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Stimulated by the proton size puzzle and the proposal of μp scattering at the Paul Scherrer Institute (PSI), we
study the two-photon exchange corrections to the massive-lepton–proton scattering. The leptonic helicity broken
caused by lepton mass introduces new form factors. We estimate the two-photon exchange corrections to these
form factors as well as to the unpolarized differential cross sections.
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I. INTRODUCTION

Lepton scattering is an ideal probe of electromagnetic
structures of materials due to the perturbative properties
of quantum electrodynamics. The small coupling constants
permit us to evaluate electromagnetic interactions to any
increase of accuracy, and the point-like lepton can honestly
reflect the information on the initial structures of the target.

As the start point of revealing subnuclear structure,
the properties of nucleons are fundamental and significant.
Two different methods have been employed to measure
the electromagnetic form factors of nucleons. One is the
Rosenbluth separation method or longitudinal-transverse sep-
aration method [1], which utilized the linear relationship
between the unpolarized differential cross section and the
kinematic factor ε or polarization of the virtual photon.
The other is the polarization separation method [2,3], which
measured the polarization transfer in the polarized electron
and nucleon scattering process. The ratio of proton electric
form factor to the magnetic form factor obtained from the
former separation method is very close to 1 [4–7], which
indicates similar spatial distributions of electric and magnetic
fields in the nucleon. However, the polarization separation
method points out that the electromagnetic form factor ratio
decreases rapidly as Q2 increases [8,9]. Both separation
methods are based on the one-photon exchange approximation,
and the discrepancy of the form factor ratio caused by
different experimental techniques simulates the theorist to
investigate the mechanism beyond the one-photon exchange
approximation.

A rough frame of the radiative corrections to the electron-
nucleon scattering had been built by Mo and Tsai [10,11] and
updated by Maximon and Tjon [12]. A more precise calcula-
tion including both infinite and finite part of the two-photon
exchange (TPE) diagrams indicates that the TPE correction to
the differential cross section were dependent on the kinematic
factor ε, which would break the linear relationship between
differential cross section and kinematic factor ε under the
one-photon exchange approximation [13]. The TPE process
can reconcile the discrepancy of the form factor ratio of
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protons caused by different separation methods [14]. Many
different approaches have been developed to evaluate the TPE
corrections to elastic electron-nucleon scattering, such as the
hadronic model and quark model. In the hadronic model, the
intermediate states between two photons are taken as nucleons
or nucleon resonances [10–13,15–18] and all the couplings
are treated in the hadron level. In the quark model, the TPE
corrections are first evaluated in quark level and then connect
the quarks or parton to the nucleon by a set of relations, such
as parton distribution functions [19,20] or wave functions in
the light cone quark model [21].

The nucleon charge root-mean-square (rms) radius can
be determined by the slope of electric form factor at
Q2 = 0. With the world data on ep scattering before 2003, the
extracted rms radius is 0.895 ± 0.018 fm [22]. In Ref. [23],
the TPE corrections have been included in the rms radius
extractions from the electric form factors, and the obtained
radius is 0.897 ± 0.018 fm. In 2010, the value of proton
charge radius was updated based on measurements of elastic
ep scattering cross section performed at the Mainz Microton
MAMI. The charge radius of the proton is determined to
be 0.879(5)stat.(4)syst.(2)model(4)group fm [24]. In addition, the
proton charge radius can also be extracted from the hyperfine
structure of the hydrogen atom, since the proton size can
modify the hydrogen energy levels. With the 2p-1s transition
energy and the 1s hyperfine structure of hydrogen, which is
well measured with a high degree of accuracy, the extracted
rms radius is 0.8768 ± 0.0069 fm [25]. The proton rms
radius from hydrogen spectroscopy is consistent with the one
from electron-proton scattering data within the measurement
uncertainties.

Similar to hydrogen, the energy levels and hyperfine
splitting of muonic hydrogen can also be used to obtain the
proton rms radius. Moreover, the short lifetime and heavy
mass of muons make the muonic hydrogen energy levels
more sensitive to proton size than those of hydrogen. The
extracted rms radius of the proton is 0.84184 ± 0.00067 fm
[26], which is 5σ smaller than the one based on hydrogen
spectroscopy and electron-proton scattering data. The new
data from muonic hydrogen spectroscopy make the proton
size unintelligible. The μp scattering, which is similar
to ep scattering, may provide us more information on the
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proton size. Studying the proton radius puzzle with μp
scattering has been proposed at the Paul Scherrer Institute
(PSI) [27]. As in the ep scattering process, the TPE corrections
will also be important in accurately extracting the proton form
factor from the differential cross sections. Particularly, because
the muon is about 200 times heavier than the electron, the
lepton helicity conservation will be broken to some extent.
This stimulates us to study how the TPE correction behaves in
the massive- lepton–proton scattering process.

This paper is organized as follows. After the introduction,
the TPE corrections to � + p → � + p will be considered in
the hadronic model in Sec. II. Our results of TPE corrections
to the form factors and differential cross sections are presented
in Sec. III, and Sec. IV is devoted to the summary.

II. TPE CORRECTIONS IN HADRONIC MODEL

Generally, under the one-photon exchange approximation,
the nucleon electromagnetic vertex, which includes two terms
and two form factors as well, is in the form

�μ(q) = F1(Q2)γμ + i
F2(Q2)

2mN

σμνq
ν, (1)

where q is the momentum transfer to the nucleon and mN

is the mass of the nucleon. F1 and F2 are Dirac and Pauli
form factors, respectively, which are only dependent on Q2 =
−q2 under the one-photon exchange approximation. With the
electromagnetic vertex in Eq. (1), one can obtain the amplitude
of �(k1) + p(p1) → �(k2) + p(p2),

M1γ = e2ū(k2)γ μu(k1)
gμν

q2
Ū (p2)�ν(q2)U (p1), (2)

where u(k) and U (p) are the Dirac spinors of lepton and
nucleon, respectively. Then, the unpolarized differential cross
section is in the form

dσ

d�
= C(Q2, ε)

[
G2

M (Q2) + ε

τ
G2

E(Q2)

]
, (3)

where the kinematics factor ε can relate to Mandel-
stam variables by ε = [(s − u)2 + t(4m2

N − t)]/[(s − u)2 −
(4m2

l + t)(4m2
N − t)]. The Mandelstam variables s, t, u are

defined as s = (p1 + k1)2, t = q2 = −Q2 and u = (p1 − k2)2

and they satisfy s + t + u = 2m2
� + 2m2

N . The Sachs electric
and magnetic form factors GE(Q2) and GM (Q2) are the
linear combinations of Dirac and Pauli form factors, which
are GE(Q2) = F1(Q2) + τF2(Q2) and GM (Q2) = F1(Q2) +
F2(Q2), respectively.

Considering a general case, a massive lepton scatters on a
nucleon, including a multiphoton exchange process. The spins
of lepton and nucleon are both 1/2 and thus the independent
helicity amplitudes of theT matrix of �(k1, h1) + p(p1, λ1) →
�(k2, h2) + p(p2, λ2) should be 24 = 16. The number will be
reduced from 16 to 8 due to parity invariance. Time-reversal
invariance further reduces the number of the independent
helicity amplitudes to 6. Alternatively, we can expand the
elastic scattering T matrix in terms of a set of six independent
Lorentz structures multiplied by six generalized form factors

in the form

T h2,h1
λ2,λ1

= e2

q2

[
F̃1ū(k2, h2)γ μu(k1, h1)Ū (p2, λ2)γμU (p1, λ1)

+ F̃2ū(k2, h2)γ μu(k1, h1)Ū (p2λ2)
iσμνq

ν

2mN

U (p1, λ1)

+ F̃3ū(k2, h2)γ μu(k1, h1)Ū (p2, λ2)
K̂P μ

4mN

U (p1, λ1)

+ F̃4ū(k2, h2)γ5u(k1, h1)Ū (p2, λ2)γ5U (p1λ1)

+ F̃5ū(k2, h2)
iσμνq

ν

2mN

u(k1, h1)Ū (p2, λ2)γμU (p1λ1)

+ F̃6ū(k2, h2)u(k1, h1)Ū (p2, λ2)U (p1, λ1)

]
, (4)

with P = (p1 + p2)/2, K = (k1 + k2)/2, p̂ = γ μpμ,
and q = p2 − p1 = k1 − k2. The form factors F̃i

(i = 1–6) are not only dependent on Q2 but also on
the kinematics factor ε. An alternative expression of
ū(k2, h2)γ μu(k1, h1)Ū (p2, λ2)(K̂P μ/4mN )U (p1, λ1)
in the above T matrix is the axial-vector-like term
ū(k2, h2)γ μγ5u(k1, h1)Ū (p2, λ2)γμγ5U (p1, λ1), and these
two expression can be related by the identity

ū(k2, h2)γ μγ5u(k1, h1)Ū (p2, λ2)γμγ5U (p1, λ1)

= u − s

t
ū(k2, h2)γ μu(k1, h1)Ū (p2, λ2)γμU (p1, λ1)

+ 1

t
ū(k2, h2)γ μu(k1, h1)Ū (p2, λ2)K̂P μU (p1, λ1)

− 4m�mN

t
ū(k2, h2)γ5u(k1, h1)Ū (p2, λ2)γ5U (p1λ1).

(5)

If one ignores the lepton mass, then the helicity of the lepton
will be conserved, and the independent helicity amplitudes
reduce to 3. Only the first three terms survive in the massless
lepton limit since the terms related to F̃4, F̃5, and F̃6 change
the helicity of the lepton. In the massless lepton limit, Eq. (4)
will reduce to the form of Eq. (8) in Ref. [14], and Eq. (5)
will be the same as Eq. (11) in Ref. [20]. In the one-photon
approximation, Eq. (4) reduces to Eq. (2), with Dirac and Pauli
form factors.

In the hadronic model, the intermediate states of the
TPE process are treated as nucleons or nucleon resonances.
In present work, we are mainly concerned with the TPE
correction in the small Q2 region; thus, only the processes
where the nucleon as the intermediate state are considered.
The amplitude corresponding to the diagrams in Fig. 1 is

M2γ = e4
∫

d4k

(2π )4

[
Na(k)

Da(k)
+ Nb(k)

Db(k)

]
, (6)

where the numerators are in the forms

Na(k) = ū(k2)γμ(k̂1 − k̂ + m�)γνu(k1)Ū (p2)

×�μ(p2 − p1 − k)(p̂1 + k̂ + mN )�ν(k)U (p1),

Nb(k) = ū(k2)γμ(k̂1 − k̂ + m�)γνu(k1)Ū (p2)�ν(k)

× (p̂2 − k̂ + mN )�μ(p2 − p1 − k)U (p1). (7)
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(k1) (k2)

p(p1) p(p2)

(k1) (k2)

p(p1) p(p2)

(a) (b)

FIG. 1. The TPE process with proton as intermediate state in
� + p → � + p scattering.

The electromagnetic vertexes of the nucleon are in the form
defined in Eq. (1). The numerators in Eq. (6) are the product
of the scalar propagators,

Da(k) = [
(k1 − k)2 − m2

�

]
[k2 − λ2]

× [(p2 − p1 − k)2 − λ2]
[
(p1 + k)2 − m2

N

]
,

Db(k) = [
(k1 − k)2 − m2

�

]
[k2 − λ2]

× [(p2 − p1 − k)2 − λ2]
[
(p2 − k)2 − m2

N

]
, (8)

where an infinitesimal photon mass λ has been introduced in
the photon propagator to regulate the infrared (IR) divergences
of the loop integrals.

In the previous treatment established by Mo and Tsai
(MT) [10,11], the loop integral in Eq. (6) is treated
approximately by taking one of the four-momenta of the
photons to be zero in the numerator and in the other photon
propagator. Neglecting the noninfrared terms in the TPE
amplitudes, it can be simplified to be

M2γ (MT) = δ(MT)M1γ , (9)

with δ(MT) = −α/π [K(p1, k1) + K(p2, k2)] and

K(pi, pj ) = (pi · pj )
∫ 1

0

dy

p2
y

ln
p2

y

λ2
,

(10)
py = piy + pj (1 − y).

The MT correction treated the IR divergent part correctly and
had usually been considered in the experimental analysis.

The IR divergent part of TPE corrections will be canceled by
the IR divergence in other radiative corrections, which include
the bremsstrahlung process and vertex corrections. The radia-
tive corrections to the μp elastic process are less well known
at present. In Ref. [28], the purely leptonic contributions to the
radiative corrections have been investigated considering the
rather small energy of the recoil proton.

In present work we are mainly concerned with the effects of
lepton mass on the TPE corrections, including the effects on the
Lorentz structures and on the corresponding form factors. To
compare with the TPE correction in the ep scattering process,
the IR part of the TPE corrections in μp scattering is treated in a
very similar way. In the present calculations, we keep the mass
of the lepton in p2

y in Eq. (10), which is consistent with the full
calculation for TPE amplitudes in Eq. (6). We only consider
the finite or noninfrared part of the TPE amplitudes, which is

MNonIR
2γ = M2γ − M2γ (MT). (11)

This amplitude is independent of the infinitesimal photon
mass λ.

III. TPE CORRECTIONS TO FORM FACTORS AND
DIFFERENTIAL CROSS SECTIONS

In present work, the intermediate states of the TPE
process are treated as nucleons. The electromagnetic vertexes
involved in the TPE process are the ones under one-photon
approximation, which is presented in Eq. (1). We use the form
in which the Dirac and Pauli form factors are parameterized
directly in terms of sums of monopoles,

F1,2(Q2) =
3∑

i=1

ni

di + Q2
. (12)

The form factors in the above expression are more realistic
and reasonable than the simple monopole or dipole form. The
parameters are the same as those in Ref. [15]. Similar to the
treatment in Ref. [29,30] and using Feynman parametrization,
we can obtain the TPE corrections to the form factors.

The TPE corrections to the form factors estimated from
ep scattering at Q2 = 1 GeV2 are presented in Fig. 2. The left
panel shows the TPE corrections to δGE,M and Y2γ , which are
the combination of F̃1(Q2, ε), F̃2(Q2, ε), and F̃3(Q2, ε),

G̃M (Q2, ε) = F̃1 + F̃2 = δG̃M (Q2, ε) + GM (Q2),

G̃E(Q2, ε) = F̃1 + τ F̃2 = δG̃E(Q2, ε) + GE(Q2), (13)

Y2γ = Re

(
νF̃3

m2
NG2

M

)
,

with ν = P · K = (s − u)/4. The TPE corrections to
δGE,M/GE,M are of order 1% and are strongly dependent
on the kinematic factor ε, while the TPE corrections to Y2γ

is weakly sensitive to ε and very small: nearly one order
smaller than δG̃E,M/GE,M . The right panel presents the TPE
corrections to F̃i/GM (i = 4, 5, 6) depending on the kinematic
factor ε, which result from the leptonic helicity breaking
caused by lepton mass. For the ep scattering process, the mass
of the lepton is approximately 1/2000 of proton mass, thus,
the TPE corrections to F̃i/GM (i = 4, 5, 6) are ignorable; they
are at least one order smaller than δG̃E,M/GE,M .

The TPE corrections to the form factors at Q2 = 1 GeV2

estimated from the μp scattering process are presented in
Fig. 3. Compare to the case of ep scattering, the TPE
corrections to δG̃E,M/GE,M and Y2γ are almost the same.
However, the TPE corrections to F̃i/GM (i = 4, 5, 6) are
much larger than those obtained from ep scattering, which

δG̃
i/

G
i(

%
)

Q2 = 1 GeV2

δG̃M/GM

δG̃E/GE

Y2γ

F̃4/GM

F̃5/GM

F̃6/GM

(a () b)

FIG. 2. (Color online) Two-photon exchange corrections to the
form factors obtained in the e− + p → e− + p process depending
on kinematic factor ε. The TPE corrections to the form factors are in
units of percent.
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δG̃

i/
G

i(
%

)

Q2 = 1 GeV2

δG̃M/GM

δG̃E/GE

Y2γ

F̃4/GM

F̃5/GM

F̃6/GM

(a () b)

FIG. 3. (Color online) Two-photon exchange corrections to the
form factors obtained in the μ− + p → μ− + p process depending
on kinematic factor ε. The TPE corrections to the form factors are in
units of percent.

is understandable since the muon is much heavier than the
electron and a larger lepton mass will introduce a larger
leptonic helicity broken.

The TPE corrections to the form factors from ep and μp
scattering at Q2 = 2 GeV2 are presented in Figs. 4 and 5,
respectively. The TPE corrections to the form factors are
much larger than those corresponding corrections at Q2 =
1 GeV2. For δG̃E,M/GE,M and Y2γ , visible discrepancies
appear between those evaluated from ep and μp process.
F̃i/GM (i = 4, 5, 6) resulting from TPE corrections of the
μp process are larger than those of the ep process, which is
similar to the case of Q2 = 1 GeV2.

TPE corrections to the differential cross section come from
the interferences between TPE amplitude and the one under
the one-photon exchange approximation, which is

δ(Q2, ε) = 2
Re

[
MNonIR

2γ M†
1γ

]
|M1γ |2 . (14)

Otherwise, the TPE corrections to the differential cross section
can also be evaluated by Eq. (4) together with the TPE
corrections to the form factors. With the amplitudes given
in Eq. (4), we can obtain the TPE corrections to the reduced
differential cross sections of the �p scattering process, which
is in the form

δσ̃R = 2

(
GMδG̃M + ε

τ
GEδG̃E

)

+ CM3GMF̃3 + CE3GEF̃3

+ CM5GMF̃5 + CE5GEF̃5 + CE6GEF̃6 + O
(
F̃ 2

i

)
.

(15)

δG̃
i/

G
i(

%
)

Q2 = 2 GeV2

δG̃M/GM

δG̃E/GE

Y2γ

F̃4/GM

F̃5/GM

F̃6/GM

(a () b)

FIG. 4. (Color online) The same as Fig. 2 but for Q2 = 2 GeV2.

δG̃
i/

G
i(

%
)

Q2 = 2 GeV2

δG̃M/GM

δG̃E/GE

Y2γ

F̃4/GM

F̃5/GM

F̃6/GM

(a () b)

FIG. 5. (Color online) The same as Fig. 3 but for Q2 = 2 GeV2.

The ignored terms O(F 2
i ) are proportional to F̃i F̃j (i, j =

4, 5, 6), which are next leading order corrections and of order
α2m2

�, while GE,MδG̃E,M and GE,MF̃3 are of order α, and
the terms proportional to GE,MF̃i (i = 4, 5, 6) are of order
αm�. As shown in Eq. (A1) in Appendix, the coefficients CEi

and CMi (i = 4, 5, 6) are proportional to m�. In the massless
lepton limit, these terms vanish and the TPE corrections to
the differential cross section reduce to the one in Eq. (34) in
Ref. [15].

The differences of the TPE corrections to the differential
cross section caused by including or ignoring the electron
mass are very small and nearly invisible. In Fig. 6, we
present the TPE corrections to differential cross sections for
ep and μp including the masses of leptons. For comparison,
the corrections to the μp scattering process evaluated by
ignoring the muon mass in the numerators are also presented.
The TPE corrections to the differential cross sections of
massive or massless muon-proton scattering are very similar,
but the differences are visible, especially in the small ε region.
The corrections to μp scattering behave similarly to the
corrections to electron-proton scattering. The TPE corrections
rise with increasing Q2. For a fixed Q2, the corrections are
strongly dependent on the kinematic factor ε as shown in Fig. 6,
which indicates that the TPE corrections must be included
when extracting the proton electromagnetic form factors from
the unpolarized differential cross section of μp scattering. At
ε = 0, the TPE corrections reach the maxima, which are about
2% for Q2 = 1 GeV2 and 3.5% for Q2 = 2 GeV2. With ε
increasing, the TPE corrections decrease and nearly vanish at
ε = 1. Moreover, the TPE corrections for μp scattering are
a little bit smaller than those for ep scattering. At ε = 0, the

δ(
Q

2
)(

%
)

Q
2 = 1.0

GeV
2

Q
2 =

2.0
GeV

2

massive μ−

massless μ−

massive e−

FIG. 6. (Color online) TPE corrections to the differential cross
sections of the � + p → � + p process depending on the kinematic
factor ε at Q2 = 1.0 GeV2 and Q2 = 2.0 GeV2.
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discrepancies are about 0.3% and 0.5% for Q2 = 1.0 GeV2

and Q2 = 2.0 GeV2, respectively.

IV. SUMMARY

TPE corrections are important for eliminating the discrep-
ancy of proton electromagnetic form factor ratios measured
by different experimental techniques. However, the size of
proton is still not exactly clear due to the disagreements of the
data from muonic hydrogen and ep scattering or hydrogen. To
clarify the proton size puzzle, the study of proton radius with
μp scattering had been proposed at PSI.

The mass of the muon is two orders larger than that
of the electron and comparable to the mass of the proton;
thus, it is necessary to study the TPE corrections to the μp
scattering process including the mass of the muon. In the
present work, we present the general form of the amplitudes
for the massive-lepton–nucleon scattering process. Three new
Lorentz structures as well as form factors, which are leptonic
helicity broken, are introduced due to the mass of the lepton.
We estimate the TPE corrections to these form factors in the
small Q2 region. We find that the TPE corrections to these
new form factors for the ep scattering process are smaller than
those for the μp scattering process, which are consistent with
expectations.

The TPE corrections to the differential cross sections
are also evaluated. Similar to the case of ep scattering, the
TPE corrections rise with increasing Q2. The differences
caused by the mass of the muon are visible. Moreover, the
TPE corrections are strongly dependent on the kinematic
factor ε, which means the TPE corrections are crucial in exactly
extracting the form factors from μp scattering.

The other radiative corrections, including vertex correc-
tions, vacuum polarization, proton and lepton self-energy
process, and bremsstrahlung process, are also important to
exactly extract the form factors of the proton from the
experimental measurements. In addition, the TPE process

and the bremsstrahlung process are opposite for �+p and
�−p scattering. Systematically estimations of the radiative
corrections for massive lepton scattering on protons are
necessary [31].
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APPENDIX: COEFFICIENTS IN TPE CORRECTIONS TO
THE DIFFERENTIAL CROSS SECTIONS

With the amplitudes in Eq. (4), we can obtain the TPE
corrections to the differential cross sections as shown in
Eq. (15). The coefficients before the form factors are the
functions of Mandelstam variables s, t and the masses of the
proton and lepton. The involved coefficients are

CM3 = −(
2
(
m2

� + m2
N − s

) − t
)(

m4
� + (

m2
N − s

)2

− 2m2
�

(
m2

N + s
) + st

)/(
m2

NDM

)
,

CE3 = 4
(
2
(
m2

� + m2
N − s

) − t
)((

m2
� + m2

N − s
)2

+ (−m2
� + s

)
t
)/

(tDM ),

CM5 = 2m�

(
4m2

N − t
)
t
/

(mNDM ),

CE5 = 4m�mN

(
4m2

N − t
)/

DM,

CE6 = 4m�mN

(
4m2

N − t
)(

2
(
m2

� + m2
N − s

) − t
)
/(tDM ),

(A1)

with DM = [2m4
� + 2m4

N + 2s2 − 4m2
�(m2

N + s) + 2st +
t2 − 4m2

N (s + t)].
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