within the
SS + DS mechanisms (dashed and solid lines, respectively),
while it is overestimated by ∼10%–15% within the SS
approximation, exemplified in Fig. 10 only for model D
(dash-dotted line). A similar result was obtained in the
spinless approximation in Ref. [8]. Taking into account the
double-scatterig mechanism leads to more sizable changes in
the results for the spin-dependent cross section, relevant for
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FIG. 8. (Color online) Spin observables of elastic p̄d scattering at 282 MeV versus the c.m. scattering angle. Same description of curves
as in Fig. 7.
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FIG. 9. (Color online) Spin observables of elastic p̄d scattering at 50 MeV versus the c.m. scattering angle. Same description of curves as
in Fig. 7.

the spin-filtering mechanism (see Figs. 11 and 12), especially
for σ2. One can see from Fig. 12 that this cross section is
reduced by roughly a factor of two when the double-scattering
mechanism is included. For the cross section σ1 this difference
is in the order of 10%–15%. Note that a decrease of the
absolute values of σ0, σ1, and σ2, due to shadowing effects,
of comparable magnitude was reported in Ref. [13] in a
calculation based on the Nijmegen p̄N amplitudes [14].

The cross sections σ0, σ1, and σ2 are more or less completely
determined by the p̄N at forward angles and, thus, can be
reliably calculated within the Glauber approach. Indeed, the
uncertainty bands turned out to be very small and, therefore,
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FIG. 10. (Color online) Total unpolarized p̄d cross section versus
the antiproton laboratory momentum. Results of our full calculation
(including the SS + DS mechanisms) are shown based on the N̄N

models A (dashed line) and D (solid line). The result obtained for the
SS mechanism alone based on model D is indicated by the dash-dotted
line. Data are taken from Refs. [37–41].

we do not show them in the figures. The tensor polarized cross
section σ3, shown in Fig. 13, vanishes in the SS approximation.
At low energies 25–50 MeV this cross section is in the order
of 2 mb. Unlike the other cross sections discussed above,
σ3 turned out to be fairly sensitive to the values of the p̄N
amplitudes at large angles, i.e., to the variations considered
in Sec. III A. Thus, there is a significant uncertainty in the
predictions based on the Glauber theory as indicated by the
bands. With increasing energy the cross section σ3 decreases
and is only about 0.3–0.5 mb above 100 MeV. As expected, at
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FIG. 11. (Color online) Total p̄d cross section σ1 versus the
antiproton kinetic energy in the laboratory system. Results are
shown based on the N̄N models A (green/grey) and D (red/black).
Calculations for the SS mechanism alone are indicated by dotted
(A) and dash-dotted (D) lines while the full calculations (SS + DS
mechanisms) are given by the dashed (A) and solid (D) lines.
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FIG. 12. (Color online) Total p̄d cross section σ2 versus the
antiproton kinetic energy in the laboratory system. Same description
of curves as in Fig. 11.

higher energies the sensitivity to the p̄N amplitudes at large
angles decreases too.

With regard to the influence of the D-wave component
of the deuteron wave function on the total cross sections,
we found that its contribution to σ1 and σ2 is less than 1%
for both considered N̄N models. The total unpolarized cross
section σ0 decreases by ∼5% if the D wave is neglected. The
cross section σ3, which is nonzero only if the double-scattering
mechanism is accounted for, is very sensitive to the D-wave
component. If the D wave is neglected, then σ3 changes
significantly and, specifically, remains positive over the whole
considered energy range. On the other hand, we observe only
minor variations when using the Paris deuteron wave function
instead of the one of the CD-Bonn potential. They are smaller
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FIG. 13. (Color online) Total p̄d cross section σ3 versus the
antiproton kinetic energy in the laboratory system. Results of our full
calculation (including the SS + DS mechanisms) are shown based on
the N̄N models model A (green/grey) and D (red/black). The bands
represent the sensitivy to variations of the large-angle tail of the p̄N

amplitudes as discussed in the text.

than the uncertainties of our predictions indicated by the bands
in Fig. 13.

C. Polarization efficiency

According to the analysis of the kinetics of polarization
[5,42], the polarization buildup is determined mainly by the
ratio of the polarized total cross sections to the unpolarized one
[5]. Let us define the unit vector ζ = PT /PT , where PT = Pd

is the target polarization vector which enters Eq. (11). The
nonzero antiproton beam polarization vector Pp̄, produced by
the polarization buildup, is collinear to the vector ζ for any
directions of PT and can be calculated from consideration of
the kinetics of polarization. The general solution for the kinetic
equation for p̄p scattering is given in Ref. [5]. Here we assume
that this solution is valid for p̄d scattering also. Therefore, for
the spin-filtering mechanism of the polarization buildup the
polarization degree at the time t is given by [5,43]

Pp̄(t) = tanh

[
t

2
(�out

− − �out
+ )

]
, (12)

where

�out
± = nf {σ0 ± PT [σ1 + (ζ · k̂)2σ2]}. (13)

Here n is the areal density of the target and f is the beam
revolving frequency. Note that the cross sections in Eq. (13)
involve hadronic as well as Coulomb contributions; see, e.g.,
Refs. [5,8]. Obviously the tensor cross section σ3 from Eq. (11)
does not contribute to �out

± . Assuming the condition |�out
− −

�out
+ | � (�out

− + �out
+ ), which was found in Refs. [5,43] for p̄p

scattering in rings at n = 1014 cm−2 and f = 106c−1, one can
simplify Eq. (12). If one denotes the number of antiprotons in
the beam at the time moment t as N (t), then the figure of merit
is P 2

p̄ (t)N (t). This value is maximal at the moment t0 = 2τ ,
where τ is the beam lifetime. The latter is determined by σ0,
the total cross section of the interaction of the antiprotons with
the deuteron target, via

τ = 1

nf σ0
. (14)

The quantity relevant for the efficiency of the polarization
buildup is the polarization degree Pp̄ at the time t0 [43]. In our
definition for σ1 and σ2, which differs from that in Refs. [5,43],
we find

Pp̄(t0) = −2PT

σ1

σ0
, if ζ · k̂ = 0 ,

(15)
Pp̄(t0) = −2PT

σ1 + σ2

σ0
, if |ζ · k̂| = 1.

For evaluating the polarization degree, Coulomb effects are
taken into account via the procedure described in Ref. [8]. Thus
the quantities σi (i = 0, 1, 2) in Eq. (15) are actually the sum of
the hadronic cross sections, of the Coulomb cross section (only
for i = 0), and of the Coulomb nuclear interference terms. In
the concrete calculation an acceptance angle of 20 mrad is
used.

The polarization degree Pp̄(t0) for ζ · k̂ = 1 (P||) at PT =
P d = 1 is shown in Fig. 14 together with the results for
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FIG. 14. (Color online) Dependence of the longitudinal [P||,
panel (a)] and transverse [P⊥, panel (b)] polarization on the beam
energy. Same description of curves as in Fig. 11. The acceptance
angle is 20 mrad.

ζ · k̂ = 0 (P⊥). One can see that, in general, the polarization
efficiency increases with increasing energy. For longitudinal
polarization maximal values of about 10%–15% are predicted
above 150 MeV; see Fig. 14(a). The transverse polarization
degree is smaller than the longitudinal one for both models A
and D. Of course, as was already pointed out in our earlier
works [8,44], there is a significant model dependence in the
predictions for both polarization cases.

Obviously, the inclusion of the DS mechanism leads to a
decrease of the longitudinal P|| as well as of the transverse
P⊥ polarization efficiencies by about 20%–30% as compared
to the SS mechanism alone [33]. Nevertheless, for both

considered models the magnitude of the spin-dependent cross
sections is still comparable or even larger than those for
p̄p [8,43,44]. In this context let us also mention that the values
for the polarization degree we obtained are somewhat smaller
than those presented in [13], based on the Nijmegen N̄N partial
wave analysis [14] from 1994.

Finally, in Fig. 15 we document the dependence of the
quantities P|| and P⊥ on the acceptance angle. As expected,
in general the polarization degree increases with increasing
acceptance angle. But the variations themselves are not too
dramatic.

IV. SUMMARY

In the present work we analyzed the role of the spin
dependence of the p̄N amplitude in elastic p̄d scattering
for energies of 50–300 MeV of the incident antiproton on
the basis of the Glauber theory. In the actual calculations
we utilized elementary p̄N amplitudes generated from the
Jülich N̄N model [11]. The S- and D-wave components of the
deuteron were included in the calculation and the single- and
double-scattering mechanisms were taken into account.

Since some of the spin-dependent amplitudes exhibit a non-
diffractive behavior we performed various test calculations in
order to pin down the angular range where the Glauber theory
can be reliably applied. Thereby, it turned out that this approach
works rather well for the region of the forward peak, over the
whole considered energy region. Obviously, for the considered
p̄N models those amplitudes with nondiffractive character are
fairly small as compared to the dominant spin-independent
amplitude (with a pronounced diffractive behavior) so that the
former do not spoil the applicability of the Glauber theory.
This means, in turn, that the approach can be used safely for
the calculation of the total spin-dependent p̄d cross sections
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FIG. 15. (Color online) Dependence of the longitudinal [P||, panels (a) and (b)] and transverse [P⊥, panels (c) and (d)] polarization on
the acceptance angle, for the N̄N model A [(a) and (c)] and model D [(b) and (d)]. The dashed, solid, and dash-dotted curves are results for
acceptance angles of 10, 20, and 30 mrad, respectively.

054003-10



ELASTIC p̄d SCATTERING AND TOTAL . . . PHYSICAL REVIEW C 87, 054003 (2013)

via the optical theorem. With regard to the considered p̄d
differential cross sections and vector and tensor analyzing
powers (Ad

y , A
p̄
y , Ayy , Axx), our investigation indicates that

reliable predictions can be obtained for c.m. scattering angles
up to 50◦–60◦ in the p̄d system. For 179 MeV, where data
on the differential cross section exist, this range covers the
first minimum and the onset of the second maximum. Here
our results based on the p̄N amplitudes of the Jülich model D
turned out to agree nicely with the experiment, while model A
overestimates the measured p̄d cross section at the minimum.

The total polarized p̄d cross sections σi (i = 1, 2, 3), and
specifically the polarization degree of the antiproton beam,
are of interest in the context of plans to establish a polarized
antiproton beam via the spin-filtering method as proposed
by the PAX Collaboration (see also [45]). Corresponding
predictions presented in this work exhibit a sizable model
dependence, reflecting the uncertainties in the spin dependence
of the elementary p̄p and p̄n interactions. Still, for both
considered models we find that the magnitude of the spin-
dependent cross sections is comparable or even larger than
those for p̄p. Thus, our results suggest that deuteron targets
can be used for the polarization buildup of antiprotons at
beam energies of 100–300 MeV with similar and possibly
even higher efficiency than p̄p scattering. Nonetheless, only
concrete experimental data on the spin-dependent part of
the cross sections of p̄p and p̄d scattering will allow one
to confirm or disprove the feasibility of the spin filtering
mechanism for the antiproton polarization buildup.
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APPENDIX: INVARIANT AMPLITUDES Ai AND SPIN
OBSERVABLES FOR p̄d ELASTIC SCATTERING

The scattering matrix Mp̄d in Eq. (1) can be expressed via
the 12 invariant amplitudes Ai in the following way [28]:

Mp̄d = (A1 + A2σ · n̂) + (A3 + A4σ · n̂)(S · q̂)2

+ (A5 + A6σ · n̂)(S · n̂)2 + (A7σ · k̂)(S · k̂)

+ (A8σ · q̂)[(S · q̂)(S · n̂) + (S · n̂)(S · q̂)]

+ (A9 + A10σ · n̂)(S · n̂) + (A11σ · q̂)(S · q̂)

+ (A12σ · k̂)[(S · k̂)(S · n̂) + (S · n̂)(S · k̂)] . (A1)

Here S = (σ p + σ n)/2 is the total spin of the deuteron and
the definition of the unit vectors k̂, q̂, and n̂ is given right
after Eq. (3). In the coordinate system as chosen in Ref. [28],
with the axes êx = q̂, êy = n̂, and êz = k̂, the differential cross
section dσ/dt and analyzing powers A

p̄
y , Ad

y , Axx , and Ayy take
the following forms [28]:

dσ/dt ≡ 1
3� = |A1|2 + |A2|2 + 2

3 {Z + Re[2A∗
1(A3 + A5)

+ 2A∗
2(A4 + A6) + A∗

3A5 + A∗
4A6]}, (A2)

where Z = ∑12
i=3 |Ai |2,

Ap̄
y = 2 Re[2(A∗

1 + A∗
3 + A∗

5)(A2 + A4 + A6)

+A∗
1A2 − A∗

3A6 − A∗
4A5 + 2A∗

9A10]�−1, (A3)

Ad
y = 2 Re[(2A∗

1 + A∗
3 + 2A∗

5)A9 + (2A∗
2 + A∗

4

+ 2A∗
6)A10 + A∗

7A12 + A∗
8A11]�−1, (A4)

Ayy = {2(|A5|2 + |A6|2 + |A9|2 + |A10|2)

− (|A3|2 + |A4|2 + |A7|2 + |A8|2 + |A11|2 + |A12|2)

+ 2 Re[A∗
1(2A5 − A3) + A∗

2(2A6 − A4)

+A∗
3A5 + A∗

4A6]}�−1, (A5)

Axx = {2(|A3|2 + |A4|2 + |A11|2 + |A12|2)

− (|A5|2 + |A6|2 + |A7|2 + |A8|2 + |A9|2 + |A10|2)

+ 2 Re[A∗
1(2A3 − A5) + A∗

2(2A4 − A6)

+A∗
3A5 + A∗

4A6]}�−1. (A6)

The amplitudes Ai can be rewritten as linear combinations
of the amplitudes Fi used in our previous paper [8]. The latter
are defined within a different basis as compared to Eq. (A1). In
terms of the amplitudes Fi the observables given in Eqs. (A2)–
(A6) coincide with those given in the Appendix of Ref. [8].
For collinear kinematics (q = 0) the scattering matrix Mp̄d (0)
contains four independent terms [46] and can be written as [47]

Mp̄d;αβ (0) = g1δαβ + (g2 − g1)k̂αk̂β + ig3σiεαβi

+ i(g4 − g3)σi k̂i k̂j εαβj , (A7)

where σi (i = x, y, z) are the Pauli spin matrices acting on the
spin states of the antiproton, εαβγ is the fully antisymmetric
tensor, k̂α are the Cartesian components of a unit vector k̂
pointing along the beam momentum, and gi (i = 1, . . . , 4) are
complex amplitudes. When considering Eqs. (A1) and (A7)
together, one can find that in collinear kinematics with OZ||k̂:
A2 = A4 = A6 = A8 = A9 = A12 = 0, A3 = A5, A10 = A11.
The independent amplitudes gi are related with the amplitudes
Ai via

g1 = A1 + A3, g2 = A1 + A3 + A5,
(A8)

g3 = −A10, g4 = −A7.

Taking into account the proper normalization of the scattering
matrix Mp̄d and using those relations between the Ai’s and
gi’s, the total hadronic cross sections in Eq. (11) given in
Ref. [8] on the basis of the generalized optical theorem can be
rewritten as

σ0 = 4

3

√
π Im(2g1 + g2), σ1 = −4

√
π Im(g3) ,

(A9)
σ2 = −4

√
π Im(g4 − g3), σ3 = 4

√
π Im(g1 − g2).

Please note that the expressions for the σi presented in
Eqs. (19)–(20) of our previous work [8] are erroneous.
Specifically, the correct signs of σ1 and σ2 are opposite to those
given in Ref. [8]. Numerically those errors have practically no
influence on the value of σ0 and also not on the absolute values
of the polarization efficiencies in the considered energy region
of 50–300 MeV, as we verified in corresponding computations.
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