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Use of the discrete variable representation basis in nuclear physics
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The discrete variable representation (DVR) basis is nearly optimal for numerically representing wave functions
in nuclear physics: Suitable problems enjoy exponential convergence, yet the Hamiltonian remains sparse. We
show that one can often use smaller basis sets than with the traditional harmonic oscillator basis, and still
benefit from the simple analytic properties of the DVR bases which require no overlap integrals, simply permit
using various Jacobi coordinates, and admit straightforward analyses of the ultraviolet and infrared convergence
properties.

DOI: 10.1103/PhysRevC.87.051301 PACS number(s): 21.60.−n, 21.10.−k, 03.65.Ge

Problems in nuclear physics typically require solving
the one-body Schrödinger equation in three dimensions.
Numerically representing wave functions requires limiting
both ultraviolet (UV) and infrared (IR) scales: a finite
spatial resolution (i.e., a lattice) characterizes the highest
representable momenta �, while a finite size (i.e., a cubic
box of volume L3) determines the largest physical extent.
Nuclear structure calculations are historically dominated by
the use of the harmonic oscillator (HO) basis of HO wave
functions. The appeal of the HO basis stems from the shape of
the self-consistent field obtained for small nuclei, which can
be approximated by a harmonic potential at small distances
from the center of the nucleus. One can also use the Talmi-
Moshinsky transformation to separate out the center-of-mass
motion in products of single-particle HO wave functions.
Recent efforts have been made to determine a minimal HO
basis set, and to understand its convergence and accuracy [1,2].

Here we advocate that the discrete variable representation
(DVR)—in particular the Fourier plane-wave basis—enjoys
most of the advantages of the HO basis, but with a significant
improvement in terms of computational efficiency and simplic-
ity, thereby admitting straightforward UV and IR convergence
analyses and implementation.

Consider wave functions in a cubic box of volume L3 with
momenta less than �. The total number of quantum states
in such a representation is given by the following intuitive
formula—the ratio of the total phase space volume to the phase
space volume of a single three-dimensional (3D) quantum
state:

NQS =
(

L 2�

2πh̄

)3

. (1)

One obtains the same result [3] using Fourier analysis: there
are exactly NQS linearly independent functions in a cubic
3D box of volume L3 with periodic boundary conditions and
wave vectors less than kc = �/h̄ in each direction. These can
be conveniently represented in the coordinate representation
with N equally spaced points in each direction and lattice
constant a = π/kc = πh̄/� = L/N for a total of N3 = NQS

coefficients. The maximum wave vector kc is simply the
Nyquist frequency [3]; one gains nothing by sampling the
functions on intervals (“times”) finer than a.

The wave functions can also be represented in momentum
space using a discrete fast Fourier transform (FFT) [4]. The
momentum representation consists of NQS coefficients on
a 3D cubic lattice with spacing 2πh̄/L and extent −� �
px,y,z < �. Using the FFT to calculate spatial derivatives is not
only fast with N log N scaling, but extremely accurate—often
faster and more accurate than finite-difference formulas. We
use an even number of lattice points (N = 2n is best for the
FFT ) and quantize the three momenta (px,y,z = h̄kx,y,z)

pk = 2πkh̄

L
, xk = ak,

k ∈ (−N
2 ,−N

2 + 1, . . . , N
2 − 1

)
. (2)

The Fourier basis uses plane waves—e.g. exp(iknx) in the
x direction—but these can be linearly combined to form an
equivalent sinc-function basis:

ψk(x) = sinc kc(x − xk) = sin kc(x − xk)

kc(x − xk)
. (3)

This is similar to the difference between Bloch and Wannier
wave functions in condensed matter physics. An advantage
of this basis is that it is quasi-local ψk(xl) = δkl allowing
one to represent external potentials as a diagonal matrix
Vkl ≈ V (xk)δkl [see Eq. (19)].

The plane-wave basis can thus be interpreted as a periodic
DVR basis set, which has been discussed extensively in the
literature (see [5–9] and the references therein), and one can
take advantage of Fourier techniques and the useful DVR
properties.

In general, DVR bases are characterized by two scales: a UV
scale � = h̄kc defining the largest momentum representable in
the basis, and an IR scale L defining the maximum extent of the
system. In many cases, the basis is constructed by projecting
Dirac δ functions onto the finite-momentum subspace. For
example, the sinc-function basis (3) is precisely the set of
projected Dirac δ functions ψn(x) = Pp��δ(r − rα) onto the
subspace | p| � � [5–7]. (It can be nontrivial, however, to
choose a consistent set of abscissa maintaining the quasi-
locality property.) The basis thus optimally covers the region
[−L/2, L/2) × [−�,�) for each axis in phase space, and
leads to an efficient discretization scheme with exponential
convergence properties.
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The DVR basis admits a straightforward analysis of the UV
and IR limits, allowing one to construct effective extrapola-
tions to the continuum and thermodynamic limits, respectively.
The UV effects may be analyzed by simply considering the
properties of the projection Pp�� used to define the basis,
and the IR limit for the periodic basis is well understood by
techniques like those derived by Beth, Uhlenbeck, and Lüscher
[10,11]. We would like to emphasize an additional technique
here: The IR limit is characterized by 2πh̄/L—the smallest
interval in momentum space resolvable with the basis set.
For some problems, one can efficiently circumvent this lim-
itation by using “twisted” boundary conditions ψ(r + L) =
exp(iθB)ψ(r) or Bloch waves as they are known in condensed
matter physics. In particular, averaging over θB ∈ [0, 2π ) will
completely remove any IR limitations (without changing the
basis size) for periodic and homogeneous problems, effectively
“filling-in” the momentum states pn � pn + h̄θB/L < pn+1.
Extensions of these formulas to the case of a box with unequal
sides is straightforward.

To demonstrate the properties of the DVR basis, we
contrast it with the HO basis. The periodic DVR basis
(plane waves) shares the ease of separating out the center
of mass. In particular, one can use Jacobi coordinates to
separate out the center-of-mass motion without evaluating
Talmi-Moshinsky coefficients, leading to simpler and more
transparent implementations. The quasi-locality of the DVR
basis offers an additional implementation advantage over the
HO basis: one need not compute wave-function overlaps to
form the potential energy matrix. In contrast with the HO
basis, the kinetic energy matrix K is no longer diagonal, but
it has an explicit formula (23), and is quite sparse, unlike the
potential energy operator in the HO basis.

Consider the HO wave functions with energy E � h̄ω(N +
3/2): the maximum radius and momenta are

R = √
2N + 3 b, � = √

2N + 3
h̄

b
, (4)

where b = √
h̄/mω is the oscillator length. For large N ,

N ≈ R�/2h̄. Thus, to expand a wave function with extent
2R containing momenta |p| < � requires at least

NHO = (N + 1)(N + 2)(N + 3)

6
≈ 1

6

(
R�

2h̄

)3

(5)

states. To contrast, the DVR basis covering the required volume
of phase space (1) with L = 2R and � is

NDVR =
(

2R 2�

2πh̄

)3

. (6)

The ratio in the limit N → ∞ is thus

NDVR

NHO

= 384

π3
≈ 12.4. (7)

Since these states are localized, one can further impose
Dirichlet boundary conditions, allowing functions only of the
type sin(knx) with knL = nπ [instead of exp(iknx)], thereby
keeping only half of the momenta:

NDVR

NHO
= 48

π3
≈ 1.5. (8)

Choosing a cubic box with Dirichlet boundary conditions,
sides L = 40 fm, and maximum momentum � = 300 MeV/c
gives

NDVR =
(

L �

2πh̄

)3

≈ 103, (9)

a somewhat surprisingly small number of states. For symmetric
states, one could further reduce the basis by imposing cubic
symmetry, decreasing the basis size by another factor of 8.

Finally, one can fully utilize spherical symmetry with a
related Bessel-function DVR basis gaining a factor of π/6,
and thereby besting the HO basis

NDVR

NHO
= 8

π2
≈ 0.8 < 1. (10)

In this counting, spin and isospin degrees of freedom which
occur in both bases have been omitted.

The Bessel-function DVR basis set [5–7,12] follows
from a similar procedure of projecting Dirac δ functions for
the radial Schrödinger equation. The angular coordinates
are treated in the usual manner using spherical harmonics, but
the radial wave functions are based on the Bessel functions (see
Refs. [7,12] for details) which satisfy the orthogonality
conditions ∫ kc

0
dk

2k

k2
c

Jν(krνα)Jβ(krνβ)

|J ′
ν(krνα)J ′

νβ(krνβ)| = δαβ, (11)

where zνα = kcrνα [the zeros of the Bessel functions Jν(zνα) =
0] define the radial abscissa rν,α . The DVR basis set is

Fνn(r) = √
rJν

(
zνnr

R

)
, zνn = kcrνn. (12)

Differential operators have simple forms in the DVR basis (see
Refs. [5–7] and the codes [13,14]). In principle, a different ba-
sis (and corresponding abscissa) should be used for each angu-
lar momentum quantum number ν. In practice, good numerical
accuracy is obtained using the ν = 0 basis j0(z0nr/R) and the
ν = 1 basis j1(z1nr/R), respectively, for even and odd partial
waves [12,13]. In the S-wave case, the abscissa are simply the
zeros of the spherical Bessel function j0(z) = sin(z)/z:

z0n = nπ, r0n = nπ

kc

, n = 1, 2, 3, . . . , N, (13)

and correspond to the 1D basis with Dirichlet boundary
conditions mentioned earlier. The zeros for j1(z) lie between
the zeros of j0(z). The number of DVR functions needed to
represent with exponential accuracy a radial wave function is

N0 DVR = Rkc

π
, (14)

to be compared (in the limit N → ∞) with

N0 HO = Rkc

4
. (15)

In the last formula we have divided by an additional factor
of 2, since N = 2n + l changes in steps of 2.

A major drawback of the HO wave functions that is rarely
mentioned is that, for modest values of N and l �= 0, the radial
wave functions concentrate in two distinct regions: around
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the inner and outer turning points of the effective potential
V (r) = h̄2l(l + 1)/2mr2 + mω2r2/2. By adding components
with larger values of N , one modifies the wave function at
both small and large distances, leading to slow convergence. In
contrast, the DVR functions are concentrated around a single
lattice site. Thus, adding more components only affects the
solution in the vicinity of the additional lattice points, leaving
the states largely unaffected elsewhere.

For nuclei one can gain insight with some estimates. Cutoffs
of � = 600 MeV/c and R = 1.5 · · · 2A1/3 fm should satisfy
most of the practical requirements, leading to

b =
√

h̄R

�
≈ 0.7 · · · 0.8A1/6 fm, (16a)

h̄ω = h̄2

mb2
= h̄�

mR
≈ 60 · · · 80A−1/3 MeV, (16b)

compared to the value 40A−1/3 MeV one finds in typi-
cal monographs [15]. Using only half the value of � =
300 MeV/c naturally halves the value of h̄ω.

We end with demonstrations of the DVR method [14]. We
start with the harmonic oscillator problem in 1D

Hφ(x) =
(

− h̄2

2m

d2

dx2
+ k2

c x
2

2R2

)
φ(x) = Eφ(x), (17)

where we choose the harmonic oscillator frequency according
to Eq. (16b), varying the lattice constant a = π/kc and L =
Na. The DVR method is sometimes referred to as the Lagrange
method in numerical analysis [9], and functions are usually
represented on the spatial lattice

ψ(x) =
∑

k

aψ(xk)fk(x), 〈fk|fl〉 = δkl . (18)

Potential matrix elements usually have a simple and unexpect-
edly accurate representation (quasi-locality)

〈fk|V |fl〉 =
∫

dxf ∗
k (x)V (x)fl(x) ≈ V (xk)δkl, (19)

where the functions fk(x) are a linear combination of plane
waves and form an orthonormal set (these formulas apply for
even numbers of abscissa as required by efficient implemen-
tations of the FFT)

fk(xl) =
N/2−1∑

n=−N/2

1

L
exp

ipn(xl − xk)

h̄

=
{

sin π(k−l)
Na

cot π(k−l)
N

= 0 k �= l,

1/a k = l,
(20)

ψ(xk) =
∑

l

afk(xl)ψ(xl), (21)

where xk and pn were defined in Eq. (2). As before, the
functions fk(xl) are simply the normalized projections of the
periodic Dirac functions on the DVR subspace [5–7], and
satisfy ∑

n

afk(xn)fl(xn) = δkl . (22)

The sinc-function basis (3) is obtained in the limit N → ∞ (if
a = 1). Similar formulas exist for the calculation of various
other spatial derivatives.

While the potential matrix is diagonal, the DVR kinetic
energy is a matrix in coordinate representation:

Kkl =
{

h̄2π2

mN2a2
(−1)k−l

sin2 π(k−l)
N

k �= l

h̄2π2

6ma2

(
1 + 2

N2

)
k = l.

(23)

This matrix is full matrix in 1D, but sparse in 3D where
only 1/N2 of the matrix elements are nonvanishing. The HO
Hamiltonian (17) is thus represented in the DVR basis with
periodic boundary conditions as

Hkl = Kkl + mω2a2k2

2
δkl . (24)

The implementation of Dirichlet boundary conditions uses the
ν = 0 Bessel function basis (see the MATLAB code [13] for
l = 0 and also Ref. [9] for other possible DVR basis sets
in 1D).

In Fig. 1 we show the energy differences between the
eigenvalues of the Hamiltonian (24) and h̄ω(n + 1/2). These
“errors” are indicative only of the energy shifts due to the
tunneling between neighboring cells in the case of periodic
boundary conditions, as one can judge by comparing systems
with different lengths at the same energy, when the tunneling
matrix elements are similar. The results for the lowest 2/3
of the spectrum are, for all practical purposes, converged
in the DVR method, and the harmonic oscillator basis set
is worse in this case. With N = Lkc/4 ≈ 24 one can obtain
at most 10 states or so with a reasonable accuracy in this

0 10 20 30 40 50
n

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

Δ�
/
Η̄Ω

FIG. 1. (Color online) Difference in spectrum between the DVR
Hamiltonian (24) and the HO energies (n + 1/2)h̄ω. The three (blue)
curves with pluses have fixed UV scale (lattice constant a = 1, kc =
π/a) with L =∈ {30, 40, 50} and ω = 2π/L from left to right. The
(red) curves with dots have fixed L = 30 but varying lattice constant
a ∈ {1/2, 1/3} demonstrating the UV convergence. The sizes of the
DVR basis sets are Lkc/π = 30, 40, and 50 (blue pluses) and 60 and
90 (red circles), respectively. For the blue pluses, the corresponding
number of HO wave functions suggested in Refs. [1,2] [see also
Eqs. (4)] would be N = Lkc/4 = Lπ/4a ≈ 24, 31, 39; and 47 and
71 for the red dots, respectively. Notice that the size of the DVR basis
set can be reduced by a factor of 2 to Lkc/2π = 15, 20, 25 (blue) and
30, 45 (red) respectively, by imposing Dirichlet boundary conditions;
however, in that case, states not localized to a single cell will not be
reproduced.
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FIG. 2. (Color online) Exponential convergence of the periodic
DVR basis for the energy of the bound states of the analytically
solvable Scarf II potential V (x) = [a + b sinh x]/ cosh2 x (with
h̄ = m = 1). For a = 7/2 and b = −11/2, the potential has three
bound states: En = −(3 − n)2/2 (shown in black, blue, and green
from left to right, respectively). The left plot demonstrates the IR
convergence for increasing L with fixed kc; the right plot, the UV
convergence for increasing kc for fixed L. The various values for kc ∈
{5, 10, 15, 20} (left) and L ∈ {5, 15, 25, 35} (right) correspond to dot-
ted, dot-dashed, dashed, and solid lines with increasing convergence,
respectively.

reduced interval on the x axis with periodic or Dirichlet
boundary conditions, if one were to follow the prescription of
Refs. [1,2].

In Fig. 2 we demonstrate the UV and IR exponential
convergence of the DVR method for an asymmetric short-
range potential with analytic wave functions. Note that both
IR and UV errors scale exponentially until machine precision is
achieved: �E ∝ exp[−2k(L)L] (IR) and �E ∝ exp(−2kcr0)
(UV), respectively, where r0 is potential dependent and k(L) is
determined by the bound state energy E(L) = −h̄2k2(L)/2m.
These exponential scalings follow from simple Fourier analy-
sis (UV) and band structure theory (IR) for short-range smooth
potentials. Note in particular that the linear UV scaling differs
from the quadratic empirical dependence discussed in [1]. We
have also demonstrated the utility of the DVR method for a
variety of density functional theory (DFT) and quantum Monte
Carlo (QMC) many-body calculations.

The Bessel-function DVR basis jl(�rn/h̄) for spherical
coordinates was used in [13,16] to solve the self-consistent
superfluid local density approximation (SLDA) DFT equations
for the harmonically trapped unitary Fermi gas. While the
basis is defined for all l, even and odd l-partial radial wave
functions can be effectively expressed using only the j0

and j1 basis sets, respectively (see [12]), with the angular
coordinates represented by spherical harmonics. The spatial
mesh size is given by �r = rn+1 − rn ≈ πh̄/�. Applied
to nuclear matter, � = 600 MeV/c gives �r ≈ 1 fm and
Ns = R/�r ≈ 20 radial mesh points in a spherical box of
radius R ≈ 20 fm. A MATLAB code for a spin imbalanced
trapped unitary gas with pairing and using two different
chemical potentials for the spin-up and spin-down fermions
is about 400 lines and converges in a few seconds on a
laptop [13,14].

The periodic DVR basis was used in Ref. [17] to solve the
self-consistent SLDA DFT, predicting a supersolid Larkin-

Ovchinnikov (LO) phase in the spin imbalanced unitary Fermi
gas. Explicit summation over Bloch momenta was used to
remove any IR errors (i.e., simulating a periodic state in infinite
space rather than in a periodic space). The periodic basis was
also used in [18] to demonstrate the Higgs mode by solving
the time-dependent SLDA for systems with up to 105 parti-
cles. (In both these approaches, spatial variations were only
allowed in one direction: transverse directions were treated
analytically.)

Full 3D periodic DVR bases were used in [19] to solve
the time-dependent SLDA equations for 48 × 48 × 48 and
196 × 32 × 32 lattices, solving ≈5 × 105 nonlinearly coupled
partial-differential equations for several million time steps to
study the real-time dynamics of the superfluid unitary Fermi
gas. Extensions of this code on current supercomputers allow
us to increase the overall size of such problems by an order
of magnitude. These 3D DVR bases were also used to study
the giant dipole resonance (GDR) in deformed triaxial open-
shell heavy nuclei [20] without any symmetry restrictions.
Finally, the 3D DVR basis was used in [21] (and earlier
references therein) to perform ab initio QMC calculations of
strongly interacting fermions in spatial lattices ranging from
63 = 216 to 163 = 4096 for systems comprising 20–160
particles and with 5000 steps in imaginary time. These systems
are significantly larger than the 364 single-particle states used
in [22] to implement a nuclear shell-model QMC [23]. Similar
applications of DVR QMC are currently being developed for
nuclear systems.

We further illustrate the power of the DVR basis in
Fig. 3 by solving the 6D and 9D Schrödinger equations
for three-body (“triton”) and four-body (“α”) bound states
with distinguishable particles interacting with two centrally
symmetric potentials: a purely attractive Posh-Teller potential,
and an attractive potential with a repulsive core (see the inset).
We used a Cartesian lattice for the relative Jacobi coordinates
to eliminate the center-of-mass coordinate. Our goal was to
solve these with a modern laptop (2.7 GHz Intel Core i7
MacBook Pro with 16 GB of RAM ) in no more than about a
few minutes, without any tricky optimizations such as taking
advantage of symmetry properties of the wave function. (Parity
alone could reduce the Hilbert space by factors of 26 and 29

respectively.) Coding these problems is simple—the MATLAB

versions are about 200 lines per problem while the general
Python code is about 1000 lines (including documentation and
tests) [14]. We are not aware of other attempts to solve directly
the Schrödinger equation in a 9D space.

To compute the ground-state energy, we use two alternative
techniques: imaginary time evolution of a trial state (slow
convergence but gives a representative wave function) and a
simple Lanczos algorithm (fast convergence, but only a few
low-energy eigenvalues). For the triton we used lattices N6

s =
86 · · · 166: for the α state we use lattices N9

s = 49 · · · 89. The
size of the largest Hilbert space is thus ≈1.68 × 107 for the
triton and 89 ≈ 1.34 × 108 for the α. Several spatial mesh
sizes a = 0.5–1.5 fm corresponding to � ≈ 300–930 MeV/c
are used to explore convergence. Note that, unlike with other
methods used for nuclear structure calculations, adding local
three-body and four-body interactions will neither complicate
the code nor impact the performance.
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FIG. 3. (Color online) Binding energy of a three-particle “triton”
and four-particle “α” ground state using various multiples (specified
by numerical factors in the figure) of the potentials VPT(r) ∝
−sech2(2r/r0) and V2G(r) ∝ exp(−r2/r2

0 ) − 4 exp(−4r2/r2
0 ) with

r0 = 3 fm (see [24] for explicit normalizations). Upper and lower
bounds are obtained from Dirichlet and periodic boundary conditions,
respectively. The deeply bound four-body state with 1.5VPT is not
converged and has comparable UV and IR errors (each “band”
has fixed lattice spacing). The other results are UV converged: the
different lattice spacings lying on the same curves describing the
dependence on the box size. The inset shows the radial profile of
the two potentials.

As discussed earlier, the UV convergence is determined
by the properties of the interaction. For example, the high-
momentum components of a wave function in a short-range
potential will have a power-law decay ∝ k−4 [25] (rather than
an exponential decay). The IR convergence of the energy
will be determined by the energy of the lowest many-body
threshold. For example, if there is an S-wave two-body

threshold with binding energy difference Q(L) in the box,
then the IR error will be [11]

E(L) ≈ E∞ + A exp[−√
2MQ(L)L/h̄]

L
, (25)

where M is the corresponding reduced mass, and A an
asymptotic normalization factor that is positive or negative
for Dirichlet or periodic boundary conditions respectively.
If the lowest threshold is higher-body or in a different (not
S-wave) configuration, then this behavior will be modified
in a straightforward manner. (Competition between several
closely lying thresholds will further complicate the IR con-
vergence properties.) Note that this differs from the results
of [1].

In summary, the DVR basis seems ideal for nuclear structure
calculations using either DFT, QMC, or configuration mixing
approaches. It is near optimal in size and can deliver results
with exponential convergence. The DVR basis shares the
important advantages of the HO basis set: efficiently separating
out the center-of-mass motion using Jacobi coordinates (with
the added benefit of not needing to evaluate Talmi-Moshinsky
coefficients), utilizing symmetries to reduce the basis size
(spherical with the Bessel function DVR ). Moreover, matrix
elements are easy to evaluate: the potential matrix is diagonal
for local potentials [no overlap integrals are needed; see, for
example, Eq. (19)], the kinetic energy matrix is sparse and
explicitly expressed analytically, and many-body forces can
be easily included. Furthermore, the UV and IR convergence
properties of the basis appear on a equal footing and are clearly
expressed in terms of the momentum-space projection and
finite box size, allowing a simplified and sound convergence
analysis, with a clear mathematical underpinning. Finally, we
demonstrated that the DVR basis can be used in extremely
large Hilbert spaces with relatively modest computational
resources.
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