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We compare a set of equations of state derived within microscopic many-body approaches, and study their
predictions as far as phenomenological data on nuclei from heavy ion collisions, and astrophysical observations
on neutron stars are concerned. We find that all the data, taken together, put strong constraints not easy to be
fulfilled accurately. Although no major discrepancies are found among the considered microscopic equations
of state and with respect to the data, it turns out that, if one takes strictly the phenomenological constraints,
the selection reduces to only one equation of state. The results provide an estimate of the uncertainty on the
theoretical prediction at a microscopic level of the nuclear equation of state.
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I. INTRODUCTION

A convergent effort of experimental and theoretical nuclear
physics has been developing for several years to determine
or to constrain the equation of state (EoS) of nuclear matter.
Two main areas of research have provided relevant hints in
this direction. The experimental data on heavy ion collisions
have been systematically analyzed on the basis of detailed
simulations, in order to constrain not only the density depen-
dence of the EoS, but also its isospin dependence. Excellent
reviews on this subject can be found in the literature [1,2].
On the other hand, the analysis of astrophysical observational
data, noticeably on compact objects, is of great relevance for
the study of the nuclear EoS. The results in this field of
research can be considered complementary to the ones that
can be obtained within the heavy ion research activity, because
nuclear matter is involved in different physical conditions. In
neutron stars (NS) nuclear matter is present in beta equilibrium
from very low density to several times saturation density, and it
is therefore extremely asymmetric, much more than nuclei in
the laboratory. Despite the different physical situations, an
accurate microscopic theory of nuclear matter is expected
to be able to explain correctly the data obtained in both
physical realms. For a pedagogical introduction to the field see
Ref. [3]. Another more phenomenological approach is based
on the energy density fuctional (EDF) method, in particular the
Skyrme forces scheme. In this approach a phenomenological
force or EDF includes a certain set of parameters that are
fixed by fitting the binding energy of nuclei throughout the
mass table. Some of these forces are adjusted also to the
microscopic nuclear matter EoS. Recently, an ample set of
Skyrme forces, that have been presented in the literature, has
been analyzed and confronted with the available constraints
on the nuclear EoS obtained from heavy ion reactions and
astrophysical objects [4]. The few Skyrme forces that passed
these tests have been then used to predict the binding energy
of a wide set of nuclei [5], and none seems to perform
satisfactorily well in this case. These results show clearly that
it is not at all trivial to satisfy the constraints coming from
astrophysical and heavy ion data, as was already found in
Ref. [6]. Furthermore, if the nuclear mass data are included, it
seems very difficult to reproduce all the data sets. It appears that
the phenomenological forces are not flexible enough for this
purpose. In this paper we follow a complementary approach.

We focus on the microscopic theory of nuclear matter and
the corresponding EoS’s that have been developed so far.
Adopting the same line as in Ref. [4], we test the predictions of
different microscopic many-body approaches with respect to
the constraints coming from experiments and phenomenology.
The aim of this analysis is to establish to what extent the data
can be reproduced within a microscopic approach and the
accuracy of the present theory of nuclear matter.

This paper is organized as follows. In Sec. II a review of the
currently used microscopic many-body methods is presented,
whereas results are discussed in Sec. III. Finally, in Sec. IV
we draw our conclusions.

II. EOS OF NUCLEAR MATTER IN
MICROSCOPIC APPROACHES

Empirical properties of infinite nuclear matter can be
calculated using many different theoretical approaches. In this
paper we concentrate on the microscopic ones, the only input
being a realistic free nucleon-nucleon (NN) interaction with
parameters fitted to NN scattering phase shifts in different
partial wave channels, and to properties of the deuteron. In the
following we discuss the nonrelativistic Brueckner-Hartree-
Fock (BHF) method [7] and its relativistic counterpart, the
Dirac-Brueckner- Hartree-Fock (DBHF) approximation [8],
and the variational method [9]. A relatively more recent
approach is based on the chiral effective field theory, which
has been extensively applied to nuclear matter. For a review
see Refs. [10,11]. It establishes a link with the underlying
QCD structure of strong interaction, and it has reached a
high degree of sophistication [12–16]. We will not discuss
this approach, because the corresponding EoS is based on
a low momentum expansion, and therefore its behavior at
high density is uncertain. Hence, a comparison with the other
microscopic EoS’s would be incomplete. However, the EoS
from the chiral approach turns out to be close to the variational
EoS [10], and therefore the parameters near saturation are
expected to be quite similar.

A. The Brueckner-Bethe-Goldstone approach

The Brueckner-Bethe-Goldstone (BBG) theory is based
on a linked cluster expansion of the energy per nucleon of
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nuclear matter (see Ref. [7], Chap. 1 and references therein).
The basic ingredient in this many–body approach is the
Brueckner reaction matrix G, which is the solution of the
Bethe-Goldstone equation

G[ρ; ω] = v +
∑
kakb

v
|kakb〉Q〈kakb|

ω − e(ka) − e(kb)
G[ρ; ω], (1)

where v is the bare NN interaction, ρ is the nucleon number
density, and ω the starting energy. The single-particle energy
e(k) (assuming h̄ = 1 here and throughout the paper),

e(k) = e(k; ρ) = k2

2m
+ U (k; ρ), (2)

and the Pauli operator Q determine the propagation of in-
termediate baryon pairs. The Brueckner-Hartree-Fock (BHF)
approximation for the single-particle potential U (k; ρ) using
the continuous choice is

U (k; ρ) = Re
∑
k′�kF

〈kk′|G[ρ; e(k) + e(k′)]|kk′〉a, (3)

where the subscript a indicates antisymmetrization of the
matrix element. Due to the occurrence of U (k) in Eq. (2),
they constitute a coupled system that has to be solved in a
self-consistent manner for several momenta of the particles
involved, at the considered densities. In the BHF approxima-
tion the energy per nucleon is

E

A
= 3

5

k2
F

2m
+ 1

2ρ

∑
k,k′�kF

〈kk′|G[ρ; e(k) + e(k′)]|kk′〉a. (4)

In this scheme, the only input quantity we need is the bare
NN interaction v in the Bethe-Goldstone equation (1). The
nuclear EoS can be calculated with good accuracy in the
Brueckner two-hole line approximation with the continuous
choice for the single-particle potential, since the results in this
scheme are quite close to the calculations which include also
the three-hole line contribution [17]. The dependence on the
NN interaction, also within other many-body approaches, has
been systematically investigated in Ref. [18].

However, it is commonly known that nonrelativistic cal-
culations, based on purely two-body interactions, fail to
reproduce the correct saturation point of symmetric nuclear
matter. One of the well known results of several studies, that
has lasted for about half a century, is the need to introduce
three-body forces (TBF’s). In our approach the TBF is reduced
to a density dependent two-body force by averaging over the
position of the third particle, assuming that the probability of
having two particles at a given distance is reduced according
to the two-body correlation function [19,20].

In this work we will illustrate results for two different
approaches to the TBF’s, i.e., a phenomenological and a micro-
scopic one. The phenomenological approach is based on the
so-called Urbana model, which consists of an attractive term
due to two-pion exchange with excitation of an intermediate
� resonance, and a repulsive phenomenological central term
[21]. We introduced the same Urbana three-nucleon model
within the BHF approach. Those TBF’s produce a shift of
about +1 MeV in energy and −0.01 fm−3 in density. This
adjustment is obtained by tuning the two parameters contained

in the TBF’s, and was performed to get an optimal saturation
point (the minimum) (for details see Refs. [19,20]).

The connection between two-body and three-body forces
within the meson-nucleon theory of nuclear interaction is
extensively discussed and developed in Refs. [22,23]. At
present the theoretical status of microscopically derived TBF’s
is still quite rudimentary; however, a tentative approach has
been proposed using the same meson-exchange parameters
as the underlying NN potential. Results have been obtained
with the Argonne v18, the Bonn B, and the Nijmegen 93
potentials [23].

In recent years, the BHF approach has been extended
in order to include the hyperon degrees of freedom [24],
which play an important role in the study of neutron star
matter. However, in this paper we are mainly interested on
the properties of the nucleonic EoS, therefore this issue will
not be discussed further.

B. The relativistic approach

The relativistic framework is the one on which the nuclear
EoS should be ultimately based. The best relativistic treatment
developed so far is the Dirac-Brueckner (DBHF) approach
[8]. The DBHF method can be developed in analogy with
the nonrelativistic case, i.e., the nucleon inside the nuclear
medium is viewed as a dressed particle in consequence of its
two-body interaction with the surrounding nucleons. The two-
body correlations are described by introducing the in-medium
relativistic G matrix. The DBHF scheme can be formulated
as a self-consistent problem between the single particle self-
energy � and the G matrix. Schematically, the equations can
be written

G = V + i

∫
V QggG, (5)

� = −i

∫
F

(Tr[gG] − gG), (6)

where Q is the Pauli operator which projects the intermediate
two particle momenta outside the Fermi sphere, as in the BBG
G-matrix equation (1), and g is the single-particle Green’s
function, which fulfills the Dyson equation

g = g0 + g0�g, (7)

where g0 is the (relativistic) single-particle Green’s function
for a free gas of nucleons, and � is the nucleon self-energy
which expresses the influence of the surrounding nucleons.
The self-energy can be expanded in the covariant form

�(k, kF ) = �s(k, kF ) − γ0�0(k, kF ) + γ · k�v, (8)

where γμ are the Dirac gamma matrices, and the coefficients
of the expansion are scalar functions, which in general depend
on the modulus |k| of the three-momentum and on the energy
k0. The free single-particle eigenstates, which determine
the spectral representation of the free Green’s function, are
solutions of the Dirac equation

[γμkμ − M]u(k) = 0 (9)

where u is the Dirac spinor at four-momentum k. For the
full single-particle Green’s function g the corresponding
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eigenstates satisfy

[γμkμ − M + �]u(k)∗ = 0. (10)

Inserting the above general expression for �, Eq. (8), after a
little manipulation one gets

[γμkμ∗ − M∗]u(k)∗ = 0 (11)

with

k0∗ = k0 + �0

1 + �v

, ki∗ = ki, M∗ = M + �s

1 + �v

. (12)

This is the Dirac equation for a single particle in the medium,
and the corresponding solution is the spinor

u∗(k, s) =
√

E∗
k + M∗

2M∗

(
1

σ · k
E∗

k+M∗

)
χs, E∗

k =
√

k2 + M∗2.

(13)

In line with the Brueckner scheme, within the BBG expansion,
in the self-energy of Eq. (6) only the contribution of the single-
particle Green’s function pole is considered. Furthermore,
negative energy states are neglected and one gets the usual
self-consistent condition between self-energy and scattering
G matrix.

In any case, the medium effect on the spinor of Eq. (13) is
to replace the vacuum value of the nucleon mass and three-
momentum with the in-medium values of Eq. (12). This means
that the in-medium Dirac spinor is “rotated” with respect to
the corresponding one in vacuum, and a positive (particle)
energy state in the medium has some nonzero component
on the negative (antiparticle) energy state in vacuum. In
terms of vacuum single nucleon states, the nuclear medium
produces automatically antinucleon states which contribute
to the self-energy and to the total energy of the system. It
has been shown in Ref. [25] that this relativistic effect is
equivalent to the introduction of well defined TBF’s at the
nonrelativistic level. These TBF’s turn out to be repulsive, and
consequently produce a saturating effect. Actually, including
in BHF only these particular TBF’s, one gets results close to
DBHF calculations; see Ref. [26]. Generally speaking, DBHF
gives in general a better saturation point than BHF, and the
corresponding EoS turns out to be stiffer above saturation than
the one calculated from the BHF + TBF method.

In the relativistic context the only NN potentials which have
been developed are the ones of one-boson exchange (OBE)
type. In the calculations shown here the Bonn A potential is
used [27].

C. The variational method

In the variational method [9] one assumes that the ground
state wave function � can be written in the form

�(r1, r2, . . .) = 	i<jf (rij )
(r1, r2, . . .), (14)

where 
 is the unperturbed ground state wave function,
properly antisymmetrized, and the product runs over all
possible distinct pairs of particles. The correlation factor is
here determined by the variational principle, i.e., by imposing

that the mean value of the Hamiltonian gets a minimum

δ

δf

〈�|H |�〉
〈�|�〉 = 0 . (15)

In principle this is a functional equation for the correlation
function f , which, however, can be written explicitly in a
closed form only if additional suitable approximations are
introduced. The function f (rij ) is assumed to converge to
1 at large distance and to go rapidly to zero as rij → 0, to
take into account the repulsive hard core of the NN interaction.
Furthermore, at a distance just above the core radius a possible
increase of the correlation function beyond the value 1 is
possible.

For nuclear matter it is necessary to introduce a channel
dependent correlation factor, which is equivalent to assuming
that f is actually a two-body operator F̂ij . One then assumes
that F̂ can be expanded in the same spin-isospin, spin-orbit,
and tensor operators appearing in the NN interaction. Momen-
tum dependent operators, such as spin-orbit, are usually treated
separately. The product in Eq. (14) must be then symmetrized
since the different terms do not commute any longer.

If the two-body NN interaction is local and central, its mean
value is directly related to the pair distribution function g(r),

〈V 〉 = 1

2
ρ

∫
d3r v(r)g(r), (16)

where

g(r1 − r2) =
∫

	i>2d
3ri |�(r1, r2, . . .)|2∫

	id3ri |�(r1, r2, . . .)|2 . (17)

The main job in the variational method is to relate the pair
distribution function to the correlation factors F . Again,
in nuclear matter also the pair distribution function must
be considered channel dependent and the relation with the
correlation factor becomes more complex. In general this
relation cannot be worked out exactly, and one has to rely
on some suitable expansion. Furthermore, three-body or
higher correlation functions must in general be introduced,
which will depend on three or more particle coordinates
and describe higher order correlations in the medium. Many
excellent review papers exist in the literature on the variational
method and its extensive use for the determination of the
nuclear matter EoS [9,28]. The best known and most used
variational nuclear matter EoS is the one calculated by Akmal,
Pandharipande, and Ravenhall [29]. In their paper the authors
showed calculations using the Argonne v18 NN interaction
[30], with boost corrections to the two-nucleon interaction,
which give the leading relativistic effect of order (v/c)2, as
well as three-nucleon interactions modeled with the Urbana
force explained above. This EoS will be tested in the present
paper. Finally, the connection between the variational and the
BHF methods has been discussed in Ref. [31].

III. RESULTS AND DISCUSSION

A. Phenomenology of nuclei

One of the main goals of the microscopic many-body
methods is the correct reproduction of the nuclear matter
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TABLE I. Calculated properties of symmetric nuclear matter.

EoS ρ0 (fm−3) E
A

(MeV) K0 (MeV) S0 (MeV) L (MeV)

BHF, Av18 + UVIX TBF 0.16 −15.98 212.4 31.9 52.9
BHF, Av18 + micro TBF 0.2 −15.5 236 31.3 82.7
BHF, Bonn B + micro TBF 0.17 −16. 254 30.3 59.2
APR, Av18 + UVIX TBF 0.16 −16. 247.3 33.9 53.8
DBHF, Bonn A 0.18 −16.15 230 34.4 69.4

saturation point. The nonrelativistic approaches typically lead
to an overprediction of the saturation density ρ0 = 0.17 ±
0.03 fm−3 of symmetric nuclear matter (SNM), at which the
binding energy E/A per nucleon reaches its minimum. The
empirical value E/A(ρ0) ≈ −16 MeV can be extracted from
the semiempirical mass formula or from the extrapolation
of binding energies of heavy nuclei. In Table I we display
theoretical calculations of saturation properties of SNM for
the different approaches illustrated above.

In the case of the BHF scheme with the Argonne v18 NN
potential and Urbana three-body forces (first line of Table I),
the reported values for the saturation point have been obtained
by a polynomial fit to the numerically calculated EoS. The fit
was performed with the constraint to reproduce the empirical
saturation density of 0.16 fm−3, while the corresponding
energy was tuned to give the optimal value within a recent
energy density functional (EDF) approach based on this BHF
EoS [32]. The shifts in the values for the density and energy
at saturation from the original numerical values (0.17 fm−3

and −15.2 MeV) have only marginal effects on the other
physical parameters reported in Table I. For the BHF case
with microscopic three-body forces (second and third lines), no
application to an EDF scheme was performed, and the reported
saturation point corresponds to the numerical calculations [33].

In the case of the considered variational method (fourth
line), in the quoted reference the original numerical EoS was
corrected around saturation with an extra binding energy in the
functional form in order to reproduce the empirical saturation
point, as reported in Table I. This correction is large: as much
as 4 MeV. We do not know how much this correction could
affect the values of the other physical parameters reported in
the table, but we used the corrected EoS, since it is the one
recommended in the original paper [29], and widely used in the
literature. In particular it was used to construct the functional
NRAPR [34] and in many astrophysical studies on neutron
stars; see, e.g., Ref. [35]. Finally, in the DBHF approach
there is no need to introduce three-body forces, although
the saturation point is slightly shifted to higher density. We
therefore report the calculated values without fine tuning or
corrections.

It has to be stressed that in all cases the EoS above saturation
was in no way corrected.

In the third column of the same table we show the values
predicted for the incompressibility at the saturation point. For
practical reasons, it is customary among nuclear physicists to
use the definition

K0 = k2
F

(
d2E/A

dk2
F

)
ρ0

(18)

which has the dimension of an energy. The values of the incom-
pressibility extracted from the EoS in the many-body methods
are displayed in Table I. The values are typical of a pretty soft
EoS at saturation, in agreement with the values extracted from
the phenomenology of monopole oscillations [36]. One finds
indeed that a correlation exists between incompressibility and
position of the monopole giant resonance, so that, in principle it
is possible to extract from the experimental data the value of the
incompressibility in nuclear matter. At present, the constraints
on the value of the nuclear matter incompressibility from the
monopole excitation are not so tight. It can be approximately
constrained between 210 and 250 MeV [4], though a more
refined value can be expected to come out in the near future
from additional analysis of phenomenological data.

These values are compatible with the ones obtained from
the experiments on subthreshold kaon production, noticeably
the ones from the KaoS [37] and FOPI [38] Collaborations.
The optimal energy for this type of investigation is close or
even below two-body threshold, since then the only way to
produce the kaons is by compression of the matter. Since at
threshold the production rate increases steeply, there is a strong
sensitivity to the value of the maximum density reached during
the collision, and this is an ideal situation for studying the EoS
and its incompressibility. The comparison of the simulations
with the experimental data on K+ production points in the
direction of a soft EoS. However, it has to be kept in mind
that, in the simulations, kaon production occurs at density ρ �
2ρ0–3ρ0, and therefore this set cannot be directly compared to
the one of the monopole oscillations. In any case, a stiff EoS
above saturation seems to be excluded from this analysis, as is
apparent in Ref. [39].

Further important properties characterizing the nuclear
matter are the symmetry energy at saturation S(ρ0) and its
density derivative L, which are displayed in columns 4 and 5
of Table I. For both those quantities experimental data do exist,
and will be discussed in the next subsections. The usual way
of calculating them is to assume asymmetric nuclear matter,
where the proton number Np is different from the neutron
number Nn, with N = Nn + Np . In this case, the EoS of
nuclear matter has to be generalized. Defining

β = Nn − Np

Nn + Np

= ρn − ρp

ρ
(19)

as the “asymmetry” parameter, one easily gets

E

A
(ρ, β) = E

A
(ρ, 0) + Esym(ρ)β2 = E

A
(ρ0) + 1

18
K0 e2

+
[
S0 − 1

3
Le + 1

8
Ksyme2

]
β2, (20)
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where e = (ρ − ρ0)/ρ0, K0 is the incompressibility at the
saturation point, S0 = S(ρ0) is the symmetry energy coefficient
at saturation, and the parameters L and Ksym in the square
brackets characterize the density dependence of the symmetry
energy around the saturation point. The values in Table I of
these physical parameters are obtained, for each one of the
indicated microscopic many-body EoS’s, from their analytical
form or by a polynomial fit to the numerical values reported
in the original papers.

B. Heavy ion phenomenology

In the last two decades intensive studies of heavy ion
collisions (HIC) at energies ranging from few tens to several
hundreds MeV per nucleon (hereafter indicated as MeV/A)
have been performed. The main goal has been the extraction
from the data of the gross properties of the nuclear EoS. It
can be expected that in heavy ion collisions at large enough
energy nuclear matter is compressed and that, at the same
time, the two partners of the collisions produce flows of
matter. In principle the dynamics of the collisions should
be connected with the properties of the nuclear medium
EoS and its viscosity. In the so-called “multifragmentation”
regime, after the collision numerous nucleons and fragments
of different sizes are emitted, and the transverse flow, which
is strongly affected by the matter compression during the
collision, can be measured.

Based on numerical simulations, in Ref. [40] a phenomeno-
logical range of densities was proposed where any reasonable
EoS for symmetric nuclear matter should pass through in
the pressure-vs-density plane. The plot is reproduced in
Fig. 1, where a comparison with the microscopic calculations
discussed in Sec. II is made. The green dashed box represents
the results of the numerical simulations of the experimental
data discussed in Ref. [40], and the brown filled region
represents the experimental data on kaon production [39]. We
notice that the EoS calculated with the BHF and the variational
methods including UVIX three-body forces appear to be in
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FIG. 1. (Color online) Pressure as a function of baryon density
for symmetric nuclear matter. See text for details.
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FIG. 2. (Color online) The symmetry energy is displayed as a
function of the nucleon density. The green zone represents the recent
data by Danielewicz and Lee [42], whereas the different curves are
the results of the microscopic many-body methods.

agreement with the data in the full density range. On the other
hand, the BHF EoS’s obtained using microscopic TBF’s are
only marginally compatible with the experimental data, as well
as the DBHF EoS, showing that they are too repulsive already
at density ρ � 3ρ0 if the Bonn potentials are used. Though,
it has to be stressed that all EoS are compatible with the data
around the saturation density; i.e., their incompressibility is
as soft as required by the data. However, the values of the
incompressibility do not characterize completely the EoS,
since it is density dependent, but in any case the analysis
indicates that the EoS at low densities must be soft.

A further constraint on the EoS is given by the symmetry
energy, which has been extensively studied both from the
theoretical and experimental points of view in Ref. [41]. The
symmetry energy is displayed in Fig. 2 as a function of the
nucleon density. The green region is the result of a recent
analysis performed by Danielewicz and Lee on the isobaric
analog states (IAS) in nuclei [42]. This stems from the charge
independence of nuclear interactions; i.e., strong interactions
between nucleons in the same state do not depend on whether
the nucleons are protons or neutrons. Therefore the energy
difference between the ground state of a nucleus with N > Z
and the isobaric analogs of the ground states of neighboring
isobars are given by the symmetry energy, and the Coulomb
contributions to the binding energy can be determined
using the IAS. Many such states have been identified, and
by fitting the available data on the IAS, Danielewicz and Lee
obtained the constraint shown as a green region in Fig. 2. We
observe that all EoS’s give results in very good agreement
with the experimental data, except the ones of BHF with
microscopic TBF at densities below the saturation density.

In Fig. 3 we display the slope L as a function of the
symmetry energy at saturation density, which has been widely
discussed in Ref. [41]. Several experimental data sets are
displayed. The blue band represents experimental data from
HIC, obtained from the neutron and proton spectra from central
collisions for 124Sn + 124Sn and 112Sn + 112Sn reactions at
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FIG. 3. (Color online) The derivative of the symmetry energy L

is shown as a function of the symmetry energy at saturation S0. See
text for details.

50 MeV/A [43]. At the same incident energy, isospin diffusion
was investigated. We remind that isospin diffusion in HIC
depends on the different N/Z asymmetry of the involved
projectiles and targets, hence it is used to probe the symmetry
energy [2,44,45]. The full green circle shows the results from
isospin diffusion observables measured for collisions at a lower
beam energy of 35 MeV per nucleon [46].

Transverse collective flows of hydrogen and helium iso-
topes as well as intermediate mass fragments with Z < 9
have also been measured at incident energy of 35 MeV/A
in 70Zn + 70Zn, 64Zn + 64Zn, and 64Ni + 64Ni reactions and
compared to transport calculations. The analysis yielded
values denoted by the full green squares [47].

The box labeled FRDM (finite-range droplet model) rep-
resents a refinement of the droplet model [48], and includes
microscopic “shell” effects and the extra binding associated
with N = Z nuclei. The FRDM reproduces nuclear binding
energies of known nuclei within 0.1%, and allows determina-
tion of both S0 = 32.5 ± 0.5 MeV and L = 70 ± 15 MeV.

In Fig. 3 the other boxes represent experimental data
obtained from measurements of the neutron skin thickness. In
light nuclei with N ≈ Z, the neutrons and protons have similar
density distributions. With increasing the neutron number N ,
the radius of the neutron density distribution becomes larger
than that of the protons, reflecting the pressure of the symmetry
energy. The measurement of the neutron skin thickness is made
on the stable nucleus 208Pb, which has a closed neutron shell
with N = 126 and a closed proton shell with Z = 82, hence
it is very asymmetric and the neutron skin is very thick. The
possibility of measurements of the neutron radius in 208Pb
by the experiment PREX at Jefferson Laboratory has been
widely discussed [49]. The experiment should extract the value
of the neutron radius in 208Pb from parity-violating electron
scattering. However, the experimental signature is very small,
and the extracted thickness has a large statistical uncertainty.

In the next few years, a second experimental run of PREX
could reduce this large uncertainty [50].

Recent experimental data obtained by Zenihiro et al. [51]
on the neutron skin thickness of 208Pb deduced a value
δRnp = 0.211+0.054

−0.063 fm. From the experiments constraints on
the symmetry energy were derived, and these are plotted
in Fig. 3 as the short-dashed blue rectangular box labeled
Pb( �p, �p).

Last, we mention the experimental data on the pygmy dipole
resonance (PDR) in very neutron-rich nuclei such as 68Ni
and 132Sn, which peaks at excitation energies well below the
giant dipole resonance (GDR), and exhausts about 5% of the
energy-weighted sum rule [52]. In many models it has been
found that this percentage is linearly dependent on the slope
L of the symmetry energy. Carbone et al. [53] extracted a
value of L = 64.8 ± 15.7 MeV, and S0 = 32.2 ± 1.3 MeV
using various models which connect L with the neutron
skin thickness. Those constraints are shown as a long-dashed
rectangle in Fig. 3 with the label PDR.

The predictions of the different EoS’s are also reported in
Fig. 3 as full symbols. They are distributed within a large region
and they span a wide interval in the values of the parameter
L. However, the various phenomenological data are at best
marginally compatible, and it is difficult to put well definite
constraints on the EoS. Tentatively, from these data one can
restrict the possible values of the symmetry energy at saturation
in a limited interval, approximately 30 < S0 < 35 MeV, where
all the considered EoS’s are actually falling.

C. Astrophysics

A neutron star is bound by gravity, and it is kept in
hydrostatic equilibrium only by the pressure produced by the
compressed nuclear matter. It is then apparent that the nuclear
matter EoS is the main medium property that is relevant in this
case, as can be seen in the celebrated Tolman-Oppenheimer-
Volkoff [54] equations, valid for spherically symmetric NS
(c = 1),

dP

dr
=−G

εm

r2

(
1 + P

ε

)(
1 + 4πPr3

m

)(
1 − 2Gm

r

)−1

,

dm

dr
=4πr2ε, (21)

where G is the gravitational constant, P the pressure, ε the
energy density, and r the (relativistic) radius coordinate. To
close the equations we need the relation between pressure
and density, P = P (ε), i.e., just the EoS. Integrating these
equations one gets the mass M and the radius R of the star for
each central density. Typical values are M = 1–2 M	, with the
solar mass M	 = 2 × 1033 g, and R ≈ 10 km. This indicates
the extremely high density of the object. It turns out that the
mass of the NS has a maximum value as a function of radius
(or central density), above which the star is unstable against
collapse to a black hole. The value of the maximum mass
depends on the nuclear EoS, so that the observation of a mass
higher than the maximum one allowed by a given EoS simply
rules out that EoS. The considered microscopic EoS’s are
compatible with the largest mass observed up to now, that is,
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FIG. 4. (Color online) The mass-radius (left panel) and the
mass–central-density (right panel) relations are plotted for the EoS’s
discussed. Boxes are boundaries extracted from observations; see
Ref. [56].

close to 1.97 ± 0.04 M	 [55]. This is clearly shown in Fig. 4,
where the mass-radius (left panel) and mass–central-density
relations (right panel) are plotted for all the considered EoS’s
as thick lines. It looks unlikely that this value is indeed the
largest possible NS mass, and therefore future observational
data on NS masses could overcome this limit and strongly
constrain the nuclear EoS.

It would be of course desirable to have some phenomeno-
logical data also on the radius of a NS. Unfortunately this
is quite difficult, but some tentative analysis looks promising
[56,57]. In Fig. 4 a sample of observational data taken from
Ref. [56] is displayed by closed thin lines for different sources,
measured in quiescence and from thermonuclear bursts. It turns
out that the current measurements are consistent with radii in
the range 8–12 km and disfavor neutron stars with R ∼ 15 km.
Those measurements are consistent with the recent observation
of the neutron star in SAX J1748.9-2021, which points to the
neutron star radius in the 8–11 km range [57].

Additional tentative constraints on the nuclear EoS were
obtained in a recent analysis of the data on six NS’s based
on Bayesian statistical framework [58]. Depending on the
hypothesis made on the structure of the NS, the results are
slightly different, as shown in Fig. 5, where the quantity rph

is the photosphere radius. In the left panel rph is comparable
to the neutron star radius R, whereas in the right panel a
substantial expansion of the photosphere during an x-ray burst
is assumed to occur. The overall allowed region where the
EoS’s should lie is displayed in Fig. 5 as bounding boxes,
where the theoretical EoS’s just discussed are also reported as
thick lines. Among the different EoS’s, only the one calculated
with BHF and phenomenological Urbana model appear to be
compatible with the extracted observational constraints over
the whole density range. It turns out that other microscopic
EoS’s do not show the same agreement, in particular the EoS
with BHF and microscopic TBF and the DBHF EoS look
too repulsive at high density. These boundaries obtained from
astrophysical data are complementary to the ones obtained
from heavy ion reactions, and are illustrated in the previous
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FIG. 5. (Color online) Pressure as a function of the mass-energy
density in neutron star matter. The shaded areas are taken from
Ref. [58]. See text for details.

subsection. In fact, in heavy ion collisions the tested matter
is essentially symmetric, while in a NS the matter is highly
asymmetric. Considered together, the two types of constraints
probe the density dependence of the symmetry energy.

In relation to the high density region of the nuclear EoS, an
additional test is on the speed of sound cS , which is required to
be smaller than the speed of light c (causality condition). The
speed of sound is directly connected with the incompressibility
and the energy density, according to the relativistic expression

cS

c
=

√
dP

dε
. (22)

As such, it depends on the matter energy density and
asymmetry. In Fig. 6 we plot the speed of sound in units
of c as a function of the density of the NS matter, according to
each EoS. In the figure the full points on each curve indicate
the central density of the calculated NS maximum mass for
the given EoS. At large enough density most of the EoS’s
show a superluminal speed of sound. One finds that also
the DBHF EoS shows a superluminal behavior. This is not
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FIG. 6. (Color online) The speed of sound in units of c is plotted
as function of the nucleon density for the EoS’s discussed in the text.
The dots mark the central density for the maximum mass of a neutron
star.
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completely surprising, since the DBHF approach is actually
based on the three-dimensional reduction of the original
four-dimensional Bethe-Salpeter equation, and therefore it is
not fully relativistic.

A further additional constraint on the neutron star EoS is
provided by the observation of the double pulsar J0737-3039,
and the interpretation given by Podsiadlowski [59]. In fact,
the gravitational mass of Pulsar B is very precisely known,
MG = 1.249 ± 0.001 M	, whereas estimates of the baryonic
mass depend upon its detailed mode of formation. As modeled
by Podsiadlowski et al., if the pulsar B was formed from a
white dwarf with an O-Ne-Mg core in an electron-capture
supernova, assuming no or negligible loss of baryonic mass
during the collapse, the newly born neutron star will have the
same baryonic mass as the precollapse core of the progenitor
star, i.e., MB � 1.366–1.375 M	. This result is displayed
in Fig. 7 as a black box. Though, taking into account the
uncertainty in the EoS and the small mass loss during the
collapse, Kitaura et al. [60] made another simulation which
gave MB = 1.360 ± 0.002 M	, which is shown in Fig. 7 by
the green box. We have calculated for each neutron star matter
EoS the relation between the gravitational and baryonic mass,
and these are displayed in Fig. 7 by the straight curves. We
notice that the results of all microscopic EoS’s agree very
well with the result of Podsiadlowski, at variance with the
calculations based on the phenomenological Skyrme forces
discussed in Ref. [4], where agreement was found with the
result of Kitaura et al. [60], which assumed small mass loss
during the collapse.

IV. CONCLUSIONS

We have presented a systematic confrontation of the nuclear
equation of state, obtained within different microscopic many-
body methods, with the available constraints coming from
phenomenology. The latter are extracted from laboratory
experiments as well as from astrophysical observations.

Both nuclear structure and heavy ion collisions data were
considered, along the same lines of the analysis on the Skyrme
forces reported in Ref. [4]. Astrophysical observational data
included the measures of NS masses, some hints on the
radius-mass relation from Refs. [56,57], and the constraints on
the EoS presented in Ref. [58], obtained from the analysis of
transient phenomena in six NS’s. Some theoretical constraints,
as the requirement of a subluminal speed of sound, were also
considered. If one takes literally all the constraints, among the
considered microscopic EoS’s only one passes all the tests,
namely the BHF with the two-body potential Av18 and the
UVIX model for the three-body forces [20]. This shows that
the considered phenomenological constraints are well suited
in selecting the microscopic EoS. However, before drawing
a strong conclusion, it would be appropriate to have a firm
estimate of the uncertainties affecting the data. This is a non-
trivial task, and we only notice that the calculated microscopic
nuclear EoS do not show diverging predictions, and even when
they show discrepancies with the phenomenological analysis
they are still, to some extent, close to the boundaries of the
constraints reported in the literature. The agreement, even if
only approximate, among the different EoS’s is not at all an
obvious result. Some of the considered EoS’s could be already
ruled out, but refinements of the constraints will surely provide
a more stringent selection of the EoS.

Secondly, from the analysis it appears that one can explain
reasonably well all the data with a microscopic EoS that
includes only nucleonic degrees of freedom; in particular no
exotic components in NS’s are needed. On one hand, it is
likely that this conclusion will be disproved in the future with
the expected new data, in particular on the NS maximum
mass. Indeed, if the evidence for a NS mass of 2.5 solar
mass [61] will be confirmed, this will rule out most of the
considered microscopic EoS’s and will introduce a serious and
fundamental issue in the physics of NS’s. On the other hand, it
has been shown that exotic matter such as hyperons or quarks
should appear in NS’s [24], which will strongly affect the EoS.

These theoretical predictions can put in doubt the relevance
of the comparison of the astrophysical constraints with the
considered microscopic EoS based only on nucleonic degrees
of freedom. However, the hyperonic and quark matter EOS’s
are quite uncertain. One can only conclude that, within the
present analysis, exotic components are not present in neutron
star matter or that, if they are present, the corresponding EoS
must mimic closely the appropriate nucleonic EoS [62]. Which
one of the two possibilities is the correct one is a challenge
to the theory of high density nuclear matter. In the future one
can expect that the interplay between theory and observations
will continue to play a major role in the worldwide effort of
determining the nuclear EoS.
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