
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 87, 051901(R) (2013)

Relativistic dissipative hydrodynamics from kinetic theory with relaxation-time approximation
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Starting from the Boltzmann equation with the relaxation time approximation for the collision term and using
a Chapman-Enskog-like expansion for the distribution function close to equilibrium, we derive hydrodynamic
evolution equations for the dissipative quantities directly from their definition. Although the form of the equations
is identical to those obtained in traditional Israel-Stewart approaches employing Grad’s 14-moment approximation
and the second moment of the Boltzmann equation, the coefficients obtained are different. In the case of a
one-dimensional scaling expansion, we demonstrate that our results are in better agreement with a numerical
solution of the Boltzmann equation as compared to Israel-Stewart results. We also show that including approximate
higher-order corrections in viscous evolution significantly improves this agreement, thus justifying the relaxation
time approximation for the collision term.
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Relativistic fluid dynamics has been applied quite suc-
cessfully to study and understand a wide range of collective
phenomena observed in cosmology, astrophysics, and the
physics of high-energy, heavy-ion collisions. The earliest the-
oretical formulation of relativistic dissipative hydrodynamics,
also known as first-order theories (order of gradients), are
due to Eckart [1] and Landau-Lifshitz [2]. However these
theories, collectively called the relativistic Navier-Stokes (NS)
theory, involve parabolic differential equations and suffer from
acausality and numerical instability. The Chapman-Enskog
(CE) expansion has been the most common method to obtain
first-order hydrodynamics from the Boltzmann equation (BE)
[3]. The derivation of second-order fluid dynamics by Israel
and Stewart (IS) from kinetic theory uses the extended Grad’s
method [4]. The approach by Israel and Stewart may not
guarantee stability but solves the acausality problem [5] at
the cost of introducing two additional approximations: (a) the
14-moment approximation for the distribution function, and
(b) the use of the second moment of the BE to obtain evolution
equations for dissipative quantities.

Grad’s method, originally proposed for nonrelativistic
systems, was modified by Israel and Stewart so that it could be
applicable to the relativistic case. In this extension, known
as the 14-moment approximation, the distribution function
is Taylor expanded in powers of four-momenta around its
local equilibrium value. Truncating the Taylor expansion at
the second-order in momenta results in 14 unknowns that have
to be determined to describe the distribution function. This
expansion implicitly assumes a converging series in powers of
momenta. In addition, it is assumed that the order of expansion
in the 14-moment approximation (expanded as a series in
momenta) coincides with that of a gradient expansion of
hydrodynamics. This is evident because Grad’s approximation
truncated at the second-order in momenta is not consistent with
second-order hydrodynamics.

Another assumption inherent in the IS derivation is the
choice of the second moment of the BE to extract the equation
of motion for the dissipative quantities. This choice is arbitrary
in the sense that once the distribution function is specified, any
moment of the BE will lead to a closed set of equations for the

dissipative currents but with different transport coefficients.
In fact, it has been pointed out in Ref. [6] that instead of this
ambiguous choice of the second-moment of the BE by IS,
the dissipative quantities can be obtained directly from their
definition. Consistent and accurate formulation of relativistic
dissipative hydrodynamics is still unresolved and is currently
an active research area [6–10].

In this Rapid Communication, we present an alternative
derivation of hydrodynamic equations for dissipative quan-
tities which do not make use of both of these assumptions.
We revisit the CE expansion of the distribution function
using the BE in the relaxation time approximation (RTA).
Using this expansion, we derive the first- and second-order
equations of motion for the dissipative quantities from their
definition. In the one-dimensional boost-invariant Bjorken
scenario, we demonstrate that our second-order results are
in better agreement with transport results as compared to
those obtained by using IS equations. We also illustrate
that the heuristic incorporation of higher-order corrections
in the viscous evolution equation significantly improves this
agreement.

Fluid dynamics is best described as a long-wavelength, low-
frequency limit of an underlying microscopic theory. Further,
the BE governs the temporal evolution of the single particle
phase-space distribution function f ≡ f (x, p) which provides
a reliably accurate description of the microscopic dynamics in
the dilute limit. With this motivation, our starting point for the
derivation of hydrodynamic equations is the relativistic BE
with the RTA for the collision term [11]

pμ∂μf = −u · p

τR

(f − f0), (1)

where pμ is the particle four-momentum, uμ is the fluid
four-velocity, and τR is the relaxation time. We define the
scalar product u · p ≡ uμpμ. With f → f̄ and f0 → f̄0,
Eq. (1) describes the evolution of the distribution function for
antiparticles. The equilibrium distribution functions for Fermi,
Bose, and Boltzmann particles (r = 1,−1, 0) are

f0 = 1

exp(β u · p − α) + r
, (2)
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and α → −α for antiparticles f̄0. Here, β = 1/T is the inverse
temperature and α = μ/T is the ratio of chemical potential to
temperature.

In the CE expansion, the particle distribution function is
expanded about its equilibrium value in powers of space-time
gradients.

f = f0 + δf, δf = δf (1) + δf (2) + · · · , (3)

where δf (1) is first order in gradients, δf (2) is second order
and so on. The Boltzmann equation, (1), in the form f =
f0 − (τR/u · p) pμ∂μf , can be solved iteratively as [12]

f1 = f0 − τR

u · p
pμ∂μf0, f2 = f0 − τR

u · p
pμ∂μf1, . . . ,

(4)

where f1 = f0 + δf (1) and f2 = f0 + δf (1) + δf (2). To the
first and second order in gradients, we obtain

δf (1) = − τR

u · p
pμ∂μf0, (5)

δf (2) = τR

u · p
pμpν∂μ

(
τR

u · p
∂νf0

)
. (6)

The above treatment to obtain δf is valid for δf̄ (antiparticles)
as well.

For the sake of comparison, we also write down Grad’s
14-moment expansion [13] in orders of momenta as suggested
by IS [4] in an orthogonal basis [10],

δf = f0f̃0(λ		 + λnnαpα + λππαβpαpβ) + O(p3), (7)

where f̃0 = 1 − rf0 and λ	, λn, and λπ are determined from
the definition of the dissipative quantities, Eqs. (10)–(12).
Since hydrodynamics involves expansion in orders of gradi-
ents, hence for consistency, the CE should be preferred over the
14-moment approximation in the derivation of hydrodynamic
equations.

The conserved energy-momentum tensor and particle cur-
rent can be expressed in terms of the distribution function
as [14]

T μν =
∫

dp pμpν(f + f̄ ) = εuμuν − (P + 	)�μν + πμν,

(8)
Nμ =

∫
dp pμ(f − f̄ ) = nuμ + nμ,

where dp = gdp/[(2π )3
√

p2 + m2], g and m being the de-
generacy factor and particle mass, respectively. In the tensor
decompositions, ε, P, and n are, respectively, energy density,
pressure, and net number density, and �μν = gμν − uμuν is
the projection operator on the three-space orthogonal to the
hydrodynamic four-velocity uμ defined in the Landau frame:
T μνuν = εuμ. The metric tensor is gμν ≡ diag(+,−,−,−).
The bulk viscous pressure (	), shear stress tensor (πμν), and
particle diffusion current (nμ) are the dissipative quantities.

Energy-momentum conservation, ∂μT μν = 0, and current
conservation, ∂μNμ = 0, yields the fundamental evolution
equations for ε, uα , and n:

ε̇ + (ε + P + 	)θ − πμν∇(μuν) = 0,

(ε + P + 	)u̇α − ∇α(P + 	) + �α
ν ∂μπμν = 0, (9)

ṅ + nθ + ∂μnμ = 0.

We use the standard notation Ȧ = uμ∂μA for the comoving
derivative, ∇α = �μα∂μ for the spacelike derivative, θ = ∂μuμ

for the expansion scalar, and A(αBβ) = (AαBβ + AβBα)/2 for
the symmetrization.

Even if the equation of state relating ε and P is provided, the
system of Eqs. (9) is not closed unless the dissipative quantities
	, nμ, and πμν are specified. To obtain the expressions for
these dissipative quantities, we write them using Eq. (8) in
terms of away from the equilibrium part of the distribution
functions (δf, δf̄ ) as

	 = −�αβ

3

∫
dp pαpβ(δf + δf̄ ), (10)

nμ = �μ
α

∫
dp pα(δf − δf̄ ), (11)

πμν = �
μν
αβ

∫
dp pαpβ(δf + δf̄ ), (12)

where �
μν
αβ = [�μ

α�ν
β + �

μ
β�ν

α − (2/3)�μν�αβ]/2.
The first-order dissipative equations can be obtained from

Eqs. (10) to (12) using δf = δf (1) from Eq. (5):

	 = −�αβ

3

∫
dp pαpβ

[
− τR

u.p
pγ ∂γ (f0 + f̄0)

]
, (13)

nμ = �μ
α

∫
dp pα

[
− τR

u.p
pγ ∂γ (f0 − f̄0)

]
, (14)

πμν = �
μν
αβ

∫
dp pαpβ

[
− τR

u.p
pγ ∂γ (f0 + f̄0)

]
. (15)

Assuming the relaxation time τR to be independent of four-
momenta, the integrals in Eqs. (13) to (15) reduce to

	 = −τRβ	θ, nμ = τRβn∇μα, πμν = 2τRβπσμν, (16)

where σμν = �
μν
αβ∇αuβ . The coefficients β	, βn, and βπ are

found to be

β	 = 1

3

(
1 − 3c2

s

)
(ε + P ) − 2

9
(ε − 3P ) − m4

9
〈(u.p)−2〉0+ ,

(17)

βn = − n2

β(ε + P )
+ 2〈1〉0−

3β
+ m2

3β
〈(u.p)−2〉0− , (18)

βπ = 4P

5
+ ε − 3P

15
− m4

15
〈(u.p)−2〉0+ , (19)

where 〈· · ·〉0± = ∫
dp(· · ·)(f0 ± f̄0), and c2

s = (dP/dε)s/n is
the adiabatic speed of sound squared (s being the entropy
density). It is interesting to note that these coefficients are in
perfect agreement with those obtained in Ref. [6] in which the
evolution equations are derived directly from their definition.
This is due to the fact that in Ref. [6], the coefficients β	,
βn, and βπ , are associated with first-order terms and do
not involve the 14-moment approximation. In the massless
limit, βπ = 4P/5 is also in agreement with that obtained
in Ref. [12] employing the CE expansion in the BE with
medium-dependent masses.

In the process to obtain second-order equations, we discover
that the CE expansion for the distribution function does not
support the derivation of hydrodynamic evolution equations
from an arbitrary moment choice of the BE. Using the
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definition of dissipative quantities to obtain their evolution
equations comes naturally when employing the CE expansion
as demonstrated while deriving first-order equations, Eq. (16).
Second-order evolution equations can also be obtained simi-
larly by substituting δf = δf (1) + δf (2) from Eqs. (5) and (6)
in Eqs. (10) to (12):

	

τR

= �αβ

3

∫
dp pαpβ

[
pγ

u · p
∂γ f0 − pγ pρ

u · p
∂γ

(
τR

u · p
∂ρf0

)

+f0 → f̄0

]
, (20)

nμ

τR

= −�μ
α

∫
dp pα

[
pγ

u · p
∂γ f0 − pγ pρ

u · p
∂γ

(
τR

u · p
∂ρf0

)

− f0 → f̄0

]
, (21)

πμν

τR

= −�
μν
αβ

∫
dp pαpβ

[
pγ

u · p
∂γ f0 − pγ pρ

u · p
∂γ

(
τR

u · p
∂ρf0

)

+ f0 → f̄0

]
. (22)

The derivatives of the equilibrium distribution function
(∂μf0, ∂μ∂νf0) appearing in above equations can be obtained
by successively differentiating Eq. (2). The momentum inte-
grations can be decomposed into hydrodynamic tensor degrees
of freedom via the definitions:

I
μ1···μn

(m)± ≡
∫

dp

(u·p)m
pμ1 · · · pμn(f0 ± f̄0)=I

(m)±
n0 uμ1 · · · uμn

+ I
(m)±
n1 (�μ1μ2uμ3 · · · uμn + perms) + · · · , (23)

where “perms” denotes all nontrivial permutations of the
Lorentz indices. We similarly define J

μ1μ2···μn

(m)± where the
momentum integrals are weighted with f0f̃0 ± (f0 → f̄0), and
are tensor decomposed with coefficients J (m)±

nq .
After performing the integration, the relaxation times ap-

pearing on the right hand sides of Eqs. (20) to (22) are absorbed
using the first-order equations for the dissipative quantities, Eq.
(16). Using the identity ∇μβ = −βu̇μ + [n/(ε + P )]∇μα +
O(δ2), the terms containing derivatives of the relaxation time
cancel each other up to second order in gradients, and hence the
right hand sides of Eqs. (20) to (22) can be made independent
of τR [15]. The second-order evolution equations of the
dissipative quantities are finally obtained as

	

τR

= −	̇ − β	θ − δ			θ + λ	ππμνσμν

− τ	nn · u̇ − λ	nn · ∇α − �	n∂ · n, (24)
nμ

τR

= −ṅ〈μ〉 + βn∇μα − nνω
νμ − λnnn

νσμ
ν − δnnn

μθ

+ λn		∇μα − λnππμν∇να − τnππμ
ν u̇ν

+ τn		u̇μ + �nπ�μν∂γ πγ
ν − �n	∇μ	, (25)

πμν

τR

= −π̇ 〈μν〉 + 2βπσμν + 2π 〈μ
γ ων〉γ − τπππ 〈μ

γ σ ν〉γ

− δπππμνθ + λπ		σμν − τπnn
〈μu̇ν〉

+ λπnn
〈μ∇ν〉α + �πn∇〈μnν〉, (26)

where ωμν = (∇μuν − ∇νuμ)/2 is the definition of the vortic-
ity tensor. All the coefficients in the above equations have been
obtained in terms of β and the integral coefficients I (m)±

nq and
J (m)±

nq [15]. It is clear that in Eqs. (24) to (26), the Boltzmann
relaxation time τR can be replaced by those of the individual
dissipative quantities τ	, τn, τπ . At this stage, it seems as
though the three relaxation times τ	, τn, τπ are all equal to τR .
This is because the collision term in the BE, Eq. (1), is written
in the RTA which does not entirely capture the microscopic
interactions. This apparent equality vanishes if the first-order
equations, Eq. (16), are compared with the relativistic Navier-
Stokes equations for dissipative quantities (	 = −ζθ , nμ =
λT ∇μα, and πμν = 2ησμν). The dissipative relaxation times
are then obtained in terms of first-order transport coefficients
ζ, λ, and η which can be calculated independently taking into
account the full microscopic behavior of the system [16,17].

We remark that although the form of the evolution equations
for dissipative quantities obtained here, Eqs. (24)–(26), are
the same as those obtained in the previous calculations using
both the 14-moment approximation and the second moment
of the BE [18], the coefficients obtained are different. In the
following discussion, we refer to the results in Ref. [18] as the
IS results although the power counting scheme differs from
the one employed originally by IS.

For the special case of a system consisting of a single
species of massless Boltzmann gas, we find that

βπ = 4P

5
, τππ = 10

7
, δππ = 4

3
, (27)

while these coefficients obtained via IS approach are [18]

βIS
π = 2P

3
, τ IS

ππ = 2, δIS
ππ = 4

3
. (28)

In this limit, although the coefficients of πμνθ are same for both
the cases (δππ = δIS

ππ ), the coefficients of σμν and π 〈μ
γ σ ν〉γ are

different (βπ �= βIS
π , τππ �= τ IS

ππ ).
We note that the CE expansion, as opposed to the 14-

moment approximation, can be done iteratively to arbitrarily
higher orders. Hence using the CE expansion, dissipative
hydrodynamic equations of any order can in principle be
derived. To obtain nth-order evolution equations for dissipative
quantities, δf = δf (1) + δf (2) + · · · + δf (n) should be used
in Eqs. (10) to (12). For instance, substitution of δf =
δf (1) + δf (2) + δf (3) in Eqs. (10) to (12) will eventually lead
to third-order evolution equations. Derivation of third-order
hydrodynamics as outlined above is left for future work.

To demonstrate the numerical significance of the different
coefficients derived here, we consider evolution in the boost
invariant Bjorken case of a massless Boltzmann gas (ε =
3P ) at vanishing net baryon number density [19]. In terms
of the Milne coordinates (τ, x, y, η), where τ = √

t2 − z2

and η = tanh−1(z/t), the initial four-velocity becomes uμ =
(1, 0, 0, 0). For this scenario, 	 = nμ = 0, and the evolution
equations for ε, π ≡ −τ 2πηη reduce to

dε

dτ
= − 1

τ
(ε + P − π ) , (29)

dπ

dτ
= − π

τR

+ βπ

4

3τ
− λ

π

τ
. (30)
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FIG. 1. (Color online) Time evolution of PL/PT in BAMPS
(dots), IS (dashed lines), present Rapid Communication (dashed-
dotted lines), and a heuristic higher-order approximation (solid lines)
for isotropic initial pressure configuration (π0 = 0).

The second-order transport coefficients simplify to

λ ≡ 1
3τππ + δππ = 38

21 , λIS = 2. (31)

Initial temperature T0 = 500 MeV at proper time τ0 =
0.4 fm/c are chosen to solve the coupled differential
Eqs. (29) and (30). These values correspond to Large Hadron
Collider (LHC) initial conditions [20]. We assume isotropic
initial pressure configuration, i.e., π0 = 0. Figure 1 shows
the proper time dependence of pressure anisotropy defined as
PL/PT = (P − π )/(P + π/2). The dashed and dashed-dotted
lines represent the results from IS theory and our second-order
results, respectively. The dots correspond to the results of
a transport model, the Boltzmann approach of multiparton
scatterings (BAMPS), which is based on parton cascade
simulations [9,21]. The calculations in BAMPS are performed
with variable values for the cross section such that the shear
viscosity to entropy density ratio is a constant.

We note that the results from IS theory always overestimate
the pressure anisotropy as compared to the transport results
even for viscosities as small as η/s = 0.05. It is evident
from the figure that our results are in better agreement with
BAMPS as compared to the results of IS. For very high
viscosity, i.e., for η/s = 3.0, although at early times we have
a better agreement with BAMPS as compared to IS, at later
times there is a large deviation. This disagreement may be
attributed to the fact that the present hydrodynamic calculation
is terminated at second order in gradients. Inclusion of higher-
order corrections may improve the agreement of dissipative
hydrodynamic calculation results with those obtained using
BAMPS as illustrated in the following.

In Ref. [9], while performing a third-order calculation it was
demonstrated that within a one-dimensional scaling expansion,
the higher-order gradient terms can acquire the form ( π

ε
)n ε

τ
,

where, n = r − 1 for rth-order corrections. The other forms of
higher-order corrections are reducible to this structure through
lower-order evolution equations. Here we assume a similar

heuristic expression for higher-order corrections:

dπ

dτ
= − π

τR

+ βπ

4

3τ
− λ

π

τ
− χ

π2

βπτ
, (32)

where the coefficient χ contains corrections to shear stress
evolution due to higher-order gradients. This coefficient can
be obtained by demanding that the above equation be valid
for a free streaming of particles in the limit of infinite shear
viscosity (η → ∞). In this limit, τR → ∞, and within a
one-dimensional scaling expansion the energy density evolves
as ε̇ = −ε/τ which implies that Ṗ = −P/τ . For this case,
using Eq. (29), we arrive at π = ε/3 = P which indicates
the disappearance of the longitudinal pressure. Substituting all
these in Eq. (32), we obtain χ = 36/175.

Figure 1 also shows PL/PT evolution for the results
obtained after including higher-order corrections (solid lines).
We observe that the incorporation of higher-order corrections
significantly improves the agreement with BAMPS. It is
important to note that the BAMPS calculations are performed
with the form of the collision term that captures the realistic
microscopic interactions whereas the derivation of dissipative
hydrodynamic equations in the present Rapid Communication
uses the RTA for the collision term. Within CE formalism,
more sophisticated ways exist for solving the BE, e.g., by
using variational methods [3] or by considering a momentum
dependent relaxation time [22,23]. It is, in principle, possible
to derive second-order dissipative hydrodynamic evolution
equations using a momentum dependent relaxation time
provided the dependence is specified explicitly. While this is
left for future work, we observe that the near perfect agreement
of the BAMPS results with those obtained using higher-order
corrections clearly suggests that the momentum independent
relaxation time for the BE used in the present derivation is
sufficiently reliable for the range of η/s considered here.
However, the results obtained by using a momentum dependent
relaxation time may show a better agreement with BAMPS
data already at second-order.

The RTA for the collision term assumes that the effect
of the collisions is to restore the distribution function to its
local equilibrium value exponentially. This is a very good
approximation as long as the deviations from local equilibrium
are small. As discussed above, we find that for the range of
η/s considered here, the deviation from equilibrium is not
so large because the RTA is still valid. It is also important
to note that large values of η/s (>0.4) are not relevant to
the physics of strongly coupled systems like quark gluon
plasma (QGP). The QGP formed at the Relativistic Heavy Ion
Collider (RHIC) and LHC behaves as a near perfect fluid with a
small estimated η/s ≈ 0.08 to 0.2 [24,25]. Using second-order
evolution equations derived here, we get reasonably good
agreement with BAMPS results for η/s � 0.4 (Fig. 1). This
suggests that the BE with the RTA for the collision term
can be successfully applied in understanding the hydrody-
namic behavior of QGP formed in relativistic heavy-ion
collisions.

To summarize, we have presented a different derivation of
relativistic second-order hydrodynamics from the BE. We use
the Chapman-Enskog expansion to obtain the nonequilibrium
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distribution function instead of the 14-moment approximation
and derive evolution equations for dissipative quantities
directly from their definitions rather than employing the second
moment of the Boltzmann equation. In this different approach,
we get rid of two powerful assumptions of the Israel-Stewart
kind of derivation which is the 14-moment approximation and
the choice of the second moment of the Boltzmann equation.
Although the form of the evolution equation remains the same,
the coefficients are found to be different. For small η/s, our
second-order results show reasonably good agreement with
the parton cascade BAMPS for the PL/PT evolution. We

find that the heuristic inclusion of higher-order corrections
in the shear evolution equation significantly improves the
agreement with the transport calculation for large η/s as
well. This concurrence also suggests that the relaxation time
approximation for the collision term in the Boltzmann equation
is reasonably accurate when applied to heavy-ion collisions.

The author would like to thank Rajeev S. Bhalerao and
Subrata Pal for fruitful discussions, critical readings of the
manuscript, and helpful comments.
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