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Improved half-life determination and 8-delayed y-ray spectroscopy for '*Ne decay
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The half-life of the superallowed Fermi 8% emitter '®Ne has been determined to £0.07% precision by
counting 1042 keV delayed y rays that follow approximately 8% of all § decays. The deduced half-life,
T1, = 1.6648 (11) s, includes a 0.7% correction that accounts for systematic losses associated with rate-dependent
detector pulse pileup that was determined using a recently developed y-ray photopeak-counting technique. This
result is a factor of two times more precise than, and in excellent agreement with, a previous lower-statistics mea-
surement that employed the same experimental setup. High-resolution -delayed y-ray spectroscopy results for
the relative y-ray intensities and B-decay branching ratios to excited states in the daughter '*F are also presented.
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I. INTRODUCTION

High-precision measurements of the fr values for super-
allowed Fermi B decays between 0% isobaric analog states
provide fundamental tests of the standard model description
of electroweak interactions. Following the application of
small corrections for radiative effects and isospin-symmetry
breaking, the resulting Fr values set strict limits on the
validity of the conserved-vector-current (CVC) hypothesis,
constrain the possibility for the existence of physics beyond the
standard model, and provide the most precise value for V,,4, the
up-down element of the Cabibbo-Kobayashi-Maskawa (CKM)
quark-mixing matrix [1]. Due to the high precision achieved
experimentally, particular attention has recently focused on
the theoretical nuclear-structure-dependent corrections that
account for isospin-symmetry breaking by Coulomb and
charge-dependent nuclear forces. In general, these §¢ correc-
tions for the set of the 13 most precise 7 = 1 superallowed
emitters range in size from approximately 0.2% for '°C
to 1.6% for "*Rb. However, their evaluation depends very
sensitively on both the theoretical model employed and the
size of the shell-model spaces chosen in the nuclear structure
calculations. These model dependencies can be significant
with calculated values ranging by factors of four or more
depending on the theoretical approach [2—7]. The impact of
these model uncertainties on the evaluation of the world-
average Ft value and V,, from the set of 13 most precisely
measured superallowed decays was recently described in
Ref. [8].
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Experimental insight into the relative accuracy of these
theoretical calculations can be obtained by studying specific
decays where the corrections are expected to be large, where
nuclear-structure and isospin effects may result in a relative
enhancement for a particular case, or where theoretical
predictions exhibit the greatest variation [9-15]. The set of
T, = —1 superallowed decays are particularly attractive as
the isospin-symmetry breaking corrections are, in general,
larger than the 7, =0 cases due to the influence of the
additional proton that serves to increase the radial-overlap
mismatch between the proton and neutron wave functions
in the parent and daughter nuclei, respectively. However,
high-precision measurements of the f't values for these decays
are significantly more challenging than for the 7, = 0 cases.
The parent nuclei are further from stability and production
cross sections (beam intensities) are significantly reduced. The
daughter nuclei (the 7, = 0 emitters) are also unstable and will
subsequently § decay, giving rise to unwanted but unavoidable
time-dependent backgrounds. In addition, several low-lying
T = 0 states in the daughters can be strongly fed by Gamow-
Teller transitions. If the isobaric-analog state is an excited state
in the daughter, determination of the superallowed branching
ratio requires a very precise knowledge of the absolute y -ray
detection efficiency. This provides a significant experimental
challenge that is evidenced by the absence of high-precision
ft values for the majority of the 7, = —1 emitters. How-
ever, given the importance of these particular transitions for
potentially discriminating between theoretical corrections of
isospin-symmetry breaking, exhaustive detector calibrations
using specialized sources and short-lived radioactive beams
[16] as well as extensive simulation work have demonstrated
that this challenge can, to a large extent, be overcome. A
branching-ratio measurement performed for Mg achieved
an overall precision of +0.15% [17] and additional cases such
as '8Ne, 20Si, 3*Ar, and *8Ca will also be feasible in the near
future using similar techniques [18].
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FIG. 1. Decay-level scheme of '®Ne.

In the present work, we focus on the 7, = —1 superallowed
decay of '®Ne to its isobaric analog, a 0 excited state located
1042 keV above the 17 ground state in the daughter '*F.
The decay-level scheme is shown in Fig. 1. This decay is
of particular interest for investigating theoretical descriptions
of isospin-symmetry breaking as model predictions exhibit
some of the largest differences than for any of the other
cases. Calculated ¢ corrections range from 0.27%, obtained
using a self-consistent relativistic Hartree and Hartree-Fock
approach based on the random-phase approximation [4], to
1.41% that was recently calculated using isospin and angular-
momentum projected nuclear density functional theory (DFT)
[6,7]. The present standard in this field is the set of shell-model
calculations performed by Towner and Hardy whose radial
wave functions are calculated using a Woods-Saxon mean-field
parametrization constrained to experimental binding energies
and nuclear charge radii. These calculations yield an interme-
diate value of 0.57% [2]. The same set of calculations were
repeated using Hartree-Fock wave functions with different
Skyrme interactions and yielded 0.36% [1].

One reason for the large variation in the calculated
8¢ corrections for this particular case arises from shape
differences between the '8Ne parent and the '®F daughter.
Several low-lying intruder states are known in '®F, including a
deformed 0~ state at 1081 keV that is only 39 keV above the 0
analog state of interest here. In addition, the second 0" excited
state at 4.75 MeV is located only 3.71 MeV above the 0 state.
Configuration mixing between the spherical two-particle 0"
state and the four-particle, two-hole 0% intruder is enhanced
by the relatively small energy difference between these states.
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The precise degree of mixing between these configurations is
difficult to obtain with the shell model and calculations relying
on effective interactions [19] while shape differences between
the spherical parent and deformed daughter nuclei are known
to increase the size of the §¢ corrections obtained with the
DFT approach [6,7].

The ft value for the superallowed decay of '*Ne, fr =
2919 (79) s [1], is not yet sufficiently precise to be included
in the survey of the 13 highest-precision cases. The fr
value characterizes any S-decay transition and is obtained
experimentally from three quantities. The Q value, which
is required to calculate the phase-space integral f, has
been established to £0.02% precision through a '8Ne mass
measurement that employed a Penning-trap mass spectrometer
[20] in addition to the several concordant measurements of
the mass of the daughter '®F and the 1042 keV excitation
energy of the 0" analog state [21,22]. The half-life of '®Ne,
Ti/» = 1.6656 (19) s, was previously determined by our group
to £0.11% precision [23] from an experiment that used the first
online beams from a prototype electron-cyclotron-resonance
(ECR) ion source developed at TRIUMF’s Isotope Separator
and Accelerator (ISAC) facility. The absolute branching ratio
to the 01 analog state, B = 7.70(21)%, was last measured
nearly 40 years ago [24] and is currently by far the limiting
factor in extracting a precision ft value for this decay.

In anticipation of a high-precision branching-ratio measure-
ment, the present study aims to improve upon the previously
reported half-life measurement and reduce its overall uncer-
tainty by a factor of two to a level that will be negligible when
compared to the expected precision of ~0.2% that is likely to
be achieved in a future measurement of the branching ratio. The
half-life measurement follows our previous work [23,25] and
relies on a technique that was developed to correct y-ray gated
decay activity curves for rate-dependent detector pulse pileup
effects. Several long implantation activity curves were also
measured over the course of the present experiment, which
have permitted high-statistics measurements of the relative
branching ratios and y-ray yields for various excited states
in '8F populated in the B decay. The present article begins
with a description of the experimental setup, describes the
high-resolution 8-delayed y -ray spectroscopy analysis, which
was also valuable for assessing the beam purity, and concludes
with the improved half-life measurement for '®Ne.

II. EXPERIMENT

The experiment was performed at the TRIUMF-ISAC
radioactive ion-beam facility located in Vancouver, Canada.
Radioactive beams of '®Ne were produced from spallation
reactions on a thick SiC target induced by a beam of
500 MeV protons, with an average intensity of 70 wA,
delivered by TRIUMF’s main cyclotron. Reaction products
released from the target were subsequently ionized in a forced
electron beam-induced arc-discharge (FEBIAD) ion source
coupled directly to the target [26]. Singly ionized, low-energy
beams were extracted from the ion source at 60 keV, mass
analyzed through a Am/m = 1/1000 mass separator, and
sent to the experimental hall. In the present experiment, the
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FIG. 2. (Color online) (a) Singles y-ray spectrum for '*Ne decay for all data collected with amplifier shaping times of 2.0 us. A time gate
was applied that includes the duration of the beam on time (2 min, 5 s, or 2.5 s) plus 15 s (9 half-lives of '8Ne) after the beam was turned off.
Natural room background lines are indicated. A total of 6 x 10° counts were obtained in the 1042 keV photopeak. In panels (b) and (c) the 8-y
coincidence spectrum is also shown (with an arbitrary normalization factor) to highlight the weak first-forbidden 0% to 0~ decay branch to the
1081 keV state and the high-energy region near 1701 keV, respectively.

beam intensity of '®Ne varied between 8 x 10° ions/s and
2 x 10%ions/s. This was between two to five times higher than
our previous experiment [23] and is primarily due to the higher
proton current used on target in the present study (only 30 uA
were used previously). A long-lived beam contaminant of 'F
(T1/> = 109.7 min [27]) was also present in the mass-separated
A = 18 beam with an average intensity of 2.5 x 107 ions/s.
Analysis of the B-coincident and y-ray singles spectra (Fig. 2)
and the time-dependent y-ray gated activity curves (Fig. 3)
did not provide any evidence for the presence of additional
contaminants in statistically significant quantities. A summary
of the beam intensities and purities that were delivered in both
experiments are compared in Table I.

Low-energy (60 keV) beams of '®Ne were implanted under
vacuum into a movable mylar-backed aluminum tape at the
mutual center of the Scintillating Electron-Positron Tagging
Array (SCEPTAR) [28] and the 87 y-ray spectrometer [29,30].
The 87 is a spherical array consisting of 20 coaxial high-purity
germanium (HPGe) detectors and covers ~13% of the 47
solid angle. The absolute photopeak efficiency of the array is
approximately 1.0% for 1.3 MeV photons. The back and sides
of each HPGe crystal are surrounded by bismuth-germanate
(BGO) scintillators that can be used for Compton suppression
and their front faces are collimated with 2.54-cm-thick heavy

metal (tungsten alloy) that prevents y rays from directly
striking the BGO. The collimators are covered with 1-cm-thick
plastic (Delrin) absorbers that are used to minimize the
amount of bremsstrahlung radiation produced from energetic
B particles from reaching the detectors.

Preamplifier output signals from the HPGe detectors were
split into two branches for energy and timing purposes,
respectively. The energy signals were amplified using Ortec
572 spectroscopy amplifiers, and shaping times were varied
between 0.5, 1.0, and 2.0 us throughout both experiments.
Analog output signals were then digitized using Ortec AD114
14-bit peak-sensing analog-to-digital convertors (ADCs). The
inhibit output signals, generated from an internal pileup
rejection circuit incorporated in the amplifiers, were used in
the subsequent analysis for performing detector pulse pileup
corrections. An adjustable front-panel potentiometer was used
to manually set the threshold of the gated baseline restore as
close as possible to the noise level. The second set of HPGe
preamplifier outputs were sent to a timing-filter amplifier
and were discriminated using Ortec 583b constant-fraction
discriminators (CFDs). The fast outputs of the CFDs were
used to generate both the trigger logic and the HPGe timing
relative to the delayed master trigger using 32-channel LeCroy
3377 multihit time-to-digital convertors (TDCs) operated in
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FIG. 3. (Color online) (a) Activity curve for 511 keV y-ray gated
events with corrections for dead time and pulse pileup applied. The
contributions to the best-fit activity curve are shown for '8F, ®Ne,
and an overall constant background. The '8F activity curve includes
contributions from both ions delivered in the beam and those produced
following the decay of implanted '®Ne ions. (b) Activity curve for
1042 keV y-ray gated events that arise exclusively from '*Ne decay.

common-stop mode. Additional TDC modules were used for
the 20 BGO timing signals for optional Compton suppression
to be performed in software (not used in the present analysis
since the rate-dependent probability of false vetoes are known
to bias the resulting half-life determination [25]) and for
the 20 pileup detection inhibit signals from the spectroscopy

TABLE I. Comparison between A = 18 mass-separated beam
intensities / for singly ionized '8Ne, '*F, and '’F isotopes from two
separate experiments that used a FEBIAD (F) ion source (present
work) and an ECR (E) ion source (Ref. [23]). No evidence for I"F
molecular contamination was observed from the FEBIAD source.
Values represent upper limits at 90% confidence.

Isotope Ir Ir Ratio
species (ions/s) (ions/s) (F/E)
8 Ne 4.0 x 10° 8.5 x 10° 2.1
18R 1.5 x 10° 2.5 x 107 16.3
TR 2.1 x 10* <3.8 x 10° <0.2
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amplifiers for performing the pileup corrections. If one or more
hits were recorded in the pileup TDC of a particular detector
and if there was a corresponding time in the germanium TDC
for that same detector, the event was considered to be piled
up. Analysis of the time-dependent ratios of piled-up events to
the total number of trigger events were then used to quantify
and apply the pileup corrections to the y-ray gated decay data
according the method described in Ref. [25].

The 20 plastic (BC-404) scintillators of SCEPTAR each
have a thickness of 1.6 mm and were arranged into four pen-
tagonal rings so that one plastic was positioned directly in front
of each of the 20 HPGe detectors. The detectors were mounted
inside a spherical plastic (Delrin) implantation chamber that
housed the moving tape and surrounded the beam implantation
site. The entire ensemble was under vacuum during beam
delivery. Each scintillator was positioned approximately 3 cm
from the beam collection point. The solid angle coverage of
the entire array was ~80%. The 20 scintillators were optically
coupled to plastic (lucite) light guides that were used to
transport the scintillation light to photomultiplier tubes located
outside the array. Signals from the photomultiplier tubes
were amplified with Phillips 776 fast amplifiers. One of the
outputs of the fast amplifiers were delayed and digitized using
12-bit LeCroy 4300 fast-encoding readout amplifier (FERA)
charge-to-digital convertors (QDCs). The second outputs were
discriminated using Ortec 935 CFDs and were sent to LeCroy
3377 TDC:s for timing. Additional signals from the CFDs were
used to generate the trigger logic and were multiscaled using
a 32-channel scalar in VME.

Event-by-event 8- and y-ray trigger data generated from
the SCEPTAR and the 8w data streams were individually
time stamped to 100 ns precision using two LeCroy 2367
universal logic modules. The time standard for the data
acquisition was a 10 MHz = 0.1 Hz dual-ovenized oscillator
from Stanford Research Systems. The trigger was selected in
software between singles events from one or both streams (with
a rate-divided option), and/or hardware coincidences between
the two. Using the event-by-event time-stamp information,
B-y coincidences were reconstructed in the offline analysis.
Dead times of the data acquisition were also determined on an
event-by-event basis using the time-stamp information. Their
values could also be specified and fixed for a nonextendible
duration for every trigger event. In both experiments, dead
times were periodically varied on a run-by-run basis between
a “variable” setting (measured event by event) and fixed and
nonextendible durations of either 27 or 40 us, which were both
chosen to be larger than the maximum time required by the
data acquisition for processing any single event.

A. Delayed y-ray spectroscopy

Data were collected in cycles that consisted of a period
t, of background counting, a beam-on-tape collection period
t., and a beam-off (decay) measurement interval of duration
t;. The tape was then moved a distance of 1.5 m to remove
any residual and daughter activities from the collection and
counting position to a shielded tape storage box outside the
array. All cycling times and tape movements were controlled
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by the data acquisition with a Jorway 221 timing and sequence
module. Implantation and decay cycles with a total duration
of t, +1t. +t; were optimized depending on the particular
beam of interest, the half-life of its decay, and the half-lives of
the contaminants and daughters (if present). The moving-tape
collector system was necessary in the present study to remove
the long-lived '®F activity that was delivered in the beam itself
and was produced as the daughter of 'Ne decay.

Several long cycles, each with a total duration of 171 s,
were recorded to search for and quantify potential beam
contaminants in addition to the known '8F daughter activity.
All of these cycles had a time structure of 10-120-40-1 s
corresponding to #, t., 4, and the tape movement, respectively.
The trigger for the data acquisition, which was running
continuously throughout each cycle, was generated from -y
coincidence events, or y-ray singles events detected in the 87
spectrometer, or § singles events detected in SCEPTAR with a
scale-down factor of 100 applied. The maximum instantaneous
rates that were observed in SCEPTAR and the 87 spectrometer
were 6 x 10° Hz and 3 x 10* Hz, respectively.

Singles and B-coincident y-ray spectra are presented in
Fig. 2(a) for all data collected in the second experiment
with amplifier shaping times of 2 us. These spectra include
the data that were obtained with the shorter cycling times
optimized for the half-life measurement described below in
Sec. III. A time gate has been applied to select only those
y rays collected between the start of the beam-on period
and up to 15 s (~9 half-lives of '®Ne) after the beam was
turned off. All delayed y rays observed to follow '8Ne decay:
659 keV, 1042 keV, 1081 keV, and 1701 keV, are known
from previous studies [31-33]. All other y-ray transitions
observed in Fig. 2(a) originate from summing effects, are
single- or double-escape events from higher-energy y rays,
or are known room background. In Fig. 2(b), the 1081 keV
y ray that follows the weakly fed first-forbidden 0t — 0~
B-decay branch is highlighted. This transition has been studied
previously to quantify pion-exchange contributions to the
nuclear axial current and to extract F, the strength of the weak
parity-nonconserving (PNC) pion-exchange nucleon-nucleon
interaction [31,34]. Requiring a 8-y coincidence clearly shows
that the 1081 keV y ray is correlated with the 8 activity
recorded in SCEPTAR. The region around the 1701 keV
y ray is shown in Fig. 2(c). With the exception of the
511 keV produced from all positron decays, no evidence for
any additional beam contaminants was found in the y-ray
spectra.

Relative y-ray intensities and B-decay branching ratios
were deduced from the fitted peak areas of the y-ray singles
spectrum of Fig. 2(a) and the relative detection efficiencies
of the 87 spectrometer that were obtained using standard
y-ray calibration sources of Co, '3*Ba, and '>>Eu. Results
from the present work are compared to previous experiments
in Tables II and III for the relative y-ray intensities and
decay branching ratios, respectively. In general there is very
good agreement between our results and those of previous
studies. The improved precision in the relative intensity of
the 659 keV y-ray transition will improve the correction for
y-ray feeding into the 1042 keV level in the evaluation of
the absolute superallowed branching ratio [1]. The calculation
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TABLE II. Relative y-ray intensities / deduced in the present
work and comparison to previous results.

E, I,/Lisy  Ref.[24]  Ref.[32] Ref. [33]
(keV) (%) (%) (%) (%)
620 <0.003*

659 1.733(12) 2.1 (3) 1.69 (4) 1.72(5)
1042 100 100 100 100
1081  0.0288(27) 0.0297(22)  0.0289 (26)
1701 0.659(7)  071(17)  0.646(21)  0.687(13)

*Upper limit with 90% confidence. See text for details.

of the branching ratio to the 1081 keV level includes the
possibility that this state could, in principle, be fed by a
620 keV y ray originating from the 1701 keV level above
(see Fig. 1). In previous studies of '®Ne decay [32,33], the
value of (0.1 £0.1)% was adopted for the y-ray branching
ratio for this possible 620 keV transition from the upper limit
of <0.2% previously established in nucleon-transfer reaction
studies [35]. Using the present data, a more stringent upper
limit of <0.12% at 90% confidence was established for this
transitions from the analysis of the background-subtracted y -y
coincidence spectrum gated on the 1081 keV y ray. This
corresponds to a relative intensity of <0.003% with respect
to the 1042 keV y ray as shown in Table II. In the calculations
of the branching ratios for the present work (Table III), we have
therefore adopted the value (0.06 £ 0.06)% for this possible
y-ray feeding into the 1081 keV level.

B. Beam composition and purity

In the first ¥ Ne experiment, contamination from I7F was
observed in the A = 18 mass-separated beam with an average
intensity of 2.1 x 10*ions/s. This isotope (Ty, = 64.55[36])
was produced in the target and transported from the ECR ion
source as a singly ionized HF molecule. While neither !’F nor
18F positron decays give rise to any characteristic y rays, their
relative amounts can be determined from the time-dependent
activity of the 511 keV y ray that follows positron annihilation.
A typical activity curve for 511-keV-gated y -ray singles events
is shown in Fig. 3(a) for an individual run consisting of 24
cycles (~1 hour of data collection). These data were dead-
time and pileup corrected according to the methods described
below.

Fits to the grown-in and decay activity were used to deduce
the individual contributions of each beam constituent to the
total measured activity curve and to determine the overall

TABLE III. Relative -decay branching ratios B deduced in the
present work and comparison to previous results.

Elevel V& B/Bl()42 Ref. [24] Ref. [32] Ref. [33]
(keV) (%) (%) (%) (%)
1042 0" 100 100 100 100
1081 0~ 0.0278(31) 0.0278(33)  0.0270(35)
1701 1t 2.436(14) 2.87(35) 2.376(46) 2.449 (53)
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TABLEIV. Initial activities R and sample purities p for the '®Ne,
18F, and '"F beam constituents following implantation times of either
5sor120s. Values were calculated from the beam intensities provided
in Table I and the half-lives of the particular isotopes. No evidence for
17F molecular contamination was observed from the FEBIAD source
and quoted values represent upper limits at 90% confidence.

Isotope Rix D120 Rs Ds

species (decays/s) (%) (decays/s) (%)
3Ne 8.5 x 10° 72.7 7.4 x 10° 98.22
8F 3.2 x 10° 27.0 1.3 x 10* 1.75
g <2.8 x 10° <0.24 <2.0 x 10? <0.03

beam composition and purity. Beam intensities were treated
as free parameters while beam-on and beam-off times and the
half-lives of each isotope (!"F, '®F, and '®Ne) were fixed at their
nominal values. The additional '8F daughter activity arising
from the decay of implanted '®Ne ions was also included
in the fit. This contribution does not require any additional
free parameters because it is directly obtained from the '*Ne
activity. An overall constant background was also included
with its value constrained using the 10 s of data collection
before the beam was turned on.

The best overall fit to the 511-keV-gated y-ray activity
curve is consistent with there being no '’F beam contamina-
tion. The individual contributions from '*Ne and '®F to the total
measured activity obtained from a two-component fit (with the
17F beam intensity fixed to 0) are overlayed for comparison in
Fig. 3(a). From this analysis, the beam intensities of '*Ne and
8F were deduced to be 8.5 x 10° ions/s and 2.5 x 107 ions/s,
respectively. Addition of a third component to the fit function,
with the !"F half-life fixed at its nominal value and its intensity
treated as a free parameter, yielded a nonphysical (negative)
value of (—1.1 & 0.5) x 10* ions/s. This result was used to set
an upper limit on the '”F beam intensity at <3.8 x 10* ions/s
with 90% confidence. Compared to the first experiment with
the ECR, production of H'/F molecules with the FEBIAD
ion source was suppressed by at least an order of magnitude
relative to 'Ne (see Table I). The higher plasma temperature
in the FEBIAD appears to be sufficient to dissociate HF
molecules or prevent their formation. Beam intensities from
both experiments are compared in Table I.

Although significant amounts of '3F were present in the
beam and created from the decay of '®Ne, its long half-life
ensured that the unwanted § and 511 keV y-ray activities
produced from their decays were relatively small compared
to the '8Ne activity. Assuming beam implantation times of
either 5 s or 120 s that are relevant to the present work, the
individual contributions of each of these species to the total
activity is shown in Table IV. With a beam-on time of only 5 s
for example, 98.2% of the total activity is from '8Ne decay.

The sample purity of the activity can be greatly improved by
selecting y rays that uniquely follow the decay of the isotope(s)
of interest. The activity spectrum for the 1042 keV y rays that
follow ~8% of all '8Ne decays is shown in Fig. 3(b). It should
be emphasized that both spectra in Fig. 3 were obtained from
the same data. The only difference is the y-ray gate that has
been applied. This degree of selectivity to achieve high-purity
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decay activity curves is one of the main motivations for using
delayed y rays to determine S-decay half-lives with high
precision and motivated the need for a technique, which
has now been developed, to accurately correct for pileup
losses associated with y-ray detection [25]. Small and time-
dependent backgrounds underneath the 1042 keV photopeak
could, in principle, arise due to Compton scattering from
higher-energy y-rays and inner-bremsstrahlung produced
from electron-capture processes. For the only measured
contaminant, '8F, all of these processes are energetically
forbidden given that the electron-capture Q value is only
1655 keV [21]. While these processes would be energetically
allowed for the case of !’F, the activity from the decay of this
isotope was already undetectable in the 511 keV y-ray gated
data obtained from long implantation times. Employing short
beam-on times and gating on 1042 keV y rays would imply that
this possibility can be safely neglected. A fit to the 1042 keV
y -ray-gated activity spectrum of Fig. 3(b) that considered only
8Ne decay and a constant background provides an excellent
overall description of these data. The half-life deduced
from this fit, 7y, = 1.670(9) s, is also in good agreement
with the average 8Ne half-life T; 2 =1.6670(19) s [1].
We therefore conclude that the 1042 keV y-ray-energy
gate can be used to provide '8Ne decay-activity curves
with negligible time-dependent contributions from the
decays of the measured in-beam contaminants in the present
experiment.

III. HALF-LIFE MEASUREMENT

In the first experiment, the half-life of '®Ne was deduced
from a total of 4254 implantation-and-decay cycles with an av-
erage beam intensity of ~4 x 10’ ions/s. The overall precision
obtained in the resulting half-life, 71, = 1.6656 (19) s, was
entirely limited by the &£ 0.0017 s statistical uncertainty [23].
A small systematic uncertainty of £0.0009 s was added in
quadrature that was estimated from the variation of the half-
lives obtained at each individual amplifier shaping-time setting
and the estimated systematic uncertainty of 4% of the pileup
correction that has been conservatively assigned to the correc-
tion method itself [25]. In the second experiment, an additional
3192 decay cycles were obtained over 54 experimental runs
using the higher-intensity '®Ne beam provided by the FEBIAD
ion source. The statistical precision in the half-life for this
new data set is +0.0009 s, which is approximately a factor of
two times more precise. Given that the experimental apparatus
and the analysis methods are identical for the two data sets,
the systematic uncertainties (if derived independently) cannot
be trivially combined at the end. However, since the previous
result was limited by statistics rather than systematic effects,
the 15 runs from the original data set have been reanalyzed with
the 54 runs of the present data set. A systematic uncertainty
is then deduced from the combined data set. The improved
half-life of '®Ne presented below therefore supersedes, and
should not be averaged with, the previously published value
in Ref. [23].

Data were collected with cycle times of 5-#,-40-1 s where
the beam-on time was either #, =2.5 s (16 runs), 5.0 s
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FIG. 4. (Color online) Typical pileup probability curves and resulting best fits for single runs with amplifier shaping times of (a) 2.0 us,
(b) 1.0 ws, and (c) 0.5 us. The dashed lines are the corrections applied to the y-ray-gated data. See text for details.

(38 runs), or 7.0 s (15 runs). The decay time of ¢; =40 s,
or approximately 24 half-lives of '®Ne, was chosen to be
long enough to ensure that the 'Ne activity had sufficient
time to decay to a negligible level so that the overall constant
background (a free fit parameter) could be adequately con-
strained. A total of 7446 cycles were collected under several
conditions that were varied throughout the two experiments
on a run-by-run basis. As described above, amplifier shaping
times were varied between 0.5 us, 1.0 us, and 2.0 us and the
dead time of the data acquisition was chosen to be “variable”
(measured event-by-event using the time stamp of the data
acquisition), 27 us fixed and nonextendible, or 40 us fixed
and nonextendible. Dead-time corrections varied between 10%
and 50% at the start of the decay activity.

The half-life was determined by selecting events in which
the 1042 keV photopeak was detected in any of the 20 HPGe
detectors of the 8w spectrometer. After applying detector
energy calibrations, the widths of the y-ray-energy gates used
in the analysis were common for every detector at a particular
amplifier shaping time. Energy gates were chosen to include
the entire photopeak plus one channel of background on either
side. This corresponded to gate widths of 14, 18, and 26 keV
for the 2.0 us, 1.0 us, and 0.5 us shaping times, respectively.
For each run, a minimum threshold was applied to the number
of 1042 keV counts collected in each cycle in order to remove
those cycles where the beam delivery was interrupted. The
final cycle in every run was also rejected from the analysis as
the acquisition was often stopped before it was completed.
These selection criteria removed a total of 294 cycles, or
approximately 4% of the 7446 total cycles collected over the
course of the two separate experiments.

Decay data gated on the 1042 keV y ray were dead-time
and pileup corrected on a event-by-event basis using the
procedures described in Ref. [25]. In the high-rate data set,
pileup corrections at the start of the decay activity ranged
between approximately 2%, 4%, or 6% for the amplifier
shaping times of 0.5 us, 1.0 us, or 2.0 us, respectively. The
pileup corrections of 6% at the start of the decay activity
for the 2 s shaping times are comparable to the largest
corrections that were applied in Ref. [25] and are significantly
larger than the corrections required in the previous '*Ne
half-life measurement [23]. In Fig. 4, a comparison between

sample time-dependent pileup probability distributions that
were used to correct the y-ray-gated decay data on a bin-by-bin
basis, are shown for three separate runs collected at the three
different shaping times. These distributions were obtained
from the time-dependent ratio between all piled-up events
to the total number of trigger events for each run. No y-ray
gate was applied to these data since, by definition, energy
information is lost for true pileup events. Pileup probabilities
decrease approximately exponentially with a half-life that is
very nearly half that of '®Ne (~0.8 s) because true pulse pileup
requires at least two y rays. In all cases, a minimum appears
around 8 s and arises from a low rate of saturating events
(cosmic rays) that have a very high probability for individually
triggering the pileup circuitry of the amplifiers. These events
dominate the shape of the pileup probability distributions
at late times where the probability for two or more y-ray
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FIG. 5. (Color online) (a) Decay activity for 1042 keV y-ray
photopeak events for a single run consisting of 75 decay cycles.
(b) Portion of the y-ray singles spectrum and the 1042 keV gate
(dashed lines) used in the analysis and (c) fit residuals.
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FIG. 6. (Color online) Half-life of '*Ne determined for each of
the 69 experimental runs. The average half-life and its statistical
uncertainty 7, = 1.6648 (8) s are indicated by the solid and dashed
lines, respectively.

pileup events in the background is extremely low. With longer
shaping times, the probability for true pulse pileup of two
or more events is larger and thus the minima are suppressed
with increasing shaping time. In the half-life analysis, this
cosmic-ray contribution must be subtracted from the total fit
to obtain the time-dependent pileup corrections (dashed lines
in Fig. 4) that should be applied to the y -ray-gated decay data,
as described in detail in Ref. [25].

Following the corrections for dead-time and pileup losses,
the half-life of 'SNe was determined by fitting the sum
of the individual cycles in each run using a maximum-
likelihood x? minimization routine that has been described
previously [37,38]. The fit function considered only the
exponential decay of '8Ne because additional sources of
time-dependent decay activity in the 1042 keV y-ray-energy
gate were considered to be negligible from the discussion
above in Sec. II B. The fit function included free parameters
for the initial activity of '®Ne, its half-life, and an overall
constant background. A sample decay curve from 1042 keV
y-ray -gated events that consists of 75 cycles is shown in
Fig. 5(a) with the corresponding best-fit and reduced x>
value. The relevant portion of the y-ray spectrum with the
y-ray-energy gate that was applied in the analysis is shown
in Fig. 5(b). The bin-by-bin fit residuals are provided in
Fig. 5(c). The statistical precision from an individual run was
approximately 0.25%.

The half-lives of '8Ne deduced from each of the 69
experimental runs that were collected over the 2 experiments
are presented in Fig. 6. Treating each run as independent
measurements, the average half-life and its statistical un-
certainty is 77, = 1.6648 (8) s, with a reduced X2 value
of 1.16. This result is a factor of two times more precise
than, and in excellent agreement with, the previous value
T1/» = 1.6656 (17) s obtained from only the first experiment
(the first 15 runs in Fig. 6), as reported in Ref. [23].
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FIG. 7. Half-life of '®Ne versus the number of leading channels
removed (1 channel = 0.1 s). The deduced half-life is compared with
and without the corrections applied for detector pulse pileup out to
5.0 s or three half-lives of '8Ne. The statistical uncertainty (1c) of
the pileup-corrected half-life when no channels have been removed
is overlayed for comparison.

A. Systematic uncertainties

Searches for possible sources of rate-dependent systematic
effects that could bias the high-precision half-life determina-
tion included a leading-channel removal analysis where the
half-life of '®Ne was deduced as data collected at the highest
rates were incrementally removed. This analysis is presented
in Fig. 7 for the entire data set when the pileup correction
has been applied to the data (closed circles) and when it has
been neglected (open circles). Each data point represents the
half-life of '®Ne obtained from the weighted average of the
entire 69 runs when data are removed from the start of the decay
activity curve for each run in steps of 5 channels (0.5 s) upto a
total of 50 channels (5.0 s) or three half-lives of '*Ne. When the
pileup corrections are not included, there is a clear correlation
between the deduced half-life and the counting rate that is
absent once the pileup corrections have been applied to the
data. After removing the first ~3.5 s (two half-lives of 1$Ne),
the corrected and uncorrected half-lives agree, indicating that
counting rates are sufficiently low at this time that the pileup
corrections are negligible. At the start of the decay activity, the
18Ne half-life was deduced to be T/, = 1.6648 (8) s from the
data with the pileup correction applied and 7, = 1.6765(8) s
from the uncorrected data. In terms of the half-life, the total
correction for detector pulse pileup is therefore ~0.7%, or
nearly 15 statistical standard deviations. The longer half-life
obtained in the uncorrected analysis is consistent with the fact
that 1042 keV y-ray photopeak events are more likely to be
piled up and thus lost from the analysis at high counting rate.

In radioactive-beam experiments with noble-gas ions, time-
dependent diffusion of a particular fraction of the implanted
sample from the collector material can be a significant concern
[39—41]. The above channel-removal analysis indicates that
any rapid release of significant quantities of the implanted
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FIG. 8. (Color online) Half-life of '®Ne grouped according to
adjustable electronic setting. The reduced x? values for each of the
three settings are indicated.

8Ne ions is negligible compared with the level of statistical
precision obtained in the experiment. The possibility of
diffusion on longer time scales was studied in the previous
work by comparing the deduced half-life of the longer-
lived **Ne isotope (7}, = 37 s) to a previous measurement
performed by trapping 2*Ne atoms in the gas phase [42]. The
excellent agreement between these two results demonstrated
that diffusion on longer time scales can similarly be neglected
in the analysis of '®Ne ions with our experimental apparatus.
In addition, a high-precision '’Ne half-life measurement was
performed using the same experimental setup and the result,
Ty, = 17.262(7) s [43], has been confirmed at the level of
+0.04% by an independent measurement recently performed
at GANIL [44]. Given these considerations, we conclude that
any diffusion of implanted '®Ne ions in the present experiment
is negligible in comparison to the £0.05% statistical precision
of our measurement.

During the course of the experiment, several modifications
to the electronics settings were made on a run-by-run basis
to ascertain whether or not additional sources of systematic
uncertainty could arise from the electronics modules them-
selves or by the correction and analysis procedures that were
applied to the data. Amplifier shaping times were adjusted
between 0.5 us, 1.0 us, and 2.0 ws and, as described above, this
modifies the probability for pileup and hence the magnitude
of the resulting pileup corrections (see Fig. 4). Acquisition
dead times were also adjusted on a run-by-run basis. The
average '8Ne half-lives obtained for each particular group of
runs collected under each of these electronics settings were
calculated and the results are shown in Fig. 8. As every run
can only have a single shaping time or dead time, the average
half-life of each group is equivalent to 77, = 1.6648 (8) s, the
weighted average of the entire data set. A third group is also
shown in Fig. 8 that calculates the average '8Ne half-life from
the previous experiment 77, = 1.6656 (17) s and compares it
to the result, Tj, = 1.6646 (9) s, obtained from the new data
added in the second experiment.
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FIG. 9. (Color online) Summary of '®Ne half-life measurements
and comparison to the present work. References to previous mea-
surements are Alb70 [46], Asl70 [47], Har75 [24], and Alb75 [48],
respectively. The world average '®Ne half-life obtained from these
data and the averaging procedure of Ref. [1]is T/, = 1.6654 (11) s.

To estimate a systematic uncertainty from these compar-
isons, reduced X2 values were calculated on a run-by-run
basis in Fig. 6, and for each group of adjustable electronic
settings as indicated in Fig. 8. The largest reduced x? value
was 1.68 and was obtained from the '®Ne half-lives grouped
according to the dead-time setting. Following the method of the
Particle Data Group [45], the square root of this value is used
to increase the statistical uncertainty in order to account for
any remaining and unidentified systematic effects. Assuming
that the total uncertainty of £0.0010 s obtained from this
procedure can be expressed as the quadrature sum of the
statistical and systematic uncertainties, the value of £0.0007 s
is obtained for the systematic uncertainty, which is nearly
equivalent to the +0.0008 s statistical precision. An additional
source of systematic uncertainty arising from the application
of the pileup correction procedures described here has been
conservatively estimated to be 4% of the total correction itself
as described in Ref. [25]. From the 0.0117 s difference between
the half-lives obtained with and without the pileup corrections
applied, this additional systematic uncertainty is £0.0005 s.

The half-life of '®Ne deduced in the present work can be
written as Ty, = 1.6648 (8) (7) (5) s, where the first uncer-
tainty is statistical, the second is systematic and was estimated
from the variation of the deduced half-lives grouped by the
dead-time setting of the data-acquisition system, and the
third is a systematic uncertainty associated with the pileup-
correction methodology. Combining these uncertainties in
quadrature gives the final result, 71, = 1.6648 (11)s, for
the half-life of '®Ne. This is approximately a factor of two
times more precise than the value previously reported from
the first experiment [23]. Our new value replaces the previous
one because the data from this first experiment have been
included in the present evaluation. The half-life of '*Ne
is also in agreement with T, = 1.669 (4)s [48], the most
precise measurement prior to our own, although it is nearly
four times less precise. A summary of all previous '*Ne
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half-life measurements is presented in Fig. 9. According to
the procedures adopted in Ref. [1] for combining these results,
the world-average 18Ne half-life is T} 2 = 1.6654(11) s. The
evaluation of the uncertainty on the average includes a scale
factor of 1.05 (see Ref. [1]) obtained from the square root of
the reduced yx? value of 1.11 for these data. With an overall
precision of £0.07%, which is dominated by the half-life
measurement presented in this work, the half-life of 18Ne
has now been determined at a level that is expected to be at
least ~3 times more precise than is likely feasible for a high-
precision branching-ratio measurement of this superallowed
Fermi transition. The '8Ne half-life is therefore not expected
to be a limiting factor in establishing a high-precision ft value
for the superallowed decay of '8Ne in the foreseeable future.

IV. SUMMARY AND CONCLUSION

High-resolution S-delayed y-ray spectroscopy has been
performed following the decay of '®Ne ions implanted at
the center of the 8w y-ray spectrometer at TRIUMF’s ISAC
facility. The half-life of '®Ne has been determined to be
T, = 1.6648 (11) s following the application of a 0.7%
correction that was required to account for systematic and
rate-dependent losses associated with detector pulse pileup.
This result is approximately a factor of two times more
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precise than, and in excellent agreement with, our previous
measurement that was performed with a prototype ECR ion
source. Improved precision on the relative 8-decay branching
ratios and delayed-y -ray intensities were also obtained and are
in very good agreement with previous measurements. These
results will provide important input towards future experiments
that aim to improve the precision of the '®Ne ft value to
the level of £0.2% that has now been achieved in two other
T, = —1 cases. The case of '8Ne is particularly attractive be-
cause it potentially provides a means to discriminate between
several theoretical models of isospin-symmetry breaking and
can be used to investigate the role of nuclear deformation in
the calculation of these corrections.
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