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Background: Theoretical calculations of the four-particle scattering above the four-cluster breakup threshold
are technically very difficult due to nontrivial singularities or boundary conditions. Further complications arise
when the long-range Coulomb force is present.
Purpose: We aim at calculating proton-3He elastic scattering observables above three- and four-cluster breakup
threshold.
Methods: We employ Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators
and solve them in the momentum-space framework using the complex-energy method whose accuracy and
practical applicability is improved by a special integration method.
Results: Using realistic nuclear interaction models we obtain fully converged results for the proton-3He elastic
scattering. The differential cross section, proton and 3He analyzing powers, spin correlation and spin transfer
coefficients are calculated at proton energies ranging from 7 to 35 MeV. Effective three- and four-nucleon forces
are included via the explicit excitation of a nucleon to a � isobar.
Conclusions: Realistic proton-3He scattering calculations above the four-nucleon breakup threshold are feasible.
There is quite good agreement between the theoretical predictions and experimental data for the proton-3He
scattering in the considered energy regime. The most remarkable disagreements are the peak of the proton
analyzing power at lower energies and the minimum of the differential cross section at higher energies. Inclusion
of the � isobar reduces the latter discrepancy.
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I. INTRODUCTION

Proton-3He (p-3He) scattering is one of the most commonly
used experiments to study the four-nucleon system [1]: It
involves two charged particles that are stable and easy to
detect with acceptable precision, there are no competing
channels until Ep = 7.3 MeV proton laboratory energy, and
beyond that only three- and four-cluster breakup takes place
up to the pion-production threshold. Much like neutron-3H
(n-3H) scattering, p-3He is dominated by isospin T = 1,
but has the deciding experimental advantage of having a
proton beam and a nonradioactive 3He target. On the contrary,
from the theoretical point of view, p-3He is more difficult
to calculate than n-3H due to the long-range Coulomb force
between protons (p) that gives rise to complicated boundary
conditions in the coordinate-space and noncompact kernel
in the momentum-space representation. Nevertheless, these
difficulties have been solved below the three-cluster breakup
threshold using three different theoretical frameworks, namely,
the hyperspherical harmonics (HH) expansion method [2,3],
the Faddeev-Yakubovsky (FY) equations [4] for the wave
function components in coordinate space [5,6], and the Alt,
Grassberger, and Sandhas (AGS) equations [7] for transi-
tion operators that were solved in the momentum space
[8,9]. A good agreement between these methods has been
demonstrated in a benchmark for n-3H and p-3He elastic
scattering observables [10] using realistic nucleon-nucleon
(NN ) potentials much like the earlier benchmark [11] proved
the accuracy of HH and AGS calculations for p-d elastic
scattering.

Recently we extended the AGS calculations to energies
above three- and four-cluster breakup thresholds [12,13]. The
complex energy method [14,15] was used to deal with the

complicated singularities in the four-particle scattering equa-
tions; its accuracy and practical applicability was greatly im-
proved by a special integration method [12]. This allowed us to
achieve fully converged results for n-3H elastic scattering and
neutron-neutron-deuteron recombination into n + 3H using
realistic NN interactions. We note that the FY calculations of
n-3H elastic scattering have been recently extended as well to
energies above the four-nucleon breakup threshold [16], how-
ever, using a semirealistic NN potential limited to S waves.

In the present work we extend the method of Ref. [12] to
calculate the p-3He elastic scattering above breakup threshold
and compare with existing data for cross sections and spin
observables over a wide range of proton beam energies up to
Ep = 35 MeV. The pp Coulomb interaction is treated as in
Refs. [9,17] using the method of screening of the pp Coulomb
potential followed by the phase renormalization of transition
amplitudes [18,19]. Thus, standard AGS scattering equations
with short-range potentials are applicable. At energies bellow
three-cluster threshold our results agree with those obtained
by other methods as mentioned in Ref. [10]. Compared to
our previous n-3H scattering calculations above the breakup
threshold [12], the most serious complication for p-3He is
the convergence of the partial-wave expansion that requires a
larger number of states due to the longer range of the screened
Coulomb potential.

In Sec. II we describe the theoretical formalism and in
Sec. III we present the numerical results. The summary is
given in Sec. IV.

II. 4N SCATTERING EQUATIONS

We use the symmetrized AGS equations [8] as appropriate
for the four-nucleon system in the isospin formalism. They
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are integral equations for the four-particle transition operators
Uβα , i.e.,

U11 = −(G0 tG0)−1P34 − P34U1G0 tG0 U11 + U2G0 tG0 U21,

(1a)

U21 = (G0 t G0)−1(1 − P34) + (1 − P34)U1G0 t G0 U11. (1b)

Here, α = 1 corresponds to the 3 + 1 partition (12,3)4 whereas
α = 2 corresponds to the 2 + 2 partition (12)(34); there are
no other distinct two-cluster partitions in the system of four
identical particles. The free resolvent at the complex energy
E + iε is given by

G0 = (E + iε − H0)−1, (2)

with H0 being the free Hamiltonian. The pair (12) transition
matrix

t = v + vG0t (3)

is derived from the potential v; for the pp pair v includes
both the nuclear and the screened Coulomb potential wR . Our
calculations are done in momentum space; however, we start
with the configuration-space representation

wR(r) = w(r) e−(r/R)n , (4)

where w(r) = αe/r is the true Coulomb potential, αe � 1/137
is the fine structure constant, R is the screening radius, and n
controls the smoothness of the screening. All transition oper-
ators acquire parametric dependence on R but it is suppressed
in our notation, except for the scattering amplitudes. The
symmetrized 3 + 1 or 2 + 2 subsystem transition operators
are obtained from the respective integral equations

Uα = PαG−1
0 + Pαt G0 Uα. (5)

The basis states are antisymmetric under exchange of two
particles in the subsystem (12) for the 3 + 1 partition and
in subsystems (12) and (34) for the 2 + 2 partition. The full
antisymmetry of the four-nucleon system is ensured by the
permutation operators Pab of particles a and b with P1 =
P12 P23 + P13 P23 and P2 = P13 P24.

The p-3He scattering amplitude with nuclear plus screened
Coulomb interactions at available energy E = ε1 + 2p2

1/3mN

is obtained from the on-shell matrix element 〈p′
1|T(R)|p1〉 =

3〈φ′
1|U11|φ1〉 in the limit ε → +0. Here |φ1〉 is the Faddeev

component of the asymptotic p-3He state in the channel
α = 1, characterized by the bound state energy ε1 = −7.72
MeV and the relative p-3He momentum p1, mN being the
average nucleon mass. Due to energy conservation p′

1 = p1.
The amplitude 〈p′

1|T(R)|p1〉 is decomposed into its long-
range part 〈p′

1|tc.m.
R |p1〉, being the two-body on-shell transition

matrix derived from the screened Coulomb potential of the
form (4) between the proton and the center of mass (c.m.) of
3He, and the remaining Coulomb-distorted short-range part.
Renormalizing 〈p′

1|T(R)|p1〉 by the phase factor Z−1
R [9,18,19],

in the R → ∞ limit, yields the full p-3He transition amplitude
in the presence of Coulomb

〈p′
1|T |p1〉= 〈p′

1|tc.m.
C |p1〉 + lim

R→∞
{〈p′

1|
[
T(R) − tc.m.

R

]|p1〉Z−1
R

}
,

(6)

where the first term is obtained from Z−1
R 〈p′

1|tc.m.
R |p1〉 that

converges, in general as a distribution, to the exact Coulomb
amplitude 〈p′

1|tc.m.
C |p1〉 between the proton and the c.m. of the

3He nucleus [19]. The renormalization factor ZR is defined in
Refs. [9,17]. The second term in Eq. (6), after renormalization
by Z−1

R , represents the Coulomb-modified nuclear short-range
amplitude. It has to be calculated numerically, but, due to its
short-range nature, the R → ∞ limit is reached with sufficient
accuracy at finite screening radii R. Since the convergence with
R is faster at higher energies, the required screening radii are
smaller than in our low-energy p-3He calculations [9]. We
found that R ranging from 8 to 10 fm leads to well-converged
results in the energy regime considered in the present paper.
Furthermore, we take a sharper screening with n = 6 such that
at short distances r < R the screened Coulomb approximates
the full Coulomb better than with n = 4 used in Ref. [9]
and at the same time vanishes more rapidly at r > R thereby
accelerating the partial-wave convergence.

We solve the AGS equations (1) in the momentum-space
partial-wave framework. The states of the total angular
momentum J with the projection M are defined as
|kx ky kz[lz({ly[(lxSx)jx sy]Sy}Jysz)Sz]JM〉 for the 3 + 1
configuration and |kx ky kz(lz{(lxSx)jx [ly(sysz)Sy]jy}Sz)JM〉
for the 2 + 2. Here kx, ky and kz are the four-particle Jacobi
momenta in the convention of Ref. [20], lx , ly , and lz are
the associated orbital angular momenta, jx and jy are the
total angular momenta of pairs (12) and (34), Jy is the
total angular momentum of the (123) subsystem, sy and
sz are the spins of nucleons 3 and 4, and Sx , Sy , and Sz

are channel spins of two-, three-, and four-particle system.
A similar coupling scheme is used for the isospin. We
include a large number of four-nucleon partial waves, up to
lx, ly, lz, jx, jy = 7, Jy = 13

2 , and J = 6, such that the results
are well converged. In fact, lower cutoffs are sufficient for
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FIG. 1. (Color online) Differential cross section for elastic p-3He
scattering at 8.52, 13.6, 19.4, 25.0, and 35.0 MeV proton energy as
function of the c.m. scattering angle. Results obtained with INOY04
(solid curves), and, at selected energies, with CD-Bonn (dashed-
dotted curves) and AV18 (dotted curves) potentials are compared
with the experimental data from Refs. [25–27].
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FIG. 2. (Color online) Same as in Fig. 1 but at 10.77, 16.23,
21.3, and 30.0 MeV proton energy. The experimental data are from
Refs. [26–28].

lower J , e.g., lx, ly, lz, jx, jy � 5 and Jy � 9
2 are sufficient

for J � 3. Furthermore, for most observables J � 5 or even
J � 4 are enough for the convergence; J = 6 yields small
but still visible effect only above Ep = 30 MeV.

The numerical calculations are performed for complex
energies, i.e., with finite ε. The limit ε → +0 needed for
the calculation of the amplitude 〈p′

1|T(R)|p1〉 is obtained by
the extrapolation of finite ε results as proposed in Ref. [14].

A special integration method developed in Ref. [12] is used
to treat the quasisingularities of the AGS equations (1). We
obtain accurate results by using ε ranging from 1 to 2 MeV
at lowest considered energies and from 2 to 4 MeV at highest
considered energies. Grid points for the discretization of each
momentum variable range from 30 (at lower energies) to 35
(at higher energies). Further details on the other numerical
techniques for solving the four-nucleon AGS equations can
be found in Ref. [8].

III. RESULTS

We study the p-3He scattering using realistic high-precision
NN potentials, namely, the Argonne (AV18) potential [21],
the inside-nonlocal outside-Yukawa (INOY04) potential by
Doleschall [5,22], the charge-dependent Bonn potential (CD-
Bonn) [23], and its extension CD-Bonn + � [24] allowing for
an excitation of a nucleon to a � isobar and thereby yielding
effective three- and four-nucleon forces (3NF and 4NF). The
3He binding energy calculated with AV18, CD-Bonn, CD-
Bonn + �, and INOY04 potentials is 6.92, 7.26, 7.54, and
7.73 MeV, respectively; the experimental value is 7.72 MeV.
Therefore most of our predictions correspond to INOY04 as
it is the only potential that nearly reproduces the experimental
binding energy of 3He. The calculations with other potentials
are done at fewer selected energies.

In Figs. 1 and 2 we show the differential cross section
dσ/d	 for elastic p-3He scattering as a function of the c.m.
scattering angle 
c.m. at a number of proton energies ranging
from Ep = 8.5 to 35.0 MeV. This observable decreases rapidly
with the increasing energy and also changes the shape; the
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FIG. 3. (Color online) Proton analyzing power Ay for elastic p-3He scattering at 7.03, 8.52, 10.03, 13.6, 19.4, 21.3, 25.0, 30.0, and
35.0 MeV proton energy. Curves as in Fig. 1. The experimental data are from Refs. [31–34].
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FIG. 4. (Color online) 3He analyzing power A0y for elastic p-3He scattering at 7.03, 8.52, 10.03, 13.6, 19.4, 21.3, 25.0, 30.0, and 35.0 MeV
proton energy. Curves as in Fig. 1. The experimental data are from Refs. [31,33,37,38].

calculations describe the energy and angular dependence of
the experimental data fairly well. Below Ep = 15 MeV the
experimental data are slightly underpredicted at forward angles
as happens also at energies below the three-cluster breakup
threshold [9,10]. At the minimum the dσ/d	 predictions scale
with the 3He binding energy: the weaker the 3He binding the
lower the dip of dσ/d	 that is located between 
c.m. = 105◦
and 
c.m. = 125◦. The scaling is more pronounced at higher
Ep. For the INOY04 potential that fits the 3He binding energy,
one gets an good agreement in the whole angular region up to
Ep � 20 MeV but, as the energy increases, the calculated cross
section underpredicts the data at the minimum much like what
happens in nucleon-deuteron elastic scattering [17,29,30] but
for nucleon energies above 60 MeV. In line with the conjectures
that were made 15 years ago for the three-nucleon system
[29,30], this underprediction of the data at the minimum of
dσ/d	 may be a sign for the need to include the 3NF.

In Fig. 3 we show the proton analyzing power Ay for
elastic p-3He scattering at proton energies ranging from 7.0 to
35.0 MeV. We observe that the sensitivity to the nuclear force
model and energy is considerably weaker as compared to the
regime below three-cluster threshold [8,9]. Most remarkably,
in contrast to low energies where the famous p-3He Ay-puzzle
exists [2,9,35], the peak of Ay around 120 degrees is described
fairly well but there is a discrepancy in the minimum region.
This is similar to the energy evolution of the Ay-puzzle in p-d
elastic scattering [36]. Consistently with findings of Ref. [36],
at lower energies the proton analyzing power Ay is dominated
by p-3He P waves but with increasing energy also D and F
waves become important.

In Fig. 4 we show the 3He analyzing power A0y for
elastic p-3He scattering at proton energies ranging from 7.0 to
35.0 MeV. A0y varies slowly with energy but is slightly more
sensitive to the NN potential. Contrary to Ay , calculated A0y

is in better agreement with data over the whole energy range,
particularly when the INOY04 potential is used.

The experimental data are scarcer for double polarization
observables. In Fig. 5 we show the p-3He spin correlation
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FIG. 5. (Color online) p-3He spin correlation coefficient Ayy

for elastic p-3He scattering at 7.03, 8.52, 10.03, and 19.4 MeV
proton energy. Curves as in Fig. 1. The experimental data are from
Refs. [31,33].
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FIG. 6. (Color online) p-3He spin correlation coefficient Axx for
elastic p-3He scattering at 8.52 and 19.4 MeV proton energy. Curves
as in Fig. 1. The experimental data are from Ref. [33].

coefficient Ayy for elastic p-3He scattering at 7.03, 8.52, 10.03,
and 19.4 MeV, and in Fig. 6 we show Axx for elastic p-3He
scattering at 8.52 and 19.4 MeV proton energy. Calculated
Ayy exhibits some sensitivity to the NN potential model and
describes the data reasonably well; the agreement with data
is the best when the INOY04 interaction is used. The same
happens for Axx but for the single data set we know of.

Finally in Fig. 7 we show the proton spin transfer co-
efficients Kx ′

x , Kx ′
z , and K

y ′
y for elastic p-3He scattering at

8.52, 10.77, and 16.23 MeV proton energy. Note that 8.52-
MeV predictions are compared to experimental data taken at
8.82 MeV but, given the weak energy dependence of these
observables, the comparison is appropriate. The calculated
spin transfer coefficients show a rich angular structure and
follow the data reasonably well but cannot be fully tested
by the available data confined to the angular region below

c.m. = 110◦. In contrast to other shown spin observables,
the spin transfer coefficient Kx ′

z around 
c.m. = 120◦, i.e., in
the region of the differential cross section minimum, varies
quite rapidly with the energy. There is little sensitivity to
NN interaction model, except for K

y ′
y around 
c.m. = 120◦

at Ep = 16.23 MeV. Theoretical results and experimental data

for K
y ′
y are close to 1 up to 
c.m. = 90◦, but data sets at different

energies seem to be inconsistent as they show different angular
dependence. In contrast, theoretical predictions at the three
considered energies show nearly the same angular dependence
for 
c.m. � 90◦.

As already mentioned, above Ep = 20 MeV the minimum
of the elastic differential cross section is underpredicted. In
order to establish the importance of the 3NF as a means to
cure this discrepancy we study the effect of the �-isobar
excitation on both the differential cross section and proton
analyzing power at 30 MeV proton energy. This has been done
before at energies below three-cluster breakup threshold [41]
and we follow here the same procedure. The results are shown
in Fig. 8 in a way that one can single out the �-isobar effects
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FIG. 7. (Color online) Proton spin transfer coefficients Kx′
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y for elastic p-3He scattering at 8.52, 10.77, and 16.23 MeV proton

energy. Curves as in Fig. 1. The experimental data are from Refs. [39,40].
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of 2N nature, the so-called 2N dispersion, and of 3N and
4N nature, the 3NF and 4NF. The competition between 2N
dispersion and 3NF, often found in the 3N system, is well
seen also here for the differential cross section. As shown in
Fig. 8 dispersive effect increases the discrepancy with data
(dashed-double dotted curves) while 3NF and 4NF effects
reverse that trend for the differential cross section (dotted
curves). Nevertheless, when the two effects are put together
the net result is an improvement towards the data (solid curves)
but not quite enough to bridge the original gap. For Ay only
the dispersive effect around the minimum is visible; it moves
the predictions away from data.

IV. SUMMARY

In summary, we performed fully converged proton-3He
elastic scattering calculations with realistic potentials above
the three- and four-cluster breakup threshold. The sym-
metrized Alt, Grassberger, and Sandhas four-particle equations
were solved in the momentum-space framework. We used
the complex energy method whose accuracy and efficiency is
greatly improved by the numerical integration technique with
special weights. The pp Coulomb interaction was included
rigorously using the method of screening and renormalization.

The differential cross section exhibits rapid energy depen-
dence and, in the minimum region around 
c.m. = 120◦, also
sensitivity to the NN interaction model. The calculations using
the INOY04 potential describe the experimental data well up
to Ep = 20 MeV but underpredict the differential cross section
in the minimum at higher energies; other potential models fail
even more. In contrast, most of the calculated spin observables
show little sensitivity to the interaction model, and also the
dependence on the beam energy is weaker than below the
three-cluster breakup threshold. The overall agreement with
the experimental data for the spin observables is quite good,
considerably better than in the low-energy p-3He scattering
which is affected by P -wave resonances. In particular, the
peak of the proton analyzing power Ay that is strongly
underpredicted at low energies, is reproduced fairly well above
Ep = 20 MeV but there is discrepancy in the minimum. The
observed sensitivity to the NN interaction model seems to be
mostly due to different predictions of the 3He binding energy;
the calculations using the INOY04 potential with correct 3He
binding provide the best description of the experimental data.

We also studied the effect of three- and four-nucleon forces
through the explicit inclusion of the �-isobar excitation. We
found that �-generated many-nucleon forces significantly
improve the description of the differential cross section but
have almost no effect for the proton analyzing power. However,
there are also quite strong dispersive �-isobar effects that often
reduce or even reverse the effect of 3NF. Therefore the total
�-isobar effect, although beneficial, is not large enough to
bridge the gap between the differential cross section data and
calculations. It even increases the discrepancy in the minimum
of Ay . It might be possible that using the standard approach of
including static 3NF one might be able to explain the data
at higher energies, particularly using effective field theory
generated interactions [42,43]. Extension of the method to
other reactions in the four-nucleon system is in progress.
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