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A truncated partial wave analysis for the photoproduction of two pseudoscalar mesons on a nucleon is discussed
with respect to the determination of a complete set of observables. For the selection of such a set we have applied
a criterion previously developed for photo- and electrodisintegration of a deuteron, which allows one to find a
‘minimal’ set of observables for determining the partial wave amplitudes up to possible discrete ambiguities.
The question of resolving the remaining ambiguities by invoking additional observables is discussed for the
simplest case, when the partial wave expansion is truncated at the lowest total angular momentum of the final
state Jmax = 1/2. The resulting ‘fully’ complete set, allowing an unambiguous determination of the partial wave
amplitudes, is presented.
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I. INTRODUCTION

Photoproduction of two pseudoscalars on nucleons have
been studied rather intensively during the last two decades. At
present a large amount of experimental data, in particular for
the π0π0 and π0η channels, have been collected and some new
experiments on polarization observables for these reactions
are planned. The interpretation of the data within different
models has allowed one to qualitatively understand the major
mechanisms of these processes. At the same time, although
the general agreement of the various calculations with the
measured cross sections is reasonable, significant qualitative
differences between these models exist. Some of them were
already discussed, for example in Ref. [1].

One reason for these differences between theoretical results
is that the standard approach, based on the isobar model,
appears to have reached certain limitations. Probably its
weakest point is that the corresponding formalism depends
on a specific assumption about the dynamics of the production
process. Within the isobar model approach one assumes that
the two-body discontinuity in the reaction matrix coming
from the interaction in the two-body subsystems in the final
state may be approximated by resonance terms (usually taken
in the Breit-Wigner form). In other words, it is assumed
that the final three-particle state is produced via intermediate
formation of quasi-two-body states containing meson-nucleon
and meson-meson isobars.

In order to achieve a significant improvement of present
theoretical models one has to eliminate as much as possible the
mentioned model dependencies from the formal description
of these reactions. In this respect, an ideal tool for the
investigation of the reaction dynamics is an analysis of a
complete experiment within a given model, based on the
fundamental principles of rotation and parity invariance. It
is clear that for the photoproduction of two mesons this
task is considerably more complicated in comparison to the
photoproduction of a single meson. Firstly, in the case of
three particles in the final state, the amplitudes depend on five
kinematical variables, so that for their determination accurate

measurements of five-dimensional distributions are needed.
Secondly, contrary to the single meson case, a complete
set contains a considerably larger number of observables.
Indeed, if two mesons are produced, the property of parity
conservation does not allow one to reduce the number of
independent amplitudes. Therefore, in order to determine
all eight complex amplitudes up to an overall phase one
needs at least 15 observables. As was shown by Roberts
and Oed [2], a complete set includes not only single and
double but also triple polarization observables. The latter is
especially disappointing since it requires the implementation
of complicated measurements at a high level of accuracy.

At the same time, as was noted in Refs. [3,4], arbitrariness
in the overall phase at each point of the phase space does
not allow one to find the multipole amplitudes, which are
obviously needed for a nucleon resonance analysis. Therefore,
if one searches for resonances or, more generally, for states
with definite spin and parity JP , it is more reasonable (and
probably less complicated) to adopt a truncated partial wave
expansion up to a maximal total angular momentum Jmax and
to study instead of the spin or helicity amplitudes the partial
wave amplitudes. In this case, as a rule, a lower number
of polarization observables is needed. As is discussed in
Refs. [4–6] for γN → π0N , in order to determine (up to an
overall phase) the multipoles E0+, E1+, and M1± which are
important in the first resonance region, already a set of single
polarization observables with an additional measurement of
only one of the double polarization observables (for example,
F or G asymmetry) is sufficient.

For a partial wave analysis we firstly need a convenient and
model independent form of the partial wave decomposition
of the reaction amplitude. As already noted above, the isobar
model does not meet this requirement, since it depends on
specific assumptions about the reaction dynamics. Therefore,
we adopt in the present paper the formalism developed in
Ref. [7]. Here a special coordinate frame is used in which the
z-axis is chosen along the normal to the plane spanned by the
momenta of the final particles in the overall center-of-mass
frame. In this case one can choose as independent kinematical
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variables the energies of two of the three final particles and
three angles, determining the orientation of the final state plane
with respect to the photon beam (one of the angles corresponds
to the rotation around the normal). Then the amplitude for a
given total angular momentum J of the final state and its
projection M on the z-axis is obtained by an expansion of the
helicity amplitudes over a set of Wigner functions. In Ref. [1]
this approach was applied successfully to the analysis of the
unpolarized differential cross section for the photoproduction
of π0π0 pairs.

The second important question is what is an optimal
choice of the observables needed for the determination of
the partial wave amplitudes. While for the determination of
n complex quantities (up to an overall phase factor) only
2n − 1 real parameters are needed, the total number of linearly
independent observables (or, more generally, the number of
bilinear hermitian forms of the amplitudes) is n2. This means
that there exist also nonlinear dependencies between the
observables, so that not any subset of 2n − 1 observables may
form a complete set from which the 2n − 1 real parameters
can be deduced.

Thus the question is how to select out of this set of
n2 observables a subset of 2n − 1 independent observables.
In the present paper we describe a method which may be
used to single out a minimal set of independent observables.
The criterion, which underlies the method, was originally
developed for deuteron photo- and electrodisintegration in
Refs. [8,9]. An additional very important question concerns
possible discrete ambiguities, which naturally can appear since
the extraction of the amplitudes implies a solution of a set of
quadratic equations. To resolve these ambiguities we adopt
for our truncated partial wave analysis an additional criterion,
which was used in Ref. [10] for the spin amplitude analysis of
single meson photoproduction.

First, we present in the next section a brief review of the
formalism developed in Ref. [7]. Then we give in Sec. III
an example of the method of how to find a complete set of
observables for the simplest case, when only partial waves
with J = 1/2 and both parities are included. In Sec. IV we
summarize our results and give an outlook on future develop-
ments. Some details are collected in the two Appendices.

II. FORMAL DEVELOPMENTS

For the theoretical description we choose the overall c.m.
system. The four-momenta of incoming photon, outgoing
mesons, and final nucleon are denoted by (ωγ , �k ), (ω1, �q1 ),
(ω2, �q2 ), and (E, �p ), respectively. We consider within this
system two right-handed orthogonal coordinate systems:
(i) one associated with the incoming photon called Kγ with
z-axis along the photon momentum and x-axis arbitrary, and
(ii) the so-called “rigid body” system Kf s , associated with the
final state plane spanned by the final three particles, in which
the z-axis is taken to be the normal to this plane and parallel to
�p × �q1. Thus the x- and y-axes are in the final scattering plane
(see Fig. 1). The transformation from Kf s to Kγ is given by a
rotation through Euler angles (φ, θ, 0). Thus relative to Kf s the
photon momentum �k has the spherical angles �γ = (θγ , φγ ).
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FIG. 1. Definition of the coordinate system in the c.m. system.

For the T matrix we had derived in Ref. [7] the following
expression expanding the final state into partial waves:

Tνλμ(φp, ω1, ω2,�γ )

= e−iνφp

∑
JMJ

t
JMJ

νλμ (ω1, ω2) DJ
MJ λ−μ(Rγp), (1)

where J and MJ denote, respectively, the total angular
momentum of the partial wave and its projection on the normal
to the final state plane. The rotation matrix DJ

M ′M is taken in the
convention of Rose [11] with argument Rγp = (φγp, θγ ,−φγ )
and φγp = φγ − φp. The helicities of photon and initial and
final nucleons are denoted by λ, μ, and ν, respectively. As
independent variables we had chosen besides the photon angles
�γ = (θγ , φγ ) and the proton angle φp in the final state plane,
the energies of the two final mesons ω1 and ω2. The latter
two determine the relative angle φqp = φq − φp between the
momentum of the final proton and the relative momentum
�q = (�q1 − �q2)/2 of the two mesons according to

cos φqp = 1

2qp

(
ω2

2 − ω2
1 − M2

2 + M2
1

)
, (2)

with the final nucleon momentum

p = | �p| =
√

(W − ω1 − ω2)2 − M2
N, (3)

where W denotes the invariant total energy, and the relative
momentum q of the two mesons is determined by

q2 = 1

2

(
ω2

1 + ω2
2 − M2

1 − M2
2

) − p2

4
. (4)

In the foregoing equations the masses of the nucleon and the
two mesons are denoted by MN , M1, and M2, respectively.

The expression in Eq. (1) is obtained by making use of ro-
tation and inversion invariance (that is angular momentum and
parity conservation) and is therefore completely general. The
final partial wave is taken in the form |qp; ((lp 1

2 )jplq)JMJ 〉(−)

where lp and lq denote the angular momenta of nucleon and
meson pair, respectively.
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The contribution of the final partial wave to the reaction amplitude is given by

t
JMJ

νλμ (ω1, ω2) = t
JMJ

νλμ (φqp) =
∑

lpjpmpL

(
lp

1
2 jp

0 ν −ν

) (
J L 1

2
μ − λ λ −μ

)
d

jp

ν mp
(π/2) ei(MJ −mp)φqp OλLJ

MJ
(lpjpmp) , (5)

with

OλLJ
MJ

(lpjpmp) = (−1)1+J Ĵ

2
√

2π

∑
lqmq

iL(−1)lp+jp+lq l̂p ĵp l̂q L̂ d
lq
0 mq

(π/2)

(
jp lq J
mp mq −MJ

) 〈
p q;

((
lp

1

2

)
jplq

)
J

∣∣∣∣|OλL|
∣∣∣∣1

2

〉
,

(6)

where l̂ = √
2l + 1 and OλL denotes the electromag-

netic multipole operator with electric and magnetic
contributions

OλL
M = EL

M + λML
M. (7)

The amplitudes t
JMJ

νλμ obey the following symmetry property
which follows from parity conservation (see Ref. [7], one
should note a misprint in the phase):

t
JMJ

−ν−λ−μ(φqp) = (−1)ν−MJ t
J−MJ

νλμ (−φqp). (8)

The interchange φqp ↔ −φqp corresponds to the interchange
(ω1,M1) ↔ (ω2,M2), see Eqs. (2) through (4). Therefore,
parity conservation does not reduce the number of independent
amplitudes in this case in contrast to single meson production
as already noted in Ref. [2]. However, in a more general
sense this relation allows one to reduce the number of
independent amplitudes. Namely, provided that the amplitude
t
JMJ

νλμ is known in the whole region of the Dalitz plot (ω1, ω2)

the amplitude t
J−MJ

−ν−λ−μ can be obtained using the symmetry
relation of Eq. (8). Thus in this more general sense one has
4(2J + 1) independent amplitudes for a given J , except for
J = 1/2 for which this number is reduced to 2(2J + 1) = 4
because of an additional requirement λ − μ � J , coming from
angular momentum conservation.

As shown in Appendix A, one can separate the contributions
of those final states with positive parity from those of negative
one according to

t
JMJ

νλμ = (−)
δ
ν− 1

2
( 1

2 +M)(
t
JMJ +
λμ + 2νt

JMJ −
λμ

)
, (9)

where

t
JMJ ±
λμ = 1

2

(
t
JMJ

1/2λμ ± (−)
1
2 +MJ t

JMJ

−1/2λμ

)
. (10)

An interesting consequence of Eq. (9) is that the bilinear

expression t
J ′M ′

J ∗
ν ′λ′μ′ t

JMJ

νλμ with ν ′ = ν is invariant under the
transformation (parity exchange)

t
JMJ +
λμ ↔ t

JMJ −
λμ , (11)

which, as follows from Eq. (10), is equivalent to the transfor-
mation of the matrices t

JMJ

νλμ :

t
JMJ

νλμ → 2ν t
JMJ

νλμ . (12)

Indeed, one finds successively (note 2ν = ±1)

t
J ′M ′

J ∗
νλ′μ′ t

JMJ

νλμ = (
t
J ′M ′

J +
λ′μ′ + 2ν t

J ′M ′
J −

λ′μ′
)∗(

t
JMJ +
λμ + 2ν t

JMJ −
λμ

)
= (

2ν t
J ′M ′

J +
λ′μ′ + t

J ′M ′
J −

λ′μ′
)∗(

2ν t
JMJ +
λμ + t

JMJ −
λμ

)
⇒ (

2ν t
J ′M ′

J −
λ′μ′ + t

J ′M ′
J +

λ′μ′
)∗(

2ν t
JMJ −
λμ + t

JMJ +
λμ

)
= t

J ′M ′
J ∗

νλ′μ′ t
JMJ

νλμ . (13)

Therefore, in order to distinguish between the contributions
of states with different parities one has to measure recoil
polarization along the x or y axes which are governed by
such bilinear expressions with ν ′ 
= ν.

As observables we will consider the differential cross sec-
tion and the recoil polarization for unpolarized and circularly
polarized photons. As shown in Ref. [12] the differential cross
section with circular beam asymmetry is given by

d5σ
(
P

γ
c

)
dφpdω1dω2d�γ

= dσ0

dφpdω1dω2d�γ

(
1 + P γ

c c
)
, (14)

where P
γ
c denotes the degree of circular polarization. The

unpolarized differential cross section is

dσ0

dφpdω1dω2d�γ

= T 0
00 , (15)

and the beam asymmetry for circular photon polarization

c T 0
00 = T c

00 , (16)

where

T
0/c

00 = c(W ) Re v
0/c
00;00 (17)

with c(W ) = M2
N/(4(2π )4(W 2 − M2

N )) as a kinematical
factor. Here the quantities vα

I ′M ′;IM with α ∈ {0, c} are
defined by

v0
I ′M ′;IM = 1

1 + δM0

∑
λ

uλλ
I ′M ′;IM, (18)

vc
I ′M ′;IM = 1

1 + δM0

∑
λ

λ uλλ
I ′M ′;IM , (19)
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where the uλ′λ
I ′M ′;IM contain bilinear combinations of the partial

wave amplitudes t
JMJ

νλμ , given in Eq. (5), according to

uλ′λ
I ′M ′;IM = (−)M Î ′Î

∑
jm′m

(2j + 1) D
j
m′m(Rγp)

×
∑

ν ′νμ′μ

(−1)ν
′
(

1
2

1
2 I ′

ν −ν ′ M ′

)(
1
2

1
2 I

μ −μ′ −M

)

×
∑

J ′M ′
J JMJ

(−1)−MJ

(
J ′ J j
M ′

J −MJ m′

)

×
(

J ′ J j
λ′ − μ′ μ − λ m

)
× t

J ′M ′
J

ν ′λ′μ′(ω1, ω2)∗ t
JMJ

νλμ (ω1, ω2) , (20)

with Rγp = (φγp, θγ ,−φγ ). These quantities have the follow-
ing symmetry property:

uλλ′
I ′M ′;IM = (−1)M

′+M
(
uλ′λ

I ′−M ′;I−M

)∗
. (21)

One should note that in Eqs. (18) and (19) only uλ′λ
I ′M ′;IM with

λ′ = λ appear. For the recoil polarization component Pxi
of

the outgoing nucleon one has

Pxi

d5σ
(
P

γ
c

)
dφpdω1dω2d�γ

= dσ0

dφpdω1dω2d�γ

(
P 0

xi
+ P γ

c P c
xi

)
(22)

with recoil polarizations for unpolarized beam and target

P 0
xi

T 0
00 = P

xi,0
00 , (23)

as well as beam asymmetries for circularly polarized photons

P c
xi

T 0
00 = P

xi,c
00 , (24)

where for α ∈ {0, c}
(P/Q)x,α

00 = −
√

2 c(W ) Re/Im w
α,+
11;00, (25)

(P/Q)y,α
00 = ∓

√
2 c(W ) Im/Re w

α,−
11;00, (26)

(P/Q)z,α00 = c(W ) Re/Im w
α,+
10;00, (27)

with

w
α,±
I ′M ′;IM = 1

2

(
eiM ′φp vα

I ′M ′;IM ± (−)M
′
e−iM ′φp vα

I ′−M ′;IM

)
.

(28)

This completes the formal part.

III. A TRUNCATED PARTIAL WAVE ANALYSIS

In this section we consider a method which allows one to
find for a reaction with n independent complex amplitudes
a complete subset of 2n − 1 independent observables. It was
developed in Refs. [8,9] and applied to the analysis of deuteron
electro- and photodisintegration, and we refer the reader to

this paper for more details. At first, in order to explain the key
points of the method, we consider a very simple mathematical
example. Given a two-dimensional real vector �x = {x1, x2},
whose components are called “amplitudes”, and two real
quadratic forms fk , called “observables”,

fk(�x) = 1

2

2∑
ij=1

xiA
k
ij xj , k = 1, 2 , (29)

where the two matrices Ak are symmetric, then the question is
under which conditions for the matrices one can determine
the amplitudes {x1, x2} from given values {f1, f2} of the
observables. In other words, what is the criterion, that the
set of quadratic equations (29) can be inverted (apart from
possible quadratic ambiguities).

For the moment being, let us assume that �x 0 = {x0
1 , x0

2} is
the required solution of Eq. (29) for given values {f1, f2}. A
necessary condition for the inversion is that in the neighbor-
hood of �x 0 the Jacobian of the transition {x1, x2} → {f1, f2}
is nonvanishing, i.e., using Eq. (29)

det

(
∂fk

∂xi

)
= det

(
A1

11x1 + A1
12x2 A2

11x1 + A2
12x2

A1
21x1 + A1

22x2 A2
21x1 + A2

22x2

)
= x2

1 det(Ã1) + x1x2 det(Ã2) + x2x1 det(Ã3)

+ x2
2 det(Ã4) 
= 0. (30)

Here the new matrices Ãi (i = 1, . . . , 4) are constructed
as all possible combinations of the columns of the initial
matrices Ak .

The condition in Eq. (30) now reads: if the Jacobian
det( ∂fk

∂xi
) is nonvanishing, then at least one of the determinants

det Ãi (i = 1, . . . , 4) is nonvanishing. This statement can be
reformulated as a sufficient condition for the degeneracy of
the transition {x1, x2} → {f1, f2}. Namely, if all determinants
det Ãi (i = 1, . . . , 4) vanish, than the set of quadratic equa-
tions (29) cannot be inverted.

Now we would like to apply the above criterion to the
reaction with two pseudoscalar mesons in the final state.
As already mentioned, we perform a truncated partial wave
analysis, where the amplitude is decomposed over the partial
wave amplitudes up to some maximum value of the total
angular momentum Jmax. As a set of observables for the
truncated partial wave analysis it is convenient to choose
real and imaginary parts of the coefficients appearing in the
expansion of the the functions uλ′λ

IM,I ′M ′ , defined in Eq. (20)
over the Wigner functions. Rewriting Eq. (20) as

uλ′λ
I ′M ′;IM =

2Jmax∑
j=0

∑
m′m

U
I ′M ′IM,λ′λ
jm′m (ω1, ω2)Dj

m′m(Rγp) , (31)

one obtains the observables U
I ′M ′IM,λ′λ
jm′m in terms of bilinear

combinations of the partial wave amplitudes t
JMJ

νλμ

U
I ′M ′IM,λ′λ
jm′m (ω1, ω2) = (−1)M Î ′Î (2j + 1)

∑
ν ′νμ′μ

(−1)ν
′
(

1
2

1
2 I ′

ν −ν ′ M ′

) (
1
2

1
2 I

μ −μ′ −M

)

×
∑

J ′M ′
J JMJ

(−1)−MJ

(
J ′ J j
M ′

J −MJ m′

) (
J ′ J j

λ′ − μ′ μ − λ m

)
t
J ′M ′

J

ν ′λ′μ′(ω1, ω2)∗ t
JMJ

νλμ (ω1, ω2). (32)
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The symmetry property of Eq. (21) leads to the following
symmetry of the observables for the interchange λ ↔ λ′

U
I ′M ′IM,λλ′
jm′m = (−1)M

′+M+m′+m
(
U

I ′−M ′I−M,λ′λ
j−m′−m

)∗
. (33)

For the discussion to follow it is convenient to introduce a
matrix notation by writing

U
I ′M ′IM,λ′λ
jm′m =

n∑
k′k=1

t∗k′U
(β,λ′λ)
k′k tk , (34)

where β = (I ′M ′; IM; jm′m) and k(′) = (J (′),M (′)
J , ν(′), μ(′))

enumerates the amplitudes. The maximum value n of the
indices k′ and k is equal to the total number of amplitudes
t
JMJ

νλμ for a given value of λ. The symmetry relation in Eq. (33)
leads to the matrix relation

U (I ′M ′;IM;jm′m,λ′λ)

= (−1)M
′+M+m′+m(U (I ′−M ′;I−M;j−m′−m,λλ′))T . (35)

Furthermore, using the property∑
m

(−1)j−m

(
j j J
m −m 0

)
=

√
2j + 1 δJ0 , (36)

one obtains for the trace∑
k

U
(β,λ′λ)
kk = δM ′0δM0δm′0δm,λ−λ′ Î ′Î (2j + 1)

×
∑
JMJ

(−1)−MJ

(
J J j

MJ −MJ 0

)

×
∑

ν

(−1)ν
(

1
2

1
2 I ′

ν −ν 0

)∑
μ

(
1
2

1
2 I

μ −μ 0

)

×
(

J J j
λ′ − μ μ − λ λ − λ′

)
= (2Jmax + 1)δI ′0δM ′0δI0δM0δj0δm′0δm0δλ′λ , (37)

which means that all matrices U (I ′M ′;IM;jm′m,λ′λ) have a
vanishing trace except for the diagonal matrix U (00;00;000;λλ).

The real and imaginary parts of the coefficients
U

I ′M ′IM,λ′λ
jm′m = f (β,λ′λ) + i g(β,λ′λ) may now be treated as ob-

servables for the truncated partial wave analysis. Again we
introduce a matrix representation by

f (β,λ′λ) = Re U
I ′M ′IM,λ′λ
jm′m = 1

2

n∑
k′k=1

t∗k′F
(β,λ′λ)
k′k tk, (38)

g(β,λ′λ) = Im U
I ′M ′IM,λ′λ
jm′m = 1

2i

n∑
k′k=1

t∗k′G
(β,λ′λ)
k′k tk, (39)

where the matrices F (β,λ′λ) and G(β,λ′λ) are respectively the
Hermitian and anti-Hermitian parts of the matrix U (β,λ′λ)

(symmetric and antisymmetric parts, respectively, in case of a
real matrix)

F (β,λ′λ) = U (β,λ′λ) + U (β,λ′λ) †, (40)

G(β,λ′λ) = U (β,λ′λ) − U (β,λ′λ) †. (41)

For the application of the criterion of Eq. (30) we introduce
real and imaginary parts of the amplitudes by

tj = xj + i yj , j = 1, . . . , n. (42)

Since an overall phase is arbitrary, we can take one of xj or yj

as zero. For definiteness we set yn = 0, so that the amplitude
tn is real. Then introducing the 2n − 1 dimension real vector
�z = {x1, x2, . . . , xn, y1, y2, . . . , yn−1}, the observables f (β,λ′λ)

and g(β,λ′λ) can be represented by the following real quadratic
forms:

f (β,λ′λ) =
2n−1∑
ij=1

ziA
(β,λ′λ)
ij zj , (43)

g(β,λ′λ) =
2n−1∑
ij=1

ziB
(β,λ′λ)
ij zj , (44)

where the (2n − 1) × (2n − 1) matrices A(β,λ′λ) and B(β,λ′λ)

are determined as

A(β,λ′λ) =
(

F (β,λ′λ) 0
0 F̂ (β,λ′λ)

)
, (45)

B(β,λ′λ) =
(

0 Ĝ(β,λ′λ)

−Ĝ(β,λ′λ)T 0

)
. (46)

Here, the matrix F̂ (β,λ′λ) is obtained from F (β,λ′λ) by canceling
the nth row and the nth column whereas the matrix Ĝ(β,λ′λ)

is obtained from G(β,λ′λ) by canceling the nth column. Using
the exact expressions of the matrices F/G(β,λ′λ) one can easily
construct the matrices A(β,λ′λ) and B(β,λ′λ) of Eqs. (45) and (46),
respectively.

Now we study in detail only the simplest case, when the
partial wave expansion of Eq. (1) is truncated at Jmax =
1/2. Because of angular momentum conservation, requiring
|λ − μ| = 1/2 (or μ = λ/2), the total number of amplitudes
t

1/2M
νλμ for each λ = ±1 is reduced to four. Furthermore, since

we exclude from the present consideration linear photon
polarization, only the coefficients with λ = λ′ appear in the
observables in Eqs. (14) and (22) according to Eqs. (18), (19),
and (28). Then the subsets of the amplitudes t

1/2M
νλμ correspond-

ing to λ = 1 and λ = −1 can be considered separately. This
is obvious from the fact that in this case the observables are
combinations either of the functions f/g(β,11) or f/g(β,−1−1).
Thus we list in Table I for both cases the quantum numbers
M and ν of the amplitudes tk ≡ t

1/2M
νλμ and their enumeration

k = 1, . . . , 4.
For the case Jmax = 1/2 one finds ten values for β =

(I ′M ′; 00; jm′m) which are listed and enumerated by nβ

from one to ten in Table II. One should note that in the

TABLE I. Enumeration k of the amplitudes tk ≡ t
1/2M
νλμ for both

λ-values. The initial nucleon helicity μ is fixed by the angular
momentum conservation as μ = λ/2.

k 1 2 3 4

M −1/2 −1/2 1/2 1/2
ν −1/2 1/2 −1/2 1/2
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TABLE II. Enumeration nβ of the observables f/g(nβ ,λλ) for β = (I ′M ′; 00; jm′m) and J = 1/2.

nβ 1 2 3 4 5 6 7 8 9 10

I ′M ′ 00 00 00 10 10 10 11 11 11 11
jm′m 000 110 100 000 110 100 000 110 100 1–10

absence of target orientation one always has (IM) = (00). The
corresponding linearly independent 4 × 4 matrices F (nβ ,λλ)

and G(nβ ,λλ) are listed in Eqs. (B1) and (B2) of Appendix B.
Those matrices G(nβ ,λλ) which are absent in this listing are
either zero or depend linearly on the matrices in Eqs. (B1)
and (B2) according to the symmetry of Eq. (35). For each
λ = ±1 the set {F (nβ,λλ), nβ = 1, . . . , 10} forms a basis in
the space of symmetric real 4 × 4 matrices as does the set
{G(nβ ,λλ), nβ = 2, 5, 7, 8, 9, 10} in the space of antisymmetric
real 4 × 4 matrices. Except for F (1,λλ), all matrices have a
vanishing trace.

Now, in order to find a complete set of observables (up
to already mentioned possible discrete ambiguities), we have
to construct at least one nonsingular 7 × 7 matrix using the
columns of the matrices A(nβ ,λλ) of Eq. (45) and B(nβ ,λλ) of
Eq. (46). Because of a rather simple form of the constituent
matrices F (nβ ,λλ) and G(nβ ,λλ) (see Appendix B), it is not
difficult to find different combinations of columns which
constitute nonsingular matrices. In fact one can select almost
any set of eight matrices A(nβ ,λλ) and B(nβ ,λλ). For example,
one may take the columns in the following combination:

1A(1,λ), 4A(2,λ), 3A(3,λ), 4A(4,λ),

3B(2,λ), 4A(5,λ), 1B(5,λ), 4A(6,λ), (47)

where the notation kA/B(nβ ,λ) means that one selects the kth
column from the matrix A/B(nβ ,λλ). Now using for the differ-
ential cross section the expressions in Eqs. (15) and (16) for
σ 0 and c, respectively, and for the z-component of the recoil
polarization P 0

z and P c
z in Eqs. (23) and (24), respectively, in

terms of f (nβ ,λλ) and g(nβ ,λλ), one finds the following set of 16
observables (see Table II for the enumeration f/g(nβ ,λλ)):

σ 0, c : f (1,λλ), f (2,λλ), f (3,λλ), g(2,λλ), λ = ±1,
(48)

P 0
z , P c

z : f (4,λλ), f (5,λλ), f (6,λλ), g(5,λλ), λ = ±1,

where the quantities f/g(nβ ,λλ) are determined by the Eqs. (38)
and (39). Out of this set one may select any 15 observables for a
complete set. As noted, such a set is only a ‘minimal’ complete
set of observables in the sense, that it generally determines the
required amplitudes up to possible discrete ambiguities, only.
In other words, if one solves the corresponding system of 15
bilinear equations, one finds in general more than one solution.

In order to resolve the remaining ambiguities and thus to
find a proper unique solution, additional information on other
observables is needed. For a proper selection of additional
observables we now apply the criterion formulated in Ref. [10].
Given a linear transformation of the amplitudes tk

tk → t ′k =
∑
k′k

Ukk′ tk′ , (49)

the criterion of Ref. [10] reads as follows: if there exists a
nontrivial transformation U with the property

U †OU = O (50)

for all matrices O ∈ {F (nβ,λ′λ),G(nβ ,λ′λ)} of the set of selected
observables, than for any solution {tk} of this set of observables,
the amplitudes {t ′k} form another solution of the same set, since

O =
∑
k′k

t∗k′Ok′ktk =
∑
k′k

t∗k′(U †OU )k′ktk =
∑
k′k

t ′∗k′ Ok′kt
′
k,

(51)

and thus there is a discrete ambiguity. As is mentioned in
Ref. [10] this criterion is in general not sufficient since it covers
only linear transformations tk → t ′k . Nevertheless, using this
criterion one can resolve at least some of the possible discrete
ambiguities, thus making the general problem easier to solve.

Since our minimal set includes the observable f (1,λλ) which
is proportional to the scalar product

f (1,λλ) =
∑
k′k

t∗k′F
(1,λλ)
k′k tk = 1

2

∑
k

|tk|2 , (52)

the transformations U should preserve the moduli of the
amplitudes. It is therefore natural to consider primarily unitary
n × n matrices. The property of Eq. (50) is then equivalent to
the commutativity of the matrix U with all matrices O of the
selected set. Application of the criterion in the present case
means, that we have to find a nontrivial transformation U in
the space of unitary 4 × 4 matrices which commutes with all
matrices F (nβ ,λ′λ) and G(nβ ,λ′λ) of the set listed in Eq. (48).

Such a matrix U is easily found among the diagonal unitary
matrices:

U =

⎛⎜⎝−1 · · ·
· 1 · ·
· · −1 ·
· · · 1

⎞⎟⎠ . (53)

At the same time, it does not commute with any one of the
matrices F/G(nβ ,λλ) for nβ = 7, . . . , 10 (see Table II). This
means that in order to resolve the ambiguity under discussion,
the minimal set in Eq. (48) should be enlarged by any of
the observables f/g(nβ ,λλ) belonging to the recoil polarization
components P 0

x and P c
x (or P 0

y and P c
y ).

It is interesting to note that according to Table I the matrix
of Eq. (53) corresponds to the transformation of Eq. (12)
which in turn is equivalent to the parity exchange of Eq. (11).
Therefore, the existence of the ambiguity determined by
the transformation U in Eq. (53) is directly related to our
previous conclusion about the necessity of measuring the recoil
polarization Px or Py in order to separate contributions from
states with different parities. In order to resolve this ambiguity
it is sufficient to enlarge the set of observables in Eq. (48), for
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example, by f (8,λλ). However, there exists another ambiguity
related to another nontrivial diagonal unitary transformation
commuting with this enlarged set, namely

Ũ =

⎛⎜⎝ e2iφ23 · · ·
· 1 · ·
· · e2iφ23 ·
· · · 1

⎞⎟⎠ , (54)

where φ23 = φ2 − φ3 is the relative phase of t2 and t3.
For the elimination of this last ambiguity one can sup-

plement the existing set by the observable g(8,λλ). It is easy
to prove that in the case of Jmax = 1/2 the resulting set of
observables turns out to be ‘fully’ complete. To show this we
firstly note that the magnitudes of all four amplitudes for λ = 1
is determined by the set of linear equations, corresponding to
the four diagonal matrices F (nβ ,11) with nβ = 1, 3, 4, 6 [see
Table II and Eq. (B1)]. Obviously, the determination of the
absolute squares |ti |2 from this set does not involve any discrete
ambiguity. Once the magnitudes are known, the relative phases
φ13 = φ3 − φ1 and φ24 = φ4 − φ2 may be unambiguously
determined using the four matrices F/G(2,11) and F/G(5,11).
This is the only information which may be obtained from the
minimal complete set. For an unambiguous determination of
all four amplitudes we only need one of the remaining phases
φ23 or φ14, since the second one may always be found from
the identity

φ13 − φ23 + φ24 − φ14 = 0. (55)

As may be seen from Eq. (B1), the relative phase φ23 can
be extracted from F/G(8,11). Obviously, the same procedure
can be applied to the subset λ = −1. Thus, in order to
unambiguously determine the amplitudes t

1/2MJ

νλμ the following
set of single and double polarization observables is sufficient

σ 0(I0) , c(I�) , P 0/c
z (Pz′ , P �

z′ ) , P 0/c
xi

(Px ′
i
, P �

x ′
i
) , (56)

where for xi one can take either x or y. In Eq. (56) we display
in parentheses the corresponding notation of Ref. [2] for the
observables.

One comment with respect to this result is in order. It
is clear that all matrix elements tk may be unambiguously
determined (apart from an overall phase) if the modulus of
one amplitude, say, for example, |t1|2, and all interference
terms t∗1 ti are known either directly or through a chain
t∗1 tk, t

∗
k tl, . . . , t

∗
mti , because such interference terms can be

expressed as linear combinations of observables. Such a
strategy has been discussed and employed in Ref. [9]. In this
respect one should note that our set, containing the absolute
values of all amplitudes is overdetermined. The knowledge of
|ti |2 for i > 1 is not needed in this case, since these can be
obtained from the obvious identity

|ti |2 = t∗i tj t∗k ti

t∗k tj
, (57)

for any j . However the structure of our set of equations does
not allow the determination of the magnitude of just only one
partial wave amplitude.

IV. CONCLUSION

The present paper is only the first step towards a systematic
approach to a model independent partial wave analysis
of a complete experiment for the photoproduction of two
pseudoscalar mesons on a nucleon. The scheme, presented
here, is based on a model independent formalism of a partial
wave expansion developed in Ref. [7].

The procedure for finding a complete set is based on two
criteria. The first one, originally developed for deuteron photo-
and electrodisintegration in Refs. [8,9] allows the elimination
of a set of 2n − 1 independent observables. To partially resolve
possible remaining discrete ambiguities a second criterion
from Ref. [10] is used. In the simplest case of truncating
the partial wave expansion at Jmax = 1/2 these two criteria
turn out to be sufficient for an unambiguous determination of
the eight amplitudes t

1/2MJ

νλμ . The corresponding complete set
includes beyond the unpolarized cross section, helicity beam
asymmetry, as well as recoil nucleon polarization along the z
and one of the x or y axes with and without circular polarization
of the photon beam. It is rather interesting, that the complete
set of observables for the reactions discussed here necessarily
includes recoil polarization in the plane orthogonal to the
quantization axis. Otherwise, the contributions of the partial
waves with the same total angular momentum J but different
parity cannot be separated. This property distinguishes the
present reaction from those with a single pseudoscalar meson
in the final state, where one can avoid to measure recoil
polarization as demonstrated in Refs. [4,6].

We are aware of the fact that the practical use of the
present results for Jmax = 1/2 is very limited, since waves
with J = 3/2 appear to be important in both ππ and πη
channels even in the low energy region. Furthermore, in the
case of truncation at Jmax = 1/2 the matrices F/G(nβ ,λλ) are
very simple and an increase of Jmax to 3/2 will probably require
not only quantitative but also some qualitative modifications of
the approach. Therefore, the generalization of this method to
higher partial waves will be considered in a forthcoming paper.

There is, however, an important conclusion, coming from
the present study. Namely, whereas a complete experiment
for a determination of the spin amplitudes of the reactions
considered here is quite complicated, because according to the
analysis of Ref. [2] it requires the measurement of a triple
polarization observable, the truncated partial wave analysis
seems to be doable, and thus further developments in this
direction may be very promising.
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APPENDIX A: PARITY SEPARATION

In order to separate the final states of positive parity from
those of negative parity corresponding to the parities of the
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intermediate nucleon resonances in the two-step process, we split OλLJ
M (lpjpmp)

OλLJ
M (lpjpmp) = OλLJ +

M (lpjpmp) + OλLJ −
M (lpjpmp) (A1)

according to the parity (−1)lp+lq of the final partial wave |p q; ((lp 1
2 )jplq)JM〉. Explicitly one finds

OλLJ ±
M (lpjpmp) = (−1)1+J Ĵ

4
√

2π

∑
lqmq

((−1)lp+lq ± 1)iL(−1)jp l̂p ĵp l̂q L̂ d
lq
0 mq

(π/2)

(
jp lq J
mp mq −M

)

×
〈
p q;

((
lp

1

2

)
jplq

)
J

∣∣∣∣|OλL|
∣∣∣∣1

2

〉
. (A2)

In the same way we split for ν = 1/2 the small t matrix

tJM
1/2λμ = tJM +

λμ + tJM −
λμ , (A3)

where the tJM ±
λμ are defined as in Eq. (5) with ν = 1/2 and OλLJ ±

M in place of OλLJ
M .

For ν = −1/2 one obtains

tJM
−1/2λμ(ω1, ω2) = (−1)

1
2

∑
lpjpmpL

(
lp

1
2 jp

0 1
2 − 1

2

) (
J L 1

2
μ − λ λ −μ

)
d

jp

1
2 mp

(π/2) ei(M−mp)φqp (−1)lp+mp OλLJ
M (lpjpmp), (A4)

where we have used the symmetry property of the 3j symbol and the property of the small d-matrices

d
j
m′m(π − β) = (−1)j−md

j
−m′m(β) (A5)

yielding for β = π/2

d
jp

− 1
2 mp

(π/2) = (−1)jp−mpd
jp

1
2 mp

(π/2). (A6)

From the same property follows

(−1)mq d
lq
0mq

(π/2) = (−1)lq d
lq
0mq

(π/2) , (A7)

and thus one obtains

(−1)mpd
lq
0mq

(π/2)

(
jp lq J
mp mq −M

)
= (−1)lq+Md

lq
0mq

(π/2)

(
jp lq J
mp mq −M

)
. (A8)

This leads to the relation

(−1)lp+mpOλLJ
M (lpjpmp) = (−1)M

(OλLJ +
M (lpjpmp) − OλLJ −

M (lpjpmp)
)
. (A9)

Inserting this into Eq. (A4) leads finally to

tJM
−1/2λμ = (−1)

1
2 +M

(
tJM +
λμ − tJM −

λμ

)
. (A10)

Therefore, the separate parity contributions are given by

tJM ±
λμ = 1

2

(
tJM
1/2λμ ± (−1)

1
2 +MtJM

−1/2λμ

)
. (A11)

APPENDIX B: LISTING OF THE MATRICES F/G(nβ ,λλ)

Here we list the ten symmetric and linearly independent matrices {F (nβ ,λλ), nβ = 1, . . . , 10} and the six asymmetric matrices
{G(nβ ,λλ), nβ = 2, 5, 7, 8, 9, 10} for λ = 1. One should consult Table II for the correspondence between β = (I ′M ′; 00; jm′m)
and the enumeration nβ :

F (1,11) = 1

2

⎛⎜⎝ 1 · · ·
· 1 · ·
· · 1 ·
· · · 1

⎞⎟⎠ , F (2,11) = − 1

2
√

2

⎛⎜⎝ · · 1 ·
· · · 1
1 · · ·
· 1 · ·

⎞⎟⎠ , F (3,11) = 1

2

⎛⎜⎝−1 · · ·
· −1 · ·
· · 1 ·
· · · 1

⎞⎟⎠ ,

F (4,11) = 1

2

⎛⎜⎝−1 · · ·
· 1 · ·
· · −1 ·
· · · 1

⎞⎟⎠ , F (5,11) = 1

2
√

2

⎛⎜⎝ · · 1 ·
· · · −1
1 · · ·
· −1 · ·

⎞⎟⎠ , F (6,11) = 1

2

⎛⎜⎝ 1 · · ·
· −1 · ·
· · −1 ·
· · · 1

⎞⎟⎠ ,
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F (7,11) = − 1

2
√

2

⎛⎜⎝ · 1 · ·
1 · · ·
· · · 1
· · 1 ·

⎞⎟⎠ , F (8,11) = 1

2

⎛⎜⎝ · · · ·
· · 1 ·
· 1 · ·
· · · ·

⎞⎟⎠ ,

(B1)

F (9,11) = 1

2
√

2

⎛⎜⎝ · 1 · ·
1 · · ·
· · · −1
· · −1 ·

⎞⎟⎠ , F (10,11) = −1

2

⎛⎜⎝ · · · 1
· · · ·
· · · ·
1 · · ·

⎞⎟⎠ ·

The linearly independent matrices G(nγ ,11) are

G(2,11) = 1

2
√

2

⎛⎜⎝ · · 1 ·
· · · 1

−1 · · ·
· −1 · ·

⎞⎟⎠ , G(5,11) = 1

2
√

2

⎛⎜⎝ · · −1 ·
· · · 1
1 · · ·
· −1 · ·

⎞⎟⎠ , G(7,11) = 1

2
√

2

⎛⎜⎝ · −1 · ·
1 · · ·
· · · −1
· · 1 ·

⎞⎟⎠ ,

(B2)

G(8,11) = 1

2

⎛⎜⎝ · · · ·
· · −1 ·
· 1 · ·
· · · ·

⎞⎟⎠ , G(9,11) = 1

2
√

2

⎛⎜⎝ · 1 · ·
−1 · · ·

· · · −1
· · 1 ·

⎞⎟⎠ , G(10,11) = 1

2

⎛⎜⎝ · · · −1
· · · ·
· · · ·
1 · · ·

⎞⎟⎠ .

For λ = −1 and I = M = 0 the matrices are related to the above ones by

F/G(I ′M ′;00;jm′m,−1−1) = (−1)j F/G(I ′M ′;00;jm′m,11). (B3)
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