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Functional renormalization group for few-nucleon systems: SU(4) symmetry and its breaking
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We apply the functional renormalization group to few-nucleon systems. Our starting point is a local effective
action that includes three- and four-nucleon interactions, expressed in terms of nucleon and two-nucleon boson
fields. The evolution of the coupling constants in this action is described by a renormalization group flow. We
derive these flow equations both in the limit of exact Wigner SU(4) symmetry and in the realistic case of broken
symmetry. In the symmetric limit we find that the renormalization flow equations decouple and can be combined
into two sets, one of which matches the known results for bosons, and the other result matches the one for a
single flavor of spin 1/2 fermions. The equations show universal features in the unitary limit, which is obtained
when the two-body scattering length tends to infinity. We calculate the spin-quartet neutron-deuteron scattering
length and the deuteron-deuteron scattering lengths in the spin-singlet and spin-quintet channels.
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I. INTRODUCTION

Few-body physics provides a solid starting point for
analyzing various nonperturbative approaches and methods
which can then be used for studying more complicated many-
body problems. The study of few-body systems also allows us
to determine the input parameters needed for those complex
problems, without the need to rely on further approximations.
One promising method is the functional renormalization
group (FRG) [1,2], as it provides a framework that can
simultaneously describe both few- and many-body systems.
Some reviews of the method and its applications can be found
in Refs. [3–5].

The approach is based on a running effective action (REA),
which is a generalization of the standard quantum mechanical
effective action—the generating functional of the one-particle
irreducible Green’s functions. The REA includes the effects of
all the fluctuations with momenta in the region q2 � k2, where
k is a running scale. This is achieved by introducing a regulator
that, either sharply or smoothly, suppresses the contribution of
modes with q2 � k2. The FRG describes the evolution of this
action as the cutoff scale k is lowered. As k approaches zero,
all fluctuations are included and thus the full effective action
is recovered.

The FRG method has already been applied to few-body
problems in a number of papers [6–10]. In Ref. [6], it was
exploited to derive the Skornyakov–Ter-Martirosyan equation
for three-body systems [11]. The Efimov effect [12] in bosonic
and fermionic systems was addressed in Ref. [7]. An important
extension of the approach was developed in Ref. [8] to treat the
four-body problem in the presence of the three-body Efimov
effect, and the process of dimer-dimer scattering was studied
in detail in Ref. [10]. This shows one of the key strengths
of the FRG method, which is its universality. With relatively
minor changes it can be adopted to study a large variety of
problems in particle, nuclear, and condensed matter physics.
Some representative examples can be found in Refs. [13–15].

Up to now, most applications of the FRG have been to
particle physics and condensed matter systems. In the present
work we apply it to systems of up to four nucleons, laying the
groundwork for extensions to larger numbers of nucleons and

to nuclear matter. One important aspect of our implementation
of the FRG is the introduction of bosonic fields to describe
interacting pairs of nucleons. This will be very useful for future
work since it will allow us to link the scattering of nucleons in
vacuum to pairing in systems of many nucleons, as in Ref. [13].
This study of few-nucleon systems allows us to develop some
of the tools and determine the parameters that will be needed in
such work. In this context, it is helpful to make use of Wigner’s
SU(4) “supermultiplet” symmetry, which is known to be a very
good approximate symmetry for light nuclei [16], and even for
some two-nucleon processes, provided the momenta involved
are large compared with the inverse scattering lengths [17].

The effective action is the Legendre transform of the
logarithm of the partition function, �[φc] = W [J ] − J · φc,
where eW is the partition function in the presence of an
external source J [18]. The functional � is the generator of
the one-particle-irreducible Green’s functions, and it reduces
to the usual effective potential for homogeneous systems. One
of the reasons to work with � rather than W is that we can
introduce a renormalization group flow to determine � [1]. A
running version of the effective action is defined by introducing
an artificial gap in the energy spectrum for the fields which
depends on a momentum scale k. Thus we define a different
effective action for each k by integrating over components
of the fields with momenta q > k only. The renormalization
group (RG) trajectory then interpolates between the classical
action of the underlying field theory (at large k), and the full
effective action (at zero k) [3]. The intermediate actions along
the trajectory are not physically meaningful.

The flow equation for the effective action is a functional
differential equation of the form

∂k� = − i

2
Str[(∂kR) (�(2) − R)−1], (1)

where �(2) denotes the second functional derivative taken
with respect to the fields entering the action, and R is a
matrix of cutoff functions. These functions act as regulators,
suppressing the contributions of fluctuations with momenta
below the running scale k and thus driving the evolution of
the system as k is lowered. The structure of the evolution
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equation is rather straightforward; the main complexity is in the
operation Str, which is the supertrace, which is taken over both
energy-momentum variables and internal indices. It is needed
since we consider a mixed system of fermions (nucleons) and
bosonic dimers in this work.

The main advantage of this version of the RG is that
the right-hand-side of Eq. (1) involves a single integral over
energy and momentum. It thus has the form of a one-loop
integral, where (�(2) − R)−1 can be thought of as the matrix
of single-particle propagators dressed by all fluctuations above
the scale k. Since Eq. (1) is exact and therefore nonperturbative,
questions of diagrammatic expansion do not arise in this
framework, in contrast to other versions of the RG and many
traditional approaches to many-body physics. Nonetheless,
despite its simple structure, this equation describes the running
of a complicated object—� is in general a nonlocal functional
of all the fields describing our system.

Since exact solution of a functional differential equation
is usually not possible, in practical applications, the REA
is usually truncated to a finite number of local terms.
The choice of these is guided by the relevant physics in the
system we wish to describe, and by insights from effective field
theories. This truncation reduces the full functional differential
equation (1) to a set of coupled ordinary differential equations
(ODEs) for the running coupling constants and renormal-
ization factors multiplying those terms in the action. These
equations are straightforward to solve nonperturbatively using
standard methods. It is the choice of the physics we want to
describe that determines the form of the expansion of the REA.

The use of local interactions means that the FRG method
has close links to approaches based on effective field theories
[19,20]. In some cases, for example the action used to study
the Efimov effect in three-boson systems, the terms included
are just the leading terms of the corresponding effective field
theory. In other cases, such as the applications to dense matter,
strict power-counting arguments cannot be used and we must
rely on the need to describe emergent aspects of the physics
that are known to be important, such as superfluidity.

In the limit where k is much larger than all the physical
scales in our system, k becomes the only important scale.
The effects of the physical scales, for example the scattering
lengths, become negligible in this regime and the evolution
equations then show scaling behavior with k. This behavior
is governed by the unitary limit, where the inverse two-body
scattering lengths vanish. In this limit, all of the evolution
equations collapse to simple universal forms for large enough
values of the cutoff scale k. Moreover, since all the inverse
scattering lengths are negligible, these equations have SU(4)-
symmetric forms. These universal equations can then be used
to obtain boundary conditions for the evolution equations away
from the unitary limit. We present the detailed form of these
equations in the Appendix, where we show that they form two
decoupled sets of equations.

The set of equations that describes three or four particles in
spatially symmetric states displays the Efimov effect [12]. In
these channels, scale invariance is broken by the appearance of
an infinite tower of three-body bound states, with subsequent
energies in a constant ratio. A single three-body initial condi-
tion needs to be specified to fix the energies of all these states.

In the main body of the paper we derive a general set of
equations for the evolution of the REA, without assuming
SU(4) symmetry. Nonetheless, this symmetry plays a pivotal
role in our approach. As just mentioned, the initial conditions
are imposed at a scale where SU(4) is a very good symmetry.
Initially the evolution remains in this regime, and it is only
when it reaches scales k ∼ 1/a that SU(4)-breaking effects
can become large. In the two-body sector, the symmetry is
lost in the physical limit (k → 0) for quantities such as the
scattering lengths themselves. Perhaps surprisingly, SU(4) re-
mains a good approximate symmetry for three- and four-body
scattering at threshold. Working with the same combinations
of couplings that decouple in the SU(4) limit, we find that the
mixing remains small, except in narrow regions of the three-
body parameter that controls the positions of the Efimov states.

One of these sets describes the channels where the nucleons
are in states of mixed spatial symmetry and it has the same form
as that for a system of fermions with spin degrees of freedom
only, as derived in Ref. [10]. The other set describes the
spatially symmetric channels and, after a suitable redefinition
of coupling constants, it matches the evolution equations for
a system of interacting bosons in Ref. [7]. Despite the similar
forms of the two sets of equations, the differences in their
numerical coefficients have profound physical consequences.
In particular, the equations for spatially symmetric systems
leads to the Efimov effect [12] and limit-cycle behavior of
the three-body couplings [21]. In contrast, these effects do not
occur for few-fermion systems without spatial symmetry.

In the next section we set out the form of the REA we use
in our applications of the FRG to few-nucleon systems, and
in Sec. III we obtain the evolution equations for the running
parameters in that action. Then, in Sec. IV, we apply these
to analyze scattering in three- and four-nucleon systems for
realistic NN scattering lengths. We compare our results to
those in the SU(4) limit, details of which can be found in
Appendix A. Finally, some technical details of the link between
scattering lengths and the REA are discussed in Appendix B.

II. RUNNING EFFECTIVE ACTION

Since our ultimate goal is to study pairing in dense nuclear
matter, we must isolate the relevant degrees of freedom. As is
well known, the nuclear force is just strong enough to generate
a bound state, the deuteron, in one of the S-wave channels.
Its isospin-1 analog is only just unbound and appears as a
virtual state very close to threshold. We thus find it useful
to introduce boson fields to describe the lowest two-body
states in both these channels. If one imagines starting from an
effective action with a local two-body interaction between the
fermions, the boson fields can be introduced using a Hubbard-
Stratonovitch transformation, which is exact in this case. We
use the notation t for the (spin-triplet) vector-isoscalar boson
field, corresponding to the deuteron, and s for the (spin-singlet)
scalar-isovector one. These we refer to collectively as “dimers”
and label by a capital D. We reserve the lowercase label d
for a deuteron and N for a generic nucleon. Finally, when
specifying quantum numbers of particular channels, we use
the SO(4) notation (S, I ), where S and I denote the resultant
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spin and isospin quantum numbers, respectively. In the present
work, we assume that isospin is a good symmetry. The use of
such dibaryon fields was first suggested in Ref. [22] in the
context of effective field theories.

The key approximation we make is to truncate the full
REA to one with only a finite number of parameters, so that
the functional differential equation can be replaced by a set of
ordinary differential equations. No further approximations are

made, which means that the solution of the resulting equations
is nonperturbative in all their couplings. In the present case,
we introduce a set of local contact interactions in the channels
of interest, as well as kinetic terms for the dimer fields. In
principle we could also have added effective ranges for the
interactions using the forms used in effective field theory; in
this first application we have not included such effects. The
form for the REA we use is

� =
∫

d4p ψ†
mtms

(p0, p)

(
p0 − p2

2M
+ iε

)
ψmtms

(p0, p) +
∫

d4p t
†
i (p0, p)

(
Zφ,tp0 − Zm,t

p2

4M
− u1,t + iε

)
ti(p0, p)

+
∫

d4p s†a(p0, p)

(
Zφ,sp0 − Zm,s

p2

4M
− u1,s + iε

)
sa(p0, p) + �2 + �3 + �4. (2)

Since the action at the start of the evolution is obtained by bosonizing a purely fermionic one, the boson fields should be
nonpropagating auxiliary fields for k → ∞. Their wave function and kinetic-mass renormalization factors (Zφ,i and Zm,i) should
tend to zero in this limit. When we run the action as we lower the cutoff scale k, these fields become dynamical, and the
renormalization factors grow.

The bosonization introduces self-energies for the boson fields (u1,i) and couplings of the dimers to pairs of nucleons in the
(1, 0) and (0, 1) two-body channels. These couplings are described by the term

�2 = −
∫

δ(4)(p1 + p2 − p3)d4p1d
4p2d

4p3V2, (3)

V2 = 1

2
√

2
gt [t†(p30, p3) · [ψ(p10, p1)ψC(p20, p2)](1,0) + H.c.] + 1

2
√

2
gs[s†(p30, p3) · [ψ(p10, p1)ψC(p20, p2)](0,1) + H.c.],

(4)

where

ψC
mt2 ms2

= τ 2
ms1 ms2

σ 2
mt1 mt2

ψmt1 ms1
. (5)

Since t† is a (1, 0) tensor and s† a (0, 1) one, the scalar products in Eq. (4) should be understood as being taken in either spin
or isospin space, as appropriate. The values of the coupling constants gi depend on a choice of scale in the dimer fields when
they are introduced by the Hubbard-Stratonovitch transformation. Thus we must find that the values of the gi do not appear
separately in physical quantities, but only in combinations such as g2

i /u1,i . An illustration of this is provided by the discussion
of the evolution of the u1,i in the next section. The unobservable coupling constants gi do not run in vacuum and, for simplicity,
we choose their values to be equal:

gt,s = g. (6)

To describe the three-nucleon channels, we introduce a set of local dimer-nucleon interactions, described by the term

�3 = −
∫

δ(4)(p1 + p3 − p2 − p4)d4p1d
4p2d

4p3d
4p4V3,DN , (7)

V3,DN =
∑

i,j=t,s

λ
(1/2,1/2)
ij [i†(p30, p3)ψ†(p10, p1)](1/2,1/2) · [ψ(p20, p2)j (p40, p4)](1/2,1/2)

+ λ
(3/2,1/2)
t t [t†(p30, p3)ψ†(p10, p1)](3/2,1/2) · [ψ(p20, p2)t(p40, p4)](3/2,1/2)

+ λ(1/2,3/2)
ss [s†(p30, p3)ψ†(p10, p1)](1/2,3/2) · [ψ(p20, p2)s(p40, p4)](1/2,3/2), (8)

where λ
(1/2,1/2)
ts = λ

(1/2,1/2)
st . These have been expressed in terms of interactions in the doublet-doublet channel, with spin-isospin

quantum numbers (1/2, 1/2), and the quartet-doublet channels, with quantum numbers (3/2, 1/2) or (1/2, 3/2). The (1/2, 1/2)
channel has the quantum numbers of the ground states of 3H and 3He.

Finally, we introduce one class of four-nucleon interactions, represented by local two-body dimer-dimer interactions and
described by the term

�2,DD = −
∫

δ(4)(p1 + p3 − p2 − p4)d4p1d
4p2d

4p3d
4p4V2,DD, (9)
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V2,DD = 1

2

∑
i=t,s

u2,i

(
i †(p10, p1) · i(p20, p2) i †(p30, p3) · i(p40, p4) − 1

3
i †(p10, p1) · i †(p30, p3) i(p20, p2) · i(p40, p4)

)

+u2,ts(t†(p10, p1) · t(p20, p2) s†(p30, p3) · s(p40, p4)) + 1

12

∑
ij=t,s

ū2,ij i †(p10, p1) · i †(p30, p3) j (p20, p2) · j (p40, p4),

(10)

where ū2,ts = ū2,st . The u2,i terms act in the (2, 0) and (0, 2)
two-dimer (four-nucleon) channels, the u2,ts terms act in the
(1, 1) channel, and the ū2 terms act in the (0, 0) channel. Only
the last of these has the quantum numbers of the ground state
of the α particle.

The behavior for large k is particularly simple. In this
region, the regulator provides the only scale and every coupling
varies as a power of k. The effects of SU(4) breaking
also become negligible here and so the evolution equations
reduce to the simpler, SU(4)-symmetric forms discussed in
Appendix A. This allows us to determine the initial conditions
on the evolution here and these then provide the physical input
into our approach.

Most of the parameters are “irrelevant” in the technical
sense that the low-energy results from our action in the physical
limit (k → 0) do not depend strongly on the precise values of
the initial conditions imposed at very large k. However, there
are three exceptions and these provide the physical input into
our approach. Two of them are the self-energies, u1,i , which
are “relevant” parameters in RG language, as discussed in
Ref. [24]. Their values at k = 0 determine the strength of the
interaction between the fermions and can be related either to
the NN scattering lengths, at and as , or, in the channel with
the bound state, to the deuteron binding energy,

Ed = − 1

Ma2
t

. (11)

The third parameter is associated with the spatially sym-
metric channel of the three-nucleon system. This is the channel
that displays the Efimov effect [12] and as a result the evolution
of its coupling constant for it has a limit-cycle behavior at large
k. Just as in the analogous effective field theory treatment [21],
one piece of three-body data is needed to fix the starting
point on this cycle. Here we choose the nucleon-deuteron
scattering length in the spin-doublet channel, and we explore
how four-nucleon observables are related to it.

III. EVOLUTION EQUATIONS

To derive the evolution equations for the coupling constants
in our action, we substitute the parametrization given in the
previous section into the right-hand side of Eq. (1). The
inverse of the second derivative of � forms a scale-dependent
propagator, and the driving terms for the coupling constants
all have the structure of one-loop integrals, with differing
numbers of external fields. In general these include expressions
with powers of fields or derivatives beyond those contained in
our truncated action. We therefore need to expand the loop

integrals in powers of the fields and nonlocalities (i.e., in
energies and momenta) and pick out those terms that match the
structures listed in the previous section. The scale-dependent
coefficient in front of each structure then gives us the driving
term in the differential equation for the corresponding coupling
constant.

As well as the choice of truncation, we also need to make
a choice of the point around which we expand our energies.
Since we concentrate on the physics at the dimer threshold, we
choose our expansion points for this state; other choices are
possible, but they suffer from numerical complications arising
from linking the flows both above and below threshold. For the
dimers, we choose the energy of the lowest two-body bound
state, Ed . In the four-nucleon sector, for example, this means
that we expand around the deuteron-deuteron threshold. For
the nucleons we expand around one half of this binding energy.
Thus in the nuclear-dimer channels of the three-nucleon
system we expand about an energy Ed/2 below the scattering
threshold. This procedure can be justified rigorously in the
limit of exact SU(4) symmetry, as discussed further below, but
it is only approximate in the general case. It could thus lead to
a slower convergence than expected of the expansion.

Finally, we need to choose the forms for the cutoff functions
in the regulators for the nucleons and dimers. Here we take the
form suggested by Litim [23] for both, as it is well-suited for
partially analytic calculations. It is also optimized for actions
truncated to purely local (energy-independent) interactions, as
also discussed in more detail by Pawlowski [5]. The regulators
are thus given by

RN (q; k) = k2 − q2

2M
θ (k − q), (12)

RD(q; k) = Zφ(k)
k2 − q2

4M
θ (k − q). (13)

Note that we have assumed that the two Zφ’s are equal; this
can be shown to hold in the expansion scheme we use here
[see Eq. (23) below]. The inclusion of the wave-function
renormalization factor in the definition of RD has the advantage
of allowing us to scale out the parameters g, M, and at , leaving
much simpler, dimensionless expressions. For example, a
generic three-body coupling λ has a natural scaling of the
form

(κ) = 1

a2
t Mg2

λ(k). (14)

Analogously, a generic four-body coupling u2 can be scaled
as

U2(κ) = g−4M−3a−3
t u2(k). (15)
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A. One-boson terms

The evolution equations for u1,i , Zφ,i , and Zm,i are
relatively straightforward in vacuum. Their forms are the same
as in the simpler case studied in Ref. [10]. For example, both
the u1,i satisfy the differential equation

∂ku1,i(k) = g2

2

1

(2π )3

∫
d3q

∂kRN (q; k)(
q2

2M
+ RN (q; k) − Ed/2

)2 ,

(16)

where Ed appears in the denominator as a result of our choice
of expansion point and we have already performed the integral
over the virtual energy q0. This equation is an exact differential
and can be integrated directly. Its solution grows linearly with
k as k → ∞, reflecting the relevant nature of the parameters
u1,i .

The difference between the two channels is encoded only
in different boundary conditions imposed on the solutions to
this equation. In the case of the t channel, there is a bound
state and we have chosen to expand in powers of the energy,
p0, relative to this state. The dimer propagator in this channel
should therefore have a pole at p0 = 0 in the physical limit,
which leads to the condition

u1,t (k = 0) = 0. (17)

The solution to Eq. (16) that satisfies this can be written in the
form

u1,t (k) = −g2M

4πat

− g2

2

1

(2π )3

×
∫

d3q

[
1

q2

2M
+ RN (q) − Ed/2

− 1
q2

2M

]
. (18)

For Litim’s regulator, Eq. (12), this gives

u1,t (k) = g2M

4πat

(
4

3π
κ + 2

3π

κ

(κ2 + 1)
+ 2

π
cot−1(κ) − 1

)
,

(19)

where we have used Eq. (11) for the deuteron binding energy
and we have introduced the dimensionless variable κ = kat .

The fact that SU(4) is not an exact symmetry means that
the two scattering lengths are not equal. In particular, the s
channel has no bound state and hence a negative scattering
length, as . If this were the only channel we were interested in,
we could just expand energies around zero and the appropriate
boundary condition would be

u1,s(k = 0) = − g2M

4πas

, (20)

which is obtained by replacing at by as and setting Ed to zero
in Eq. (18). However, we cannot use this here since we need

to treat both channels simultaneously and, as discussed above,
we haven taken the deuteron energy as our expansion point.
(A similar issue would arise even if the s channel also had
a bound state but this was shallower than the deuteron.) The
appropriate boundary condition can be obtained by replacing
at by as in the first part of the right-hand side of Eq. (18), while
keeping Ed in the second term. Introducing the dimensionless
parameter α (� 1) by

1/as = α/at , (21)

we can write the solution in the form

u1,s(k) = u1,t (k) + g2M

4πat

(1 − α). (22)

The parameter 1 − α provides a measure for the symmetry
breaking in the two-body channels. We treat this breaking
nonperturbatively in the following calculations.

The wave-function renormalization factors Zφ,i both satisfy
the same equation and we can impose the same boundary
condition that they vanish as k → ∞ on them. They then have
the same form in both channels,

Zφ,i(k) = 1

4

1

(2π )3

∫
d3q

1[
q2

2M
+ RN (q) − Ed/2

]2

= atg
2M2

8π

(
2κ(5κ2 + 3)

3π (κ2 + 1)2
+ 2

π
cot−1(κ)

)
. (23)

Litim’s cutoff [23] respects Galilean invariance to the order
we work here (see Ref. [24] for more details) and we find
that the mass renormalization factors are the same as those
multiplying the energy,

Zm,i = Zφ,i . (24)

To simplify the expressions for the loop integrals in
channels with more than two particles, we introduce a compact
notation for the inverse propagators,

ENR(q) = q2

2M
− Ed/2 + RN (q), (25)

EDR,i(q) = Zφ

[
q2

4M
+ u1,i(q)/Zφ − Ed + RD(q)/Zφ

]
,

(26)

where we have suppressed the implicit k dependence of the
running quantities in these expressions.

B. Three-body couplings

The evolution equations for the three-body (nucleon-dimer)
couplings decouple into a set of four for the (1/2, 1/2) channel
and two separate equations for the (3/2, 1/2) and (1/2, 3/2)
channels. They have the forms

∂kλ
(1/2,1/2)
t t = λ

(1/2,1/2)
st λ

(1/2,1/2)
ts I1,s + (

λ
(1/2,1/2)
t t

)2
I1,t + g2

(
3
4

[
λ

(1/2,1/2)
st + λ

(1/2,1/2)
ts

]
I2,t − 1

2λ
(1/2,1/2)
t t I2,s

)+ 1
16g4(I3,t + 9I3,s), (27)

∂kλ
(1/2,1/2)
ts = λ

(1/2,1/2)
t t λ

(1/2,1/2)
ts I1,t + λ

(1/2,1/2)
ts λ(1/2,1/2)

ss I1,s

+ 1
4g2

([
3λ

(1/2,1/2)
t t − λ

(1/2,1/2)
ts

]
I t

2 + [
3λ

(1/2,1/2)
ss − λ

(1/2,1/2)
ts

]
I s

2

) − 3
16g4(I3,t + I3,s), (28)
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∂kλ
(3/2,1/2)
t t = (

λ
(3/2,1/2)
t t

)2
I1,t + g2λ

(3/2,1/2)
t t I2,t + 1

4g4I3,t , (29)

where we have displayed only half the equations; the others can obtained by appropriate interchanges of spin and isospin labels
(in particular t ↔ s). We have also defined a shorthand notation for the k-dependant loop integrals:

I1,i = 1

(2π )3

∫
d3q

∂kRD + Zφ∂kRN

[EDR,i(q) + ZφENR(q)]2
, (30)

I2,i = 1

(2π )3

∫
d3q

ENR(q)∂kRD + (EDR,i + 2ZφENR)∂kRN

ENR(q)2[EDR,i(q) + ZφENR(q)]2
, (31)

I3,i = 1

(2π )3

∫
d3q

ENR(q)∂kRD + (2EDR,i + 3ZφENR)∂kRN

ENR(q)3[EDR,i(q) + ZφENR(q)]2
, (32)

which can be evaluated in closed form for our choice of cutoff functions, Eqs. (25) and (26).

C. Dimer-dimer couplings

The evolution equations for the four-body (dimer-dimer)
couplings u2 or ū2 also decouple into a set of four for the (0, 0)
channel and three separate equations for the (2, 0), (0, 2), and
(1, 1) channels. They have the forms

∂ku2,t = 1

2
u2

2,tK1,t − 2g2λ
(3/2,1/2)
t t K2 − 3

4
g4K3, (33)

∂ku2,ts = 1

2
u2

2,tsK1,ts

− g2 1

3

(
2

∑
i=t,s

λ
(3/2,1/2)
ii +

∑
ij=t,s

λ
(1/2,1/2)
ij

)
K2

− 3

4
g4K3, (34)

∂kū2t t = 1

4
ū2

2t tK1,t + 1

4
ū2ts ū2stK1,s

− 12g2λ
(1/2,1/2)
t t K2 + 3

4
g4K3, (35)

∂kū2ts = 1

4
ū2t t ū2stK1,t + 1

4
ū2ss ū2tsK1,s

− 12g2λ
(1/2,1/2)
st K2 − 9

4
g4K3 (36)

(where again we have displayed only half the equations).
Note that each equation contains only a limited subset of the
thee-body couplings, as a result of the constraints of angular
momentum and isospin. The loop integrals used here are

K1,i = 1

(2π )3

∫
d3q

∂kRD

ZφEDR,i(q)2
, (37)

K1,ts = 1

(2π )3

∫
d3q

4∂kRD

Zφ[EDR,t (q) + EDR,s(q)]2
, (38)

K2 = 1

(2π )3

∫
d3q

∂kRN

ENR(q)3
, (39)

K3 = 1

(2π )3

∫
d3q

∂kRN

ENR(q)4
. (40)

D. SU(4)-breaking form

Since the inverse scattering lengths for nucleons are all
small compared to the typical momentum scales of bound

states of more than two nucleons, SU(4) is a good approximate
symmetry in nuclear physics. Also, in the context of our RG
treatment, much of the evolution takes place on momentum
scales where SU(4) is a very good approximate symmetry. It
is therefore sensible to reexpress our couplings in terms of ones
which multiply SU(4)-symmetric combinations of fields and
ones which are generated by SU(4) breaking in the two-body
sector. This is also needed for analyzing the behavior of the
couplings in the large-k regime where we impose our initial
conditions, as discussed above. Using the same notation as in
Appendix A and denoting the SU(4)-breaking couplings with
a “δ,” we define, for example,

λ = 1
2

(
λ

(1/2,1/2)
t t + λ

(1/2,1/2)
ss − 2λ

(1/2,1/2)
st

)
, (41)

λ′ = 1
2

(
λ

(1/2,1/2)
t t + λ

(1/2,1/2)
ss + 2λ

(1/2,1/2)
st

)
, (42)

δλ = λ
(1/2,1/2)
t t − λ(1/2,1/2)

ss , (43)

ū′
2 = 1

2 (ū2ss + ū2t t + 2ū2ts), (44)

ū2 = 1
2 (ū2ss + ū2t t − 2ū2ts), (45)

δū2 = 1
2 (ū2t t − ū2ss) (46)

for the (1/2, 1/2) and (0, 0) channels. In a similar way we
break the loop integrals up into, for example,

Ij = 1
2 (Ij,s + Ij,t ), (47)

δIj = Ij,t − Ij,s . (48)

The equations we obtain are generalizations of the SU(4)
symmetric case discussed in Appendix A. For the spatially
symmetric channels they become

∂kλ = I1λ
2 + g2I2λ + 1

4g4I3

+ 9
4I1δλ

2 + δλ
[

3
2δI1λ + 3

4g2δI2
]
, (49)

∂kλ
′ = I1λ

′2 − 2g2I2λ
′ + g4I3

+ 9
4I1δλ

2 + δλ
[

3
2δI1λ

′ − 3
2g2δI2

]
, (50)

∂kδλ = 3
4δI1δλ

2 + I1δλ(λ + λ′) − 1
2g2I2δλ

+ 1
3δI1λλ′ + g2 1

6δI2(λ′ − 2λ) − 1
6g4δI3, (51)

∂kū
′
2 = 1

2K1(ū′
2)2 − 2g2K2λ − 3

4g4K3

+ 1
2K1(δū2)2 + δK1δū2ū

′
2, (52)
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∂kū2 = 1
2K1ū

2
2 − 2g2K2λ

′ + 3
2g4K3

+ 1
2K1(δū2)2 + δK1δū2ū2, (53)

∂kδū2 = 1
2δK1(δū2)2 − 3g2K2δλ

+ 1
2K1δū2(ū′

2 + ū2) + 1
2δK1ū

′
2ū2. (54)

Note that all SU(4)-breaking terms on the right-hand sides
are at least quadratic in symmetry-breaking quantities. Even
though we shall solve the set of equations (27)–(28) and
(33)–(36), without imposing SU(4) symmetry, the reorgani-
zation of the potential in this section leads us to expect that
generically SU(4) is a rather good approximate symmetry in
the three- and four-nucleon systems.

IV. RESULTS

A. SU(4)-symmetric limit

We first look at the case of exact supermultiplet symmetry,
as = at . The evolution equations in this limit are described
in detail in Appendix A. As explained there, we can reduce
the problem to a limited set of parameters. These include two
dimensionless three-body coupling constants, one of which
[the coupling λ′ in the (1/2,1/2) channel] exhibits the Efimov
effect [12].

This effect is a remarkable feature of any three-body system
with an attractive short-range interaction. In the unitary limit
(a → ∞) such a system possesses an infinite number of three-
body bound states with a geometric spectrum. Even away from
the unitary limit, these systems display universal features, such
as relations between various three- and four-body observables
[25,26]. In the framework of a renormalization group, the
evolution of the corresponding three-body force shows a
limit-cycle behavior [21], as a consequence of the periodic
appearance of new Efimov states as the cutoff is lowered.
Away from the unitary limit, the finite inverse scattering length
provides an infrared cutoff on the Efimov behavior. This leaves
a unique shallowest bound state, which, in the nuclear context,
we interpret as the triton. As a result, the periodic behavior of
the three-body coupling stops when the cutoff scale decreases
to a value comparable with 1/a, where it becomes almost
independent of the running scale. More details of the running
of λ′ in the unitary limit can be found in Appendix A.

We first compare the asymptotic results for λ′, or rather a
rescaled version of this coupling, ′, defined as in Eq. (14),
to the numerical solution of the full equation. This coupling
diverges periodically in t = ln(κ) = ln(kat ), reflecting the
appearance of the geometrically spaced states of the Efimov
effect. In Fig. 1 we plot the arctangent of this coupling (after
a suitable rescaling), which remains finite. The linear growth
seen for large t is the signal of Efimov behavior. The plot shows
that the full solution follows the asymptotic form very closely
down to t � 0. At this point, the scale 1/at becomes important
and acts as a low-energy cutoff on the tower of Efimov
states.

If we add the appropriate iε terms to impose causal
boundary conditions on the propagators, we find that ′ has
an infinitesimal negative imaginary part. In our numerical
treatment we take advantage of this, by starting the evolution

20 10 0 10 20
0

5

10

15

t

ta
n

1
2

FIG. 1. (Color online) An example of the full evolution of ′

(solid blue line) compared to the asymptotic evolution (red dashed
line). The full evolution was started by integrating downward from
t = 20, with the same initial condition as chosen for the asymptotic
solution.

of ′ at large κ from the asymptotic solution,

κ2′(t) = 1
28

{
31 − 5

√
535 tan

[
1

25 (5 − δi − √
535t)

]}
,

(55)

with a small imaginary part δ. As we evolve downward in t , this
allows our solution to bypass the singularities on the correct
side and hence we are able to integrate the equations for the
four-body couplings numerically. In this context we note that it
is important not to take the finite imaginary part to be too small
relative to the numerical precision used in the integration, as
otherwise errors are introduced by the integration regions close
to the singularities. Our results in the scaling region differ from
those of Schmidt and Moroz [8], who took too small values
for the imaginary part.

The three-body parameter in the spatially symmetric chan-
nel, λ′, couples to the evolution of the dimer-dimer parameter
in the corresponding four-body channel, ū2. The rescaled
version of this, which we call Ū2, is defined as in Eq. (15).
However, in the region of large κ 	 1, it is more convenient
to work with

VDD(κ) = κ3Ū2. (56)

The evolution of this in the scaling regime is shown in Figs. 2
and 3. There we can see that the solution, apart from a very
short-lived transient, is completely determined by the driving
term deriving from the coupling to ′. The coupling VDD

shows periodic singularities, reflecting the Efimov physics in
the three-body channel. The initial transient effects vanish with
a part of one Efimov cycle, reflecting the fact that the exact
boundary condition on VDD is an “irrelevant” parameter. More
details of one of the singularities of VDD are shown in Fig. 3.
As we decrease the imaginary part of ′, i.e., the value of
δ in Eq. (55), we see that the solution behaves much like a
logarithmic singularity, with a sharp peak in its real part and a
finite jump in its imaginary part.

The rescaled coupling VDD goes to zero like κ3 as κ → 0.
However, we are ultimately interested in the values of the
unscaled couplings in this limit. This suggests that the most
appropriate technique for solving the differential equations
numerically is to use the equations for the rescaled quantities,
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FIG. 2. (Color online) (a) Real part and (b) imaginary part of VDD evolving as functions of t in the scaling regime, starting with the initial
condition VDD = 0 at t = 100, for three different choices for the phase of ′ on the asymptotic limit cycle (yellow dotted, red dashed, and
solid blue). The imaginary part of ′ at the starting point is the same in the three cases shown.

VDD and κ2′ for t = ln κ > t0 ≈ 0, and the equations for Ū2

and ′ for t < t0. Doing this we find that both couplings tend
to finite values in the physical limit. The physical value of Ū2 is
in general complex. This indicates that we are indeed looking
at an inelastic channel, as a result of the more deeply bound
states in the three-body channel.

Finally, we express our results in terms of scattering lengths,
as discussed in Appendix B. We take the value at = 4.32 fm
for the two-body system in order to reproduce the deuteron
binding energy. This differs slightly from the experimental
value because our current calculations do not include finite-
range corrections (i.e., momentum-dependent interactions).
Using the relations

aDD/at = 32πŪ2(0), (57)

aDN/at = 4
3′(0), (58)

we get the results summarized in Fig. 4. These show the
relationship between four-body scattering and the three-body
parameter associated with the limit cycle of ′, which is fixed
by the nucleon-dimer scattering length. There we see that the
real part of the dimer-dimer scattering length has a zero at
almost the same energy as the nucleon-dimer scattering length.
We also see that there is a maximum value for the real part of
the DD scattering length.

In the other pair of channels, which have spatial wave
functions with mixed symmetry, all three- and four-body
parameters are irrelevant. All the physical quantities can
therefore be related to the single physical scale, at , in our

action. In particular, we find

a′
DD/at = 32πU2(0) = 1.34, (59)

a′
DN/at = 4

3
 =

5
√

215
7

3
− 29

3
= −0.43. (60)

The result that the dimer-nucleon scattering length in the
mixed-symmetry channel has the opposite sign to the nucleon-
nucleon scattering length is a stable one. This is because
we have a quadratic equation for the coefficient κ−2 in the
asymptotic behavior of , with a discriminant b2 − 4ac, where
a, b, and c are all positive—and we thus have two negative
solutions. There are thus two asymptotic solutions, both of
which are negative. [Details can be found in the discussion
surrounding Eqs. (A24) and (A25).] The sign of  is preserved
in the evolution out of the asymptotic regime, and hence, even
though the numerical details can depend on the choice of cutoff
function, as long as we insist on a consistent k-scaling of the
cutoff function the opposite sign remains.

B. Broken SU(4)

In the real world, the singlet and triplet nucleon-nucleon
scattering lengths are different and there is no exact SU(4)
symmetry. The evolution equations do not decouple and
so we have to deal with 2 × 2 matrices of coupling con-
stants in both the (1/2, 1/2) three-nucleon channels and the
(0, 0) four-nucleon ones. In each case we can identify two

(a)
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(b)
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0
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2

3

4

5

t

Im
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D
D

FIG. 3. (Color online) (a) Real part and (b) imaginary part of VDD around a single singularity in the scaling limit, for three decreasing
values δ = 10−2 (yellow dotted), 10−4, (red dashed), and 10−6 (solid blue) of the imaginary part in the initial condition on ′, Eq. (55).
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FIG. 4. (Color online) The relations between the scattering lengths in the SU(4) limit for the channels exhibiting the Efimov effect. All
the points on these curves are obtained by choosing different points on the asymptotic limit cycle for ′ as initial values. (a) Real part of
dimer-dimer scattering length. (b) Imaginary part of the same scattering length. (c) Parametric plot of the real and imaginary parts.

scattering “eigenchannels” and, from the zero-energy T
matrix, determine a scattering length in each of these channels.
We show the general behavior of these scattering lengths
here, taking the value of 1 − α = 1 − at/as = 5/4 for the
SU(4)-breaking parameter. This is close to the realistic case,
giving as = −17.2 fm. For example, for the A = 3(1/2, 1/2)
channels we must diagonalize the matrix of couplings [see
Eqs. (27) and (28)](

λ
(1/2,1/2)
t t λ

(1/2,1/2)
ts

λ
(1/2,1/2)
st λ

(1/2,1/2)
ss

)
. (61)

For exact SU(4) symmetry, these couplings are all equal and the
eigenvectors are just (1, 1) and (1,−1). More generally, trans-
forming the matrix into this basis gives the SU(4)-symmetric
and SU(4)-breaking couplings shown in Eqs. (41)–(43). In a
similar way, the SU(4) eigenchannels for the A = 4 (0, 0) case
are also equal mixtures.

The results depend on the starting on the limit cycle of
the coupling constant that displays the Efimov effect in the
scaling limit. The dependencies of the scattering lengths
on this three-body parameter are presented in Fig. 5. Both
lengths show avoided crossings; the narrowness of these is
an indication that SU(4)-breaking effects are relatively weak.
Further evidence of the smallness of this breaking is provided
by the ratios between the components of the eigenchannel
solutions. As can been seen from Fig. 6, the mixings are
small (�20%), except in narrow windows around the crossing
points.

In Fig. 7 we show the relations between the scattering
lengths in the channels dominated by the Efimov effect.
The scattering lengths in these channels vary rapidly with
the three-body parameter. This means that, at the avoided
crossing, we switch from one branch of the solution to the
other. As a result, there is a very small discontinuity in the
plots, close to the points where aDN and Re[aDD] vanish. In
the other channels we have approximately constant scattering
lengths away from the avoided crossing. These have values of
aDN = −0.26 ± 0.03 fm and Re[aDD] = 5.55 ± 0.11 fm.

C. Realistic scattering lengths

We now turn to the implications of these results for
realistic few-nucleon systems. Above we have already shown

some results obtained with values for the nucleon-nucleon
scattering lengths that are close to the observed ones. The small
differences are not significant given the level of truncation of
our REA, which means that effective-range corrections are not
included.

As already discussed, we also need one piece of three-body
data to fix the starting point of the evolution on the Efimov
cycle that is present for large cutoff scales. We choose to
do this by using the experimental value of the spin-doublet
nd scattering length 2and = 0.68 fm [27] to determine the
initial value of λ

(1/2,/1/2)
t t (since nd is not one of the scattering

eigenchannels). We have to be careful here, since, as stated
earlier, we calculate the three-body couplings off-shell, at
energy Ed/2 below threshold.

The situation is different for the nd scattering length 4and

in the spin-quartet channel. All the three-body parameters that
contribute here are irrelevant and so the physical value of 4and

extracted at k = 0 does not depend on their initial values. Our
FRG calculations give 4and = −1.02 fm. This differs signif-
icantly from the experimental value of 4and = 6.35 fm [27].
Other theoretical calculations seem to be able to reproduce this
result, either via application of the ε expansion [28] or from
solving the Skornyakov–Ter-Martirosyan equation [29]. As we
have said before, the negative value of this scattering length
appears to be a stable result of our calculations, and it is not
very sensitive to the fine details. One possible reason for this is
that the value of 4and reported here is defined not at threshold
but at the expansion point we have used for the nucleon energy
in our flow equations, ED/2 ≈ −1 MeV. Energy dependence
is known to be important for three-body observables [6] and
so the extrapolation to the physical threshold could have a
significant effect, especially since Ed is a small scale, and
we could expect significant energy dependence. The work of
Bedaque et al. [29] shows energy dependence, but when they
include only the scattering length, this would probably not be
sufficient to explain what happens here. In order to explore
this in more detail, we will need to extend our REA to include
energy- and momentum-dependent couplings.

In the case of four-nucleon systems, we consider two
interacting deuterons and extract the dd scattering lengths in
the spin-singlet and spin-quintet channels. Besides being of
interest on its own, the low-energy dd interaction may have
astrophysical applications, since under conditions expected to
exist inside brown-dwarf stars a many-deuteron system may
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FIG. 5. (Color online) Evolution of the eigenvalues of the T matrix (parametrized as scattering lengths) in the two A = 3 (1/2, 1/2)
eigenchannels and for the two A = 4 (0, 0) eigenchannels, as a function of the parameter φ0 specifying the initial condition on the limit cycle.
(a) Nucleon-dimer scattering length (which is real). (b) Real part of the dimer-dimer scattering lengths (fine scale). (c) Imaginary part of the
dimer-dimer scattering lengths. (d) Real part of the same on a course scale, showing the narrowness of the avoided crossing.

behave as a superfluid [30]. A framework like the FRG that can
both describe the dd interaction in vacuum and be extended to
dense matter would be very useful in this context.

In the case of two deuterons, our expansion point corre-
sponds to the physical threshold and so issues of extrapolation
in energy do not arise. The singlet channel can couple to the
n + 3He (or p + 3H) channel, which has a lower threshold.
Hence, as we have already seen above, the scattering can be
inelastic, and its scattering length is complex. In contrast,
the coupling of the quintet channel to the rearrangement
ones is much smaller as nonzero orbital angular momentum
is required [31]. In our S-wave treatment, this channel is
closed.

Our result for ū2 corresponds to a singlet dd scattering
length with Re[1add ] = 4.44 fm and Im[1add ] = 0.17 fm. The
real part is consistent with the value of Re[1add ] = 4.9 fm
obtained in Ref. [32] by solving the Faddeev-Yakubovsky
equation, even though the imaginary part is larger.

In the spin-quintet dd channel we get Re[5add ] = 2.55 fm.
This also agrees with the value Re[5add ] = 3.2 fm obtained by
Rupak in the framework of an ε expansion [28]. This is perhaps
unsurprising since that work uses an effective field theory with
a Lagrangian that like our REA omits effective-range terms.
What is more puzzling is that Rupak finds a very different
value from ours for 4and = 4.78 fm, the scattering length in
the three-body channel that feeds into the (2, 0) four-body one.
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FIG. 6. (Color online) Ratio between components of each of the two eigenchannel solutions found in the cases with coupled channels. As
discussed in the text, if this ratio is close to ±1 we have the perfect mixing expected in the SU(4) symmetric limit. (a) λ(1/2,1/2) and (b) ū2.
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FIG. 7. (Color online) The relations between the scattering lengths in the Efimov-dominated channels for α = −1/4. (a) Real part of
dimer-dimer scattering length. (b) Imaginary part of the same scattering length. (c) Parametric plot of the real and imaginary parts.

This may be yet another suggestion that energy dependence
of these couplings, allowing us to extrapolate better to the
on-shell value, needs to be considered.

Our result for the deuteron-deuteron scattering length in
the quintet channel agree qualitatively with the exact quantum
mechanical analysis in Ref. [31], given our incomplete
treatment of the (3 + 1)-particle rearrangement channels. The
authors of that work find that this scattering length is very
sensitive to these channels, and excluding them leads to a
substantial reduction of Re[5add ], from 7.5 to −0.1 fm.

In this first application of the FRG method to three- and
four-nucleon systems, we are able to reproduce some of
the effects of inelasticities in deuteron-deuteron scattering.
However, at this level we do not describe the nucleon-trimer
threshold that is needed to get the correct energy dependence in
this channel. To do this we would need to extend our approach
by adding an auxiliary trimer field, along the lines suggested
by Schmidt and Moroz [8]. This is certainly feasible but it
would require adding a number of additional interaction terms
to our REA, leading to a much larger set of coupled evolution
equations.

V. CONCLUSIONS

In summary, we have applied the FRG method to three-
and four-nucleon systems, both in the limit of exact Wigner
SU(4) symmetry and with realistic symmetry breaking. From
the couplings in the physical limit, we have calculated the
nucleon-deuteron and deuteron-deuteron scattering lengths in
various spin-isospin channels.

We find that the evolution of one three-body coupling shows
oscillatory, limit-cycle behavior, which is a manifestation
of the Efimov effect in the corresponding channel. We
therefore need to use one piece of data to fix one three-body
parameter; all other three- and four-nucleon observables in the
spatially symmetric channel are then predicted in terms of
this and the two-body scattering lengths. In contrast, the
observables in the channels with mixed spatial symmetry are
independent of the initial scale, provided it is chosen large
enough. Their values are therefore determined by the two-body
input alone.

We have explored the dependence of the three- and four-
body couplings on the three-body parameter. We find that
the pattern of physical couplings remains within about 20%

of the SU(4) limit, except in rather narrow windows of
the parameter. This reflects the fact that the Efimov effect
introduces an additional momentum scale in few-nucleon
systems, associated with the lowest-energy three-body bound
states. Provided that these states are more deeply bound than
the deuteron, as they are in the real world, this scale is large
compared to the inverse scattering lengths, and SU(4) remains
a good approximate symmetry.

The Efimov effect appears in the spin-doublet nucleon-
deuteron and the singlet deuteron-deuteron channels. Using
the doublet scattering length to fix the three-body parameter,
we get a value for the singlet deuteron-deuteron scattering
length that is very close to one obtained in the exact quantum
mechanical calculations. In contrast, our value for the spin-
quintet scattering length shows no significant dependence on
the three-body parameter but differs from the results of other
calculations, potentially as a result of ignoring off-shell effects
in this work.

There is a variety of ways in which the present study could
be improved. One important one is the introduction of a trimer
field in order to describe better the nucleon-trimer channel,
which is responsible for the inelasticity in deuteron-deuteron
scattering. Even though this would remove some of the
restrictions faced in this work, it is equally important to
extend the ansatz for the running action to include energy-
or momentum-dependent couplings. The first would allow the
calculation of scattering observables away from (unphysical)
thresholds, which would allow us to better compare scattering
lengths to physical results. The second would allow inclusion
of effective-range corrections. Investigations of all of these
extensions are under way.
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APPENDIX A: SU(4) LIMIT

In the limit of exact SU(4) symmetry, at = as , α = 1, the
problem simplifies considerably. None of the loop integrals
now depends on the type of dimer considered. By looking at
the evolution equations it becomes quickly obvious that it is
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useful to introduce new constants

1
2 (λ + λ′) = λ

(1/2,1/2)
t t = λ(1/2,1/2)

ss , (A1)
1
2 (λ − λ′) = λ

(1/2,1/2)
ts = λ

(1/2,1/2)
st , (A2)

λ′′ = λ
(3/2,1/2)
t t = λ(1/2,3/2)

ss , (A3)

ū′
2 = ū2t t + ū2ts , (A4)

ū2 = ū2t t − ū2ts , (A5)

which satisfy much simpler equations than the “channel
couplings.” The ND coupling constants satisfy

∂kλ = I1λ
2 + g2I2λ + 1

4g4I3, (A6)

∂kλ
′ = I1λ

′2 − 2g2I2λ
′ + g4I3, (A7)

∂kλ
′′ = I1λ

′′2 + g2I2λ
′′ + 1

4g4I3. (A8)

Since the first and last equations are identical, we thus realize
that λ = λ′′. The potential then simplifies to

V3,BF = λ′[t†(p30, p3)ψ†(p10, p1) − s†(p30, p3)ψ†(p10, p1)](1/2,1/2) · [ψ(p20, p2)t(p40, p4) − ψ(p20, p2)s(p40, p4)](1/2,1/2)

+ λ[t†(p30, p3)ψ†(p10, p1) + s†(p30, p3)ψ†(p10, p1)](1/2,1/2) · [ψ(p20, p2)t(p40, p4) + ψ(p20, p2)s(p40, p4)](1/2,1/2)

+ λ[s†(p30, p3)ψ†(p10, p1)](3/2,1/2) · [ψ(p20, p2)s(p40, p4)](3/2,1/2). (A9)

The u2 equations also simplify to

∂ku2 = 1
2u2

2K1 − 2g2λ′′K2 − 3
4g4K3, (A10)

∂ku2,ts = 1
2u2

2,tsK1 − 2g2λK2 − 3
4g4K3, (A11)

∂kū
′
2 = 1

2 ū′2
2 K1 − 2g2λK2 − 3

4g4K3, (A12)

∂kū2 = 1
2 ū2

2K1 − 2g2λ′K2 + 3
2g4K3. (A13)

Thus we also conclude that u2,ts = u2 = ū′
2. The potential terms in this limit can thus be written as

V2,BB = 1
2u2(t†(p10, p1) · t(p30, p3) + s†(p10, p1) · s(p30, p3))(t†(p20, p2) · t(p40, p4) + s†(p20, p2) · s(p40, p4))

+ 1
12 (ū2 − u2)[t†(p10, p1) · t†(p20, p2) − s†(p10, p1) · s†(p20, p2)][t(p30, p3) · t(p40, p4) − s(p30, p3) · s(p40, p4)],

(A14)

a simple sum of the nonlocal generalizations of the square of the linear and the quadratic Casimir invariant of U(4).

1. Unitary limit

It is instructive to look at what happens for large κ = ka0. This corresponds to the unitary limit, where the scattering length
diverges. The behavior for large κ is universal, and thus it provides boundary conditions for the numerical solution of the full
problem.

a. Three-body coupling

In the three-body case we are left with a set of dimensionless integrals

Ĩ1 = 16κ2(κ2 + 1)[45(κ2 + 1)3 cot−1(κ) + κ(67κ4 + 120κ2 + 45)]

5[3(3κ2 + 10)(κ2 + 1)2 cot−1(κ) + κ(31κ4 + 59κ2 + 30)]2
, (A15)

Ĩ2 = 32κ4[15(6κ2 + 13)(κ2 + 1)2 cot−1(κ) + κ(222κ4 + 415κ2 + 195)]

5[3(3κ2 + 10)(κ2 + 1)2 cot−1(κ) + κ(31κ4 + 59κ2 + 30)]2
, (A16)

Ĩ3 = 64κ6[15(9κ2 + 23)(κ2 + 1)2 cot−1(κ) + κ(377κ4 + 710κ2 + 345)]

5(κ2 + 1)[3(3κ2 + 10)(κ2 + 1)2 cot−1(κ) + κ(31κ4 + 59κ2 + 30)]2
, (A17)

where the tilde denotes that we have scaled the expressions
given before by appropriate powers of M and at . The
differential equations now read

∂κ [κ2] = (κ2)2Ĩ1 + κ2

(
2

κ
+ Ĩ2

)
+ 1

4
Ĩ3, (A18)

∂κ [κ2′] = (κ2′)2Ĩ1 + κ2′
(

2

κ
− 2Ĩ2

)
+ Ĩ3. (A19)

The Ĩ ’s have simple asymptotic expansions for large κ:

Ĩ1 = 28

125
κ−1, (A20)

Ĩ2 = 156

125
κ−1, (A21)

Ĩ3 = 512

125
κ−1. (A22)
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FIG. 8. (Color online) Four examples of the evolution of κ2.
These were solved by starting the integration at t = ln κ = 20. The
three dashed lines represent the solutions for three random choices of
the initial value. The solid (green) line starts using Eq. (A25) as the
initial condition.

The asymptotic solution to the equation for  (A18) can be
obtained using these results as

(κ) ∼ −1

4

[
29 − 5

√
215

7

1 − c κ
2
5

√
301
5

1 + c κ
2
5

√
301
5

]
. (A23)

It is very tempting to assume c �= 0, and we get the
asymptotic solution for κ → ∞:

κ2(κ) ∼ −1

4

(
29 + 5

√
215

7

)
. (A24)

Numerical investigations (Fig. 8) of the solution to the “full”
equation, where we have not made the asymptotic expansion,
starting the integration from t = ln(κ) = 20, show that, when
we have chosen an arbitrary initial condition at finite κ , the
solution typically has a quick decay to the fixed point value for
c = 0, for almost all initial conditions. Only when we start very
close to the asymptotic value (A24) do we find an apparently
divergent numerical solution. Thus it is actually most efficient
to use the asymptotic solution with the choice c = 0,

κ2(κ) ∼ −1

4

(
29 − 5

√
215

7

)
, (A25)

as initial condition for large κ .
The differential equation for ′ does not have such a

trivial fixed point; the asymptotic solution is found to be
quasiperiodic:

κ2′(κ) = 1
28

[
31 + 5

√
535 tan

(
1

25

√
535 ln(κ) + φ0

)]
.

(A26)

This limit-cycle behavior is the basic manifestation of the
Efimov effect in the approach employed here.

b. Four-body couplings

For the four-body couplings we can also define scaled
integrals,

K̃1 = 192π2κ4(κ2 + 1)3

5[3(κ2 + 1)2 cot−1(κ) + κ(5κ2 + 3)]

× [15(κ2 + 1)3 cot−1(κ) + κ(17κ4 + 40κ2 + 15)]

[3(κ2+1)2(κ2+8) cot−1(κ)+κ(21κ4 + 43κ2 + 24)]2
,

(A27)

K̃2 = 4κ4

3π2(κ2 + 1)3
, (A28)

K̃3 = 8κ4

3π2(κ2 + 1)4
. (A29)

We can rewrite the differential equations as

∂κŪ2 = 1
2 Ū 2

2 K̃1 − 2′K̃2 + 3
2 K̃3, (A30)

∂κU2 = 1
2U 2

2 K̃1 − 2K̃2 − 3
4 K̃3 (A31)

and the asymptotic expansions as

K̃1 = 4π2κ2

15
, (A32)

K̃2 = 4

3π2κ2
, (A33)

K̃3 = 8

3π2κ4
. (A34)

It pays off to use

VDD(κ) = κ3Ū2. (A35)

This satisfies

κ∂κVDD = 2π4

15
VDD(κ)2 + 3VDD(κ) + 4

π2
− 8

5π2
κ2′(κ).

(A36)

Without the additional  term we find for large κ that

VDD → −45 + √
1545

4π2
≈ −2.13551. (A37)

By numerical solution we find that the periodic oscillations in
 dominate over this behavior.

2. Scattering lengths

a. Dimer-dimer scattering

Our effective action contains the term

VDD = 1

2
u2

∫
δ(4)(p1 + p3 − p2 − p4)[φ†

α(p10, p1)φα(p20, p2)][φ†
β(p30, p3)φβ(p40, p4)]

+ 1

12
u′

2

∫
δ(4)(p1 + p2 − p3 − p4)[t†(p10, p1) · t†(p20, p2) − s†(p10, p1) · s†(p20, p2)]

× [t(p30, p3) · t(p40, p4) − s(p30, p3) · s(p40, p4)]. (A38)
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This is in terms of classical fields; the corresponding operator in the “pole approximation” when the cutoff reaches zero is

V̂DD = 1
2u′

2 : n̂2 : + 1
12u2[ t̂†(EB, 0) · t̂†(EB, 0) − ŝ†(EB, 0) · ŝ†(EB, 0)]

×[ t̂(EB, 0) · t̂(EB, 0) − ŝ(EB, 0) · ŝ(EB, 0)] (A39)

= 1
2u′

2n̂(n̂ − 1) + 1
12u2[ t̂†(EB, 0) · t̂†(EB, 0) − ŝ†(EB, 0) · ŝ†(EB, 0)]

×[ t̂(EB, 0) · t̂(EB, 0) − ŝ(EB, 0) · ŝ(EB, 0)]. (A40)

Note the important effect of normal ordering; this is simply a
restatement of the fact that u′

2 does not contribute in the single
dimer channels. We now calculate the scattering between the
normalized scalar states:

|[2](0, 0)〉 = 1√
6 × 2

[ t̂†(EB, 0) · t̂†(EB, 0)

− ŝ†(EB, 0) · ŝ†(EB, 0)]|0〉 (A41)

(where [2] denotes the symmetric irrep of SU(4) [33]), and we
get

〈[2](0, 0)|VDD|[2](0, 0)〉 = ū2. (A42)

We thus find that

aDD = MB

4π
ū2/Z

2
φ = MN

2π
ū2/Z

2
φ = at32π (Ū2). (A43)

We also use the fact that Zφ(0) = atg
2M2/8π .

In the same vein we find in the other channel (where [1, 1]
denotes the antisymmetric irrep of SU(4)),

|[1, 1](0, 0)〉 = 1√
6 × 2

[ t̂†(EB, 0) · t̂†(EB, 0)

+ ŝ†(EB, 0) · ŝ†(EB, 0)]|0〉, (A44)

that

aAS
DD = MB

4π
u2/Z

2
φ = MN

2π
u2/Z

2
φ = at32π (U2). (A45)

In the mean-field limit, we find that limκ→0 U2 = 1/16π , and
we get the standard result aAS

DD = 2at .

b. Dimer-nucleon scattering

There are two possible dimer-nucleon states we can
construct: a symmetric one and an antisymmetric one.

We first assume that the scattering is evaluated in the
channel of the symmetric dimer-nucleon states,

|DN〉 = 1√
2

[t̂†(EB, 0)ψ̂†(EB/2, 0)

− ŝ†(EB, 0)ψ̂†(EB/2, 0)]1/2,1/2
mS,ms

|0〉, (A46)

and we get

〈DF |t̂ |DF 〉 = λ. (A47)

We thus conclude

aDN = Mred

4π
λ/Zφ = 2MN/3

4π
λ/Zφ = at

4

3
. (A48)

In the antisymmetric case, defined by

|DN ′〉 = 1√
2

[t̂†(EB, 0)ψ̂†(EB/2, 0)

+ ŝ†(EB, 0)ψ̂†(EB/2, 0)]1/2,1/2
mS,ms

|0〉, (A49)

we get

a′
DN = Mred

4π
λ′/Zφ = 2MN/3

4π
λ′/Zφ = at

4

3
′. (A50)

APPENDIX B: LINK BETWEEN T AND V

Our main results for the threshold behavior of various
quantities are, in the main, expressed in terms of scattering
lengths. The relation between our effective action and a
scattering length is based on the definition

lim
k→0

T (k) = 2π

Mred
at . (B1)

For identical mass, M1 = M2 = M , we get

T (0) = 4π

M
at . (B2)

What we call a “potential” in the effective action is really
nothing but the classical form of the T matrix. For dimers
we find a similar relation, but we have to interpret T as the
expectation value of the quantized potential in the relevant
channel. As shown in Appendix A, this allows us to take into
account symmetry aspects of the problem. Thus

V = 〈V̂ 〉 = TDD(0) = 4πaDD

MD

, (B3)

which can be used to show that the dimer-dimer scattering
length in the mean-field limit goes to 2at .
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