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Threshold π0 photoproduction in relativistic chiral perturbation theory
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We present a calculation of π 0 photoproduction on the proton in manifestly Lorentz-invariant baryon chiral
perturbation theory up to and including chiral order q4. With the results we analyze the latest π 0 photoproduction
data in the threshold region obtained at the Mainz Microtron. In the calculation of observables and the fit of the
low-energy constants, we take S, P , and D waves into account. We compare the results for the multipoles with
the corresponding single-energy analysis. Furthermore, we also fit the O(q4) heavy-baryon chiral perturbation
theory calculation and compare both results. We provide predictions for several polarization observables for
future experiments. Finally, we discuss the β parameter of the unitarity cusp which is related to the breaking of
isospin symmetry.
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I. INTRODUCTION

Quantum chromodynamics (QCD), the gauge theory of
the strong interactions, possesses an approximate global
symmetry due to the small masses of the u and d quarks.
Exploiting this so-called SU(2)L × SU(2)R chiral symmetry
and its spontaneous breaking to SU(2)V, model-independent
predictions can be made for physical observables. Such a
prediction is called a low-energy theorem (LET) and, in the
case of pion photoproduction, the first derivation of a LET for
the charged channels by Kroll and Ruderman [1] was based
on electromagnetic current conservation. For neutral pion
photoproduction, the first sufficiently precise experimental
data [2,3] for the S-wave electric dipole amplitude E0+ [4]
showed a serious disagreement with the prediction based on
current algebra and the partially conserved axial-vector current
hypothesis [5,6]. In Refs. [7,8], the discrepancy between
experiment and theory was addressed with the aid of chiral
perturbation theory (ChPT) which is an effective field theory
of QCD at low energies based on chiral symmetry (see,
e.g., Refs. [9,10] for an introduction). In particular, it was
shown that E0+ gets modified by certain nonanalytic loop
contributions. Using heavy-baryon ChPT (HBChPT) [11,12],
Bernard et al. analyzed neutral pion photoproduction in
Refs. [13–15]. One motivation for introducing HBChPT was
the fact that manifestly Lorentz-invariant (or relativistic) ChPT
(RChPT) seemingly had a problem concerning power counting
when loops containing internal nucleon lines come into play.
In this case, a diagram apparently has contributions which
are of lower order than determined by the power counting. By
choosing appropriate renormalization conditions, this problem
was solved in Refs. [16–18]. The crucial difference between
HBChPT and RChPT is that, at a given order, the latter
also includes an infinite number of higher-order corrections.
These corrections can be important as, e.g., in the case of the
scalar nucleon form factor where one even gets the wrong
analytic behavior in HBChPT [16]. Another example is the
Fubini-Furlan-Rossetti sum rule [19]. The expansion around
the nucleon mass shifts the pole positions in the s and u
channels away from the physical pole positions [20]. A further,
nonperturbative approach for studying pion production beyond
the threshold region in a covariant way was developed in

Ref. [21]. The method makes use of the chiral effective
Lagrangian up to and including O(q3) and is based on the
implementation of causality, coupled-channel unitarity, and
electromagnetic gauge invariance.

In pion photoproduction, some of the higher-order cor-
rections turn out to be large. While in Ref. [13] an O(q3)
calculation obtained LETs for the P -wave amplitudes P1 and
P2, the calculation at O(q4) [15] gave large corrections to these
LETs. As one can see from the numerical values of the low-
energy constants (LECs), there are still important higher-order
contributions missing. Here, we present a full one-loop O(q4)
RChPT calculation. We find that some of these higher-order
contributions are included in the relativistic case. In addition,
we also analyze D waves and show that at order O(q4) there
is another LEC, which mainly affects the E2− multipole and,
through mixing, also E0+. We will focus on the latest data
obtained at the Mainz Microtron (MAMI) [22] which give very
precise results for the differential cross section and the photon
asymmetry � in the threshold region and which are, therefore,
well suited to pin down the LECs and, with that, the multipoles.

This work is organized as follows. In Sec. II we present the
formalism for neutral pion photoproduction. Section III gives
a short introduction into the framework of ChPT. In Sec. IV
we present and discuss our results. We give predictions for
several polarization observables and compare them with the
predictions of the Dubna-Mainz-Taipei (DMT) model [23].
We also show a fit of the HBChPT results to the new data to
have a better comparison with RChPT. Finally, we analyze the
so-called β parameter of the unitarity cusp [24,25]. Section V
closes with a short summary. Some technical details of our
calculation can be found in the Appendices.

II. MATRIX ELEMENT

Pion photoproduction on the nucleon is the creation of a
pion from a nucleon via the absorption of a photon,

N + γ → N ′ + π, (1)

where N (N ′) denotes the nucleon in the initial (final) state, γ
represents the photon, and π symbolically stands for the ap-
propriate pion. Here, we only discuss the production of a π0 on
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γ(k) π(q)

N (pi) N (pf)

FIG. 1. Kinematics of pion photoproduction. The solid line
represents the nucleon with incoming momentum pi and outgoing
momentum pf , respectively. The wiggly line represents the photon
with momentum k and the dashed line denotes the pion with
momentum q. The blob symbolically stands for all contributions
to the process.

the proton. The kinematics of the process is depicted in Fig. 1.
The usual Mandelstam variables s, t , and u are defined as

s = (pi + k)2 = (pf + q)2, u = (pi − q)2 = (pf − k)2,

t = (pi − pf )2 = (q − k)2, (2)

and fulfill

s + t + u = 2m2
N + M2

π , (3)

where mN and Mπ denote the nucleon mass and the pion
mass, respectively. In the center-of-mass (c.m.) frame, the
energies of the photon, Eγ , and the pion, Eπ , are given by

Eγ = W 2 − m2
N

2W
, Eπ = W 2 + M2

π − m2
N

2W
, (4)

where W = √
s is the c.m. total energy. In the laboratory

frame, the photon energy Elab
γ is given by

Elab
γ = W 2 − m2

N

2mN

. (5)

The c.m. scattering angle �π between the pion
three-momentum and the z axis, defined by the incoming
photon, can be related to the Mandelstam variable t via

t = M2
π − 2(Eγ Eπ − |�k||�q| cos �π ). (6)

For linearly polarized photons, the differential cross section
dσ
d�

in the c.m. frame can be written as

dσ

d�
(�π, φ) = σ0(�π ) [1 − �(�π ) cos 2φ] , (7)

where σ0(�π ) is the unpolarized cross section and �(�π )
denotes the photon asymmetry. The azimuthal angle φ is
defined as the angle between the polarization vector of the
photon and the reaction plane spanned by the nucleon and
pion three-momenta.

Using the so-called Ball amplitudes [26], the matrix element
of pion photoproduction can be parametrized in a Lorentz-
covariant way,

−ieεμ〈N ′π |Jμ(0)|N〉 = εμū(pf )

(
8∑

i=1

BiV
μ
i

)
u(pi). (8)

In Eq. (8), εμ denotes the polarization vector of the photon,
Jμ is the electromagnetic current operator in units of the
elementary charge e > 0, and u(pi) and ū(pf ) are the
Dirac spinors of the nucleon in the initial and final states,
respectively. In the following, our convention differs slightly
from Ball’s original definition. We use

V
μ

1 = γ μγ5, V
μ

2 = γ5P
μ, V

μ
3 = γ5q

μ,

V
μ

4 = γ5k
μ, V

μ
5 = γ μkνγ

νγ5, V
μ

6 = kνγ
νγ5P

μ, (9)

V
μ

7 = 7kνγ
νγ5q

μ, V
μ

8 = kνγ
νγ5k

μ,

with P = (pi + pf )/2. Only six of the amplitudes survive in
pion photoproduction, as ε · k = 0. The remaining amplitudes
are related because of current conservation,

B1 + B6k · P + B7k · q = 0, B2k · P + B3k · q = 0, (10)

so one ends up with only four independent structures.
In the threshold region, pion photoproduction is commonly

analyzed in terms of a multipole decomposition. The usual
definition of the matrix element in the c.m. frame [4] is related
to Eq. (8) via

εμū(pf )

(
8∑

i=1

BiV
μ
i

)
u(pi) = 4πW

mN

χ
†
fFχi, (11)

where χi and χf denote initial and final Pauli spinors. In
the Coulomb gauge (ε0 = 0, �k · �ε = 0), F may be written as
follows:

F = i �σ · �εF1 + �σ · q̂ �σ · (k̂ × �ε)F2 + i �σ · k̂ q̂ · �εF3

+ i �σ · q̂ q̂ · �εF4, (12)

where q̂ and k̂ denote unit vectors in the direction of the
pion and the photon, respectively. Introducing x = cos �π =
q̂ · k̂, the so-called Chew-Goldberger-Low-Nambu (CGLN)
amplitudes Fi can be expressed in terms of energy-dependent
multipole amplitudes as

F1 =
∞∑
l=0

{[lMl+ + El+]P ′
l+1(x)

+ [(l + 1)Ml− + El−]P ′
l−1(x)},

F2 =
∞∑
l=1

{(l + 1)Ml+ + lMl−}P ′
l (x),

(13)

F3 =
∞∑
l=1

{[El+ − Ml+]P ′′
l+1(x) + [El− + Ml−]P ′′

l−1(x)},

F4 =
∞∑
l=2

{Ml+ − El+ − Ml− − El−}P ′′
l (x).

In Eq. (13), Pl(x) is a Legendre polynomial of degree l,
P ′

l = dPl/dx and so on, with l denoting the orbital angular
momentum of the pion-nucleon system in the final state.
The multipoles El± and Ml± refer to transitions caused by
electric and magnetic radiation, respectively, and the subscript
l± denotes the total angular momentum j = l ± 1/2 in the
final state. These multipoles have several advantages. First
of all, one can match their quantum numbers to those of
nucleon resonances in order to analyze the excitation spectrum.
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Furthermore, while the amplitudesFi depend on the c.m. angle
of the reaction in a complicated manner, this dependence can
be completely projected out in the case of the multipoles, as the
Legendre polynomials form an orthogonal basis. The results
read [27]

El+ =
∫ 1

−1

dx

2(l + 1)

[
PlF1 − Pl+1F2

+ l

2l + 1
(Pl−1 − Pl+1)F3 + l + 1

2l + 3
(Pl − Pl+2)F4

]
,

El− =
∫ 1

−1

dx

2l

[
PlF1 − Pl−1F2

− l + 1

2l + 1
(Pl−1 − Pl+1)F3 + l

2l − 1
(Pl − Pl−2)F4

]
,

Ml+ =
∫ 1

−1

dx

2(l + 1)

[
PlF1 − Pl+1F2

− 1

2l + 1
(Pl−1 − Pl+1)F3

]
,

Ml− =
∫ 1

−1

dx

2l

[
−PlF1 + Pl−1F2 + 1

2l + 1
(Pl−1 − Pl+1)F3

]
.

(14)

In addition, in the threshold region one needs only few
multipoles to describe physical observables. Traditionally,
only S and P waves were used, resulting in the following
simple expressions for the unpolarized differential cross
section σ0 and the photon asymmetry � [28],

σ0(�π ) = |�q|
|�k| (A + B cos �π + C cos2 �π ), (15)

�(�π ) = |�q| sin2 �π

2|�k|σ0(�π )
(|P3|2 − |P2|2), (16)

where

A = |E0+|2 + 1
2 (|P2|2 + |P3|2),

B = 2Re(E0+P ∗
1 ), (17)

C = |P1|2 − 1
2 (|P2|2 + |P3|2).

The above-mentioned linear combinations of P waves, Pi , are
defined as

P1 = 3E1+ + M1+ − M1−,

P2 = 3E1+ − M1+ + M1−, (18)

P3 = 2M1+ + M1−.

Furthermore, we show predictions for polarization observ-
ables, namely, target asymmetry T , recoil polarization P , and
beam-target asymmetries E, F , G, and H [28],

T (�π ) = |�q| sin �π

|�k|σ0(�π )
{Im[E∗

0+(P2 − P3)]

+ cos �π Im[P ∗
1 (P2 − P3)]},

P (�π ) = −|�q| sin �π

|�k|σ0(�π )
{Im[E∗

0+(P2 + P3)]

+ cos �π Im[P ∗
1 (P2 + P3)]},

E(�π ) = |�q|
|�k|σ0(�π )

{|E0+|2 + Re(P3P
∗
2 )

+2 cos �πRe(P1E
∗
0+)

(19)
+ cos2 �π [|P1|2 − Re(P3P

∗
2 )]},

F (�π ) = |�q| sin �π

|�k|σ0(�π )
{Re[E∗

0+(P2 − P3)]

+ cos �πRe[P ∗
1 (P2 − P3)]},

G(�π ) = −|�q| sin2 �π

|�k|σ0(�π )
Im(P3P

∗
2 ),

H (�π ) = |�q| sin �π

|�k|σ0(�π )
{Im[E∗

0+(P2 + P3)]

+ cos �π Im[P ∗
1 (P2 + P3)]}.

In Refs. [29,30], the importance of D waves was pointed out,
especially of the E2− multipole. Even though their numerical
values are small, they strongly affect the extraction of other
multipoles through interference with large P waves. The
relevant formulas for the observables are rather lengthy when
the D waves are included, so we refer to Ref. [30] for further
details. Usually, in the threshold region the D waves are
assumed to be given entirely by Born contributions. In the next
section, a low-energy constant is discussed which explicitly
influences E2− and, because this multipole strongly mixes
with E0+, can change the determination of E0+ significantly.
In the threshold region, the multipoles Ml± (M = E,M)
are proportional to |�q|l . To get rid of this purely kinemat-
ical dependence, one introduces reduced multipoles Ml±
via

Ml± = Ml±
|�q|l . (20)

In the isospin-symmetric case, the amplitude for producing
a pion with Cartesian isospin index a can be decomposed
as

M(πa) = χ
†
f (iεa3bτ bM (−) + τ aM (0) + δa3M (+))χi, (21)

where χi and χf denote the isospinors of the initial and final
nucleons, respectively, and τ a are the Pauli matrices. Here, the
only relevant physical channel is given by

M(γ + p → π0 + p) = M (0) + M (+). (22)

This will be important when it comes to the determination of
the LECs in the next section.

III. THEORETICAL FRAMEWORK

Chiral perturbation theory is the low-energy effective field
theory of QCD based on an approximate chiral symmetry and
its spontaneous breakdown [31,32]. In the one-nucleon sector,
pions and nucleons are used as the effective degrees of freedom
[33]. Starting from the most general Lagrangian in combina-
tion with a suitable power-counting scheme, observables are
calculated in a momentum and quark-mass expansion. At first,
the correspondence between the chiral and loop expansions
known from the mesonic sector seemed to be lost [33], leading
to the development of HBChPT [11,12] in which one projects
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TABLE I. LECs determined from other processes.

LEC Source

c1 proton mass mp = 938.272 MeV [38]
c2, c3, c4 pion-nucleon scattering [39]
c6, c7 magnetic moment of proton (μp = 2.793) and

neutron (μn = −1.913) [38]
d16 axial-vector coupling constant gA = 1.2695 [38]
d18 pion-nucleon coupling constanta

gπN = 13.21 [40]
aIn Ref. [41], the value of the charged-pion-nucleon coupling constant
was extracted to be g2

c /(4π ) = 13.69 ± 0.20.

onto large and small components of the nucleon field and,
finally, restores a systematic counting scheme. This framework
was successfully applied to many processes, including pion
photo- and electroproduction [13–15,34–36]. However, giving
up manifest Lorentz covariance may, in certain cases, lead
to the wrong analytic behavior of loop amplitudes [16]. The
seeming power-counting problem of RChPT for nucleons was
addressed using appropriate renormalization schemes such as,
e.g., infrared regularization [16] or the extended on-mass-shell
(EOMS) scheme [18].

The Lagrangian relevant to the one-nucleon sector consists
of a purely mesonic part (Lπ ) [32] and a part containing the
pion-nucleon interaction (LπN ) [33,37],

L = L(2)
π + L(4)

π + L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + · · · . (23)

The superscripts refer to the chiral order of the Lagrangians
and the ellipsis stands for the neglected, higher-order contri-
butions. The Lagrangian contains a large number of LECs.
Their numerical values cannot be derived from the effective
field theory itself but are determined by adjusting them to
experimental data. Most of the LECs also enter simpler
observables such as, e.g., form factors or the pion-nucleon
coupling. In Table I, we display LECs of LπN which have been
extracted from processes other than pion photoproduction. In
the following, we focus on the contact interactions specific to
pion photoproduction at O(q3) and O(q4). The relevant part
of the Lagrangian is given by

L(3)
πN = d8

2mN

[
i�̄εμναβTr

(
f̃ +

μνuα

)
Dβ� + H.c.

]
+ d9

2mN

[
i�̄εμναβTr

(
f +

μν + 2v(s)
μν

)
uαDβ� + H.c.

]
,

(24)

L(4)
πN = − e48

4mN

[
i�̄Tr

(
f +

λμ + 2v
(s)
λμ

)
hλ

νγ5γ
μDν� + H.c.

]
− e49

4mN

[
i�̄Tr

(
f +

λμ + 2v
(s)
λμ)hλ

νγ5γ
νDμ� + H.c.

]
+ e50

24m3
N

[
i�̄Tr

(
f +

λμ + 2v
(s)
λμ

)
hνργ5γ

λDμνρ� + H.c.
]

− e51

4mN

[
i�̄uλ

[
Dλ, Tr

(
f +

μν +2v(s)
μν

)]
γ5γ

μDν� +H.c.
]

− e67

4mN

[
i�̄Tr

(
f̃ +

λμhλ
ν

)
γ5γ

μDν� + H.c.
]

− e68

4mN

[
i�̄Tr

(
f̃ +

λμhλ
ν

)
γ5γ

νDμ� + H.c.
]

+ e69

24m3
N

[i�̄Tr(f̃ +
λμhνρ)γ5γ

λDμνρ� + H.c.]

− e71

4mN

[i�̄Tr(uλ[Dλ, f̃
+
μν])γ5γ

μDν� + H.c.]

− e112

4mN

[
�̄Tr

(
f +

μν + 2v(s)
μν

)
χ̃−γ5γ

μDν� + H.c.
]

− e113

4mN

[�̄Tr(f̃ +
μνχ̃−)γ5γ

μDν� + H.c.], (25)

where H.c. refers to the Hermitian conjugate. The nucleon
is represented through the isospinor field �, the pion appears
after expanding the so-called chiral vielbein uμ, and the photon
is contained in the field-strength tensors f +

μν and v(s)
μν . For

further definitions, the reader is referred to Ref. [37]. In
neutral pion photoproduction on the proton, only half of the
LECs listed above can be determined, because the (0) and
(+) components of the isospin amplitudes [see Eq. (21)] both
contribute in the same way (see Appendix A). This reduces
the number of independent LECs from twelve to six. In
HBChPT, so far only five constants were considered, because
that calculation took only S and P waves into account. It
turns out that at chiral order O(q4) another LEC appears
which mainly affects the multipole E2−. In HBChPT one can
rearrange the LECs such that two enter E0+ and each of the
three P waves comes with its own LEC. In the relativistic case
the situation is more involved. A unique matching of the LECs
to the multipoles cannot be done, which can be nicely seen
in terms of the 1/mN expansion of the multipoles. At leading
order, one reproduces the result of Ref. [15]. At higher order,
different linear combinations of the constants appear.

Let us now address the renormalization condition. In the
EOMS scheme, only terms explicitly violating the power
counting are subtracted. From the six independent LECs
of the contact diagrams only one is of O(q3). The other
constants are of O(q4) and, therefore, are not necessary
to subtract power-counting-violating contributions, as we
calculated the process up to and including O(q4). After a
heavy-baryon expansion, the combination d8 + d9 appears
only in the multipole P3 at order O(q3) (see Appendix A)
and, therefore, power-counting-violating terms appear only
in this multipole. Furthermore, only diagrams of O(q4) can
produce such contributions. The standard procedure to access
the numerical value of such an LEC is through adjustment
to experimental data. Here, we exploit this fact to avoid the
calculation of the power-counting-violating contribution (see
Appendix B for further details).

Another issue in pion production is isospin symmetry. As
we work in the isospin-symmetric case, the cusp in the E0+
multipole cannot appear. In Ref. [36], instead of the neutral-
pion mass the mass of the π+ was used in the loops, leading
to a phenomenologically correct description of the cusp. We
also use this method to reproduce the cusp. Even though the
effect is much smaller, we also use the neutron mass instead of
the proton mass within the loops. The error one introduces this
way is formally of higher order, because the mass difference
of charged and neutral pions and of proton and neutron is of
higher order.
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IV. RESULTS AND DISCUSSION

A. The RChPT calculation

Up to and including chiral order four, 20 tree and 85
loop diagrams contribute to the more general case of pion
electroproduction. The topologies can, e.g., be found in
Ref. [8]. We calculated all diagrams with the aid of the
computer algebra system MATHEMATICA and the FEYNCALC

package [42]. Even with a modern computer program such
calculations are somewhat cumbersome. Furthermore, using
computers always requires control over the programs used. In
our case crossing symmetry and current conservation provide
important checks on the results. All our results fulfill these
requirements analytically. To evaluate loop integrals, we made
use of the LOOPTOOLS package [43].

Using the formulas for the multipole decomposition, we
are able to project out any desired multipole. For our purposes
we calculated S, P , and D waves. The unknown LECs were
determined via a χ2 fit to the latest MAMI data [22]. These
were taken over a much wider energy range than ChPT can
be applied to. Therefore, we had to determine the best energy
range for a fit. The problem is that higher-energy data have
smaller relative errors, leading to an increase of their weight
in a fit. We found Elab

γ = 165.8 MeV to be a good maximum
energy for the fit range. In Fig. 2, we show how the χ2

red
changes if one includes all data points up to a certain energy
Elab,max

γ . For comparison we also provide the reduced χ2
red of

the HBChPT fit.
It turned out that with the existing data we could only

fit five of the six LECs. The problematic LEC, ẽ49, strongly
influences the E2− multipole and, indirectly, also E0+. Results
for these multipoles, taking ẽ49 into account, are shown in
Appendix C. In our final fit, we decided to set ẽ49 = 0 and
obtained a minimal χ2

red of 1.22.
We estimate the errors of our parameters using the bootstrap

method (see, e.g., Ref. [44] for an introduction). Here, we only
briefly outline the idea. If one has a data set Y = y1, . . . , yn of
length n, one can create m bootstrap samples Y1, . . . , Ym of
length n, where m should be a sufficiently large number. These
new samples consist of the original data points, but randomly
chosen. This means that in an arbitrary sample Yk some data

0.16 0.17 0.18 0.19
0

1

2

3

4

Eγ
lab,max GeV

χ²
do

f

FIG. 2. (Color online) χ 2
red as a function of the fitted energy range.

The black squares and red dots refer to the RBChPT and HBChPT
fits, respectively.

TABLE II. LECs of the contact diagrams. The di are given in
units of GeV−2 and the ei in units of GeV−3. The errors stem from a
bootstrap estimate (see text for details).

LEC Value

d̃9 := d8 + d9 −2.31 ± 0.02
ẽ48 := e48 + e67 −3.0 ± 0.2
ẽ49 := e49 + e68 0
ẽ50 := e50 + e69 −1.2 ± 2.1
ẽ51 := e51 + e71 2.3 ± 1.1
ẽ112 := e112 + e113 −4.4 ± 2.1

points appear twice, three or even more times, while others
are neglected. Every sample can now be fitted in the same
way as the original data. One ends up with m values for the
parameters. The idea behind the bootstrap is that the standard
deviation for each parameter is an estimate of its error. Our
results for the LECs including an error estimate are shown in
Table II.

The graphs for the measured differential cross sections
and photon asymmetries are shown in Figs. 3 and 4. The
corresponding multipoles are shown in Figs. 5 and 6. The
differential cross sections agree nicely with our result in
the fitted energy range. For higher energies some differences
between experiment and our calculation become visible. For
the asymmetries the overall picture is similar; there, the
difference at the highest energies can be traced back to P2 and
P3 which are a little bit too small compared to the single-energy
fit shown in Ref. [22]. The other multipoles agree up to approx-
imately Elab

γ = 170 MeV with the single-energy fits. In Fig. 6,
the physical P -wave multipoles are shown. Using this repre-
sentation, one gets a clearer picture on the deviations from the
data. The multipoles E1+ and M1− agree nicely with the exper-
iment. For the M1+ one can see a rising of the data above Elab

γ =
170 MeV, which is related to the � resonance. As we did not
include it explicitly, this rising does not appear in our curve.
The most important D wave, E2−, is discussed in Appendix C.

As we now have the important multipoles in the thresh-
old region, we can make some predictions for upcoming
experiments. Therefore, in Fig. 7 we show the polarization
observables T , P , E, F , G, and H . Additionally, we show
the predictions of the DMT model [23]. We show the angular
distribution at a fixed energy W = 1090 MeV and the energy
dependence at either �π = 90◦ or �π = 45◦, depending on
the approximate extreme value of the observables. We find a
good agreement between RChPT and DMT.

B. Comparison with HBChPT

The HBChPT calculation of Ref. [15] has been analyzed
several times in the light of new experimental data [14,15,
29,30,45,46]. Here, we fit the LECs in the same way to the
experiment as in the relativistic case, allowing for a better
comparison between both calculations. Note that the HBChPT
fit of Refs. [22,46] extends to a larger value of Elab

γ which, as
we have checked within our calculation, partly explains the
difference between the two HBChPT results in Fig. 5. Another
source for the discrepancy is the use of different values for the
coupling constants and different fitting procedures.
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FIG. 3. (Color online) Differential cross sections σ0(�π ) in μb/sr as a function of the c.m. production angle �π . The graphs are shown
for increasing photon energies in the laboratory frame. The solid (black) curves show the results in RChPT at O(q4), the dashed (red) curves
show the same chiral order in HBChPT. The fits make use of data up to and including Elab

γ = 165.8 MeV, i.e., the first nine figures. The data
are taken from Ref. [22].

As mentioned before, D waves are expected to be of some
importance for extracting the E0+ multipole. We do not have
the heavy-baryon result for the D waves. Therefore, we use the
Born terms to calculate D waves. In addition, we included
the heavy-baryon-expanded contribution of the sixth LEC to
E2−. Eventually, we experienced similar problems fitting this
LEC as in the RChPT case. For that reason, we also set this
constant to zero and used only the Born terms for the D
waves. With a value of 1.11, the χ2

red is better than in the

relativistic case. One can see this in the observables too, as
the heavy-baryon calculation seems to agree slightly better
with the data. The multipoles also support this picture (see
Fig. 6). In particular, the multipole M1+ is dominated by the
�(1232) excitation which, in the present calculation, is not
included as an explicit degree of freedom. The heavy-baryon
approximation is more flexible to fitting, because the LECs
decouple and it is the constant bp that can be used to fit M1+
even at higher energies without destroying other multipoles.
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FIG. 4. (Color online) Photon asymmetries � as a function of the c.m. production angle �π . The graphs are shown for increasing photon
energies in the laboratory frame. The solid (black) curves show the results in RChPT at O(q4), the dashed (red) curves show the same chiral
order in HBChPT. The fits make use of data up to and including Elab

γ = 165.8 MeV, i.e., the first nine figures. The data are taken from Ref. [22].

The LECs we obtained are listed in Table III. On the other hand,
the convergence properties of the relativistic result look more
favorable. To illustrate this we also display the multipoles one
gets, when switching off the LECs. The difference between
the final result and this case is some indication of how good
the series converges. Comparing the size of the LECs leads
to the same conclusion. The most dramatic effect appears in the
case of P3, where in HBChPT the LEC completely dominates
the Born and loop terms. This gives us confidence that certain
higher-order terms are very important here. The relativistic

calculation keeps some corrections up to infinite order and
this improves the convergence behavior.

Another interesting quantity one can derive from pion
photoproduction is the so-called β parameter [30] of the
unitarity cusp [24]. It is linked to pion-nucleon scattering and
charged pion photoproduction via

β = Mπ+ Re[E0+(γ, π+)] acex(π+n → π0p)

= (3.35 ± 0.08) × 10−3/Mπ+ , (26)
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FIG. 5. (Color online) Real parts of the S- and P -wave multipoles
as a function of Elab

γ . The solid (black) curves show the result in
RChPT at O(q4), the dash-dotted (red) curves show the same chiral
order in HBChPT. The dashed (black) lines show the RChPT result
without the LECs, the dotted (red) lines show the HBChPT result
without the LECs. The long-dashed (green) curves show the HBChPT
fit of Ref. [22]. The data points are taken from a single-energy fit from
Ref. [22].

where the numerical estimate [46] is based on
Re[E0+(γ, π+)] = (28.06 ± 0.27 ± 0.45) × 10−3/Mπ+ [47]
and acex(π+n → π0p) = (0.1195 ± 0.0016)/Mπ+ [48].1

Close to threshold, unitarity connects this parameter to the
imaginary part of E0+(γ, π0),

Im[E0+(γ, π0)] = βq+, (27)

where q+ is proportional to the three-momentum |�qπ+| of a
π+ in the c.m. frame,

q+ = |�qπ+|/Mπ+ . (28)

1The sign is adjusted to the nonspherical convention for pion fields
and states.
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FIG. 6. (Color online) Physical P -wave multipoles as a function
of Elab

γ . The solid (black) curves show the results in RChPT at O(q4),
the dashed (red) curves show the same chiral order in HBChPT. The
data points stem from a single-energy fit from Ref. [22].
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FIG. 7. (Color online) The polarization observables T , P , E,
F , G, and H . The left column shows the angular dependence at
W = 1090 MeV and the right column shows the energy dependence
of T , E, and G for �π = 90◦ and of P , F , and H for �π = 45◦,
respectively. The solid (black) curves show the RChPT results and
the dashed (blue) curves show the DMT model.

To pin down the numerical value of β, we fit the imaginary
part of E0+ to the following series:

Im[E0+(γ, π0)] = q+

(
β + γ

Elab
γ − Elab,thr

γ

Mπ+

)
. (29)

In the case of the relativistic calculation, we get βR = 3.16 ×
10−3/Mπ+ and γR = −1.08 × 10−3/Mπ+ , and HBChPT
results in βHB = 2.83 × 10−3/Mπ+ and γHB = −1.97 ×
10−3/Mπ+ . Both results are predictions, as all LECs were
fixed in other processes, including pion-nucleon scattering.
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TABLE III. Values of the LECs in HBChPT obtained from a fit
to Ref. [22]. We decided to set e49HB = 0 (see text). The errors stem
from a bootstrap estimate (see text for details).

a1 (15.2 ± 2.7) GeV−4

a2 (−7.6 ± 2.5) GeV−4

ξ1 33.3 ± 0.5
ξ2 −31.8 ± 0.5
bp (20.9 ± 0.1) GeV−3

e49HB 0

Nevertheless, both results are too small compared to the value
of Eq. (26), β = (3.35 ± 0.08) × 10−3/Mπ+ . The relativistic
result is somewhat closer, indicating that, again, certain higher-
order contributions are important. In Fig. 8, the imaginary part
of E0+ is shown as a function of Elab

γ .

V. SUMMARY

In this article we presented a full RChPT calculation up
to O(q4) and one-loop order for π0 photoproduction on
the proton. The amplitude was calculated with the aid of
MATHEMATICA and additional packages. Several tests were
utilized to check our results.

The next step was an analysis of the results in terms of
multipoles. We took S, P , and D waves into account, as
these are the only relevant multipoles in the threshold region.
The LECs of the contact diagrams were fitted using data of
the latest MAMI experiment for differential cross sections
and photon asymmetries. Our calculation agrees well with
the experimental data up to photon energies of approximately
170 MeV in the laboratory frame.

We also discussed some of the properties of the LECs
concerning the multipoles. We found that there are six LECs, of
which one (ẽ49) is very important for the determination of E2−
and, therefore, also for E0+. With the existing data we cannot
narrow down this constant, because an unconstrained fit gives
an unnaturally large value for this LEC. Hence, we decided
to neglect it in our main analysis. With the multipoles at hand
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FIG. 8. (Color online) Imaginary part of E0+ as a function of
Elab

γ . The solid (black) curve shows the result in RChPT at O(q4),
the dashed (red) curve shows the same chiral order in HBChPT.
The (green) band shows the result from unitarity with β = (3.35 ±
0.08) × 10−3/Mπ+ and γ = 0.

we also gave some predictions for polarization observables for
future experiments.

In addition, we compared our results with HBChPT. Even
though the latter seems to describe the experimental data
slightly better, the corresponding LECs have rather large
values. This indicates that the relativistic calculation contains
important higher-order effects. This can also be seen in the β
parameter, where the RChPT result is closer to the commonly
accepted value stemming from unitarity.

Our numerical results are available through a web inter-
face [49]. The freedom to change the LECs gives one the
opportunity to explore our results further in the light of new
upcoming data. We also give results for pion electroproduction
and for all four physical reaction channels. The details will be
discussed in a forthcoming publication [50].

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (SFB 443 and 1044). The authors would like to
thank D. Drechsel, J. Gegelia, and D. Djukanovic for useful
discussions and support. We also thank the A2 and CB-TAPS
collaborations for making available the experimental data prior
to publication.

APPENDIX A: HEAVY-BARYON EXPANSION OF THE
CONTACT CONTRIBUTIONS

Here, we provide the results of expanding the contact
contributions to E0+, the three P waves, and E2− in powers of
1/mN up to and including next-to-leading order (heavy-baryon
expansion):

M = M[0] + 1

mN

M[1] + O

(
1

m2
N

)
. (A1)

Using the definitions of Table II, we obtain at leading order

E
[0]
0+ = e(6ẽ48 + 2ẽ49 − 4ẽ50 + 3ẽ51)E3

π

12πF

− e (3ẽ112 + ẽ49) M2Eπ

6πF
, (A2)

P̄
[0]
1 = −e(2ẽ48 + ẽ51)E2

π

4πF
, (A3)

P̄
[0]
2 = eẽ48E

2
π

2πF
, (A4)

P̄
[0]
3 = −ed̃9Eπ

πF
, (A5)

Ē
[0]
2− = −eẽ49Eπ

6πF
. (A6)

At next-to-leading order, the results read

E
[1]
0+ = e(3ẽ112 + ẽ49)M4

12πF

+ e(6ẽ112 − 12ẽ48 − 4ẽ49 + 12ẽ50 − 5ẽ51)M2E2
π

24πF

+ e(−3ẽ48 + ẽ49 − 2ẽ50 − 2ẽ51)E4
π

12πF
, (A7)
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P̄
[1]
1 = e(2ẽ48 − 2ẽ50 + ẽ51)E3

π

4πF

+ e(−ẽ112 + 2ẽ48 + ẽ51)M2Eπ

4πF
, (A8)

P̄
[1]
2 = e(6ẽ49 + 4ẽ50 − 3ẽ51)E3

π

24πF
+ e(ẽ112 − 2ẽ48)M2Eπ

4πF
,

(A9)

P̄
[1]
3 = ed̃9M

2

2πF
, (A10)

Ē
[1]
2− = eẽ49M

2

12πF
− e(6ẽ48 + 4ẽ49 + ẽ51)E2

π

48πF
. (A11)

As one can clearly see, only the lowest order allows for a
rearrangement of the LECs such that one can uniquely assign
them to the different multipoles. For P3 this also works up
to and including first order. However, the other multipoles
generate new mixings of the LECs at next-to-leading order.

APPENDIX B: RENORMALIZATION OF
POWER-COUNTING-VIOLATING CONTRIBUTIONS

To some extent the EOMS scheme can be utilized to
renormalize diagrams without explicitly calculating the power-
counting-violating part of the diagrams. Here, we explain
this statement using a generic example, namely, the mass
of a particle. Let us assume for the sake of simplicity that,
after renormalization, power counting predicts a tree-level
contribution of chiral order O(q0) and a loop contribution
of chiral order O(q2). Before renormalization, the mass is of
the form

m = LEC0 + Loop0, (B1)

where LEC0 represents an unknown bare LEC and Loop0

represents the unrenormalized loop contribution. In the
following, we neglect any ultraviolet divergences in these
expressions, i.e., we assume that they have been taken care
of by applying the modified minimal subtraction scheme of
ChPT [33]. We indicate this fact in terms of a superscript r .
The infrared regular part of the loop contribution (Loopr

IR) can
be symbolically written as

Loopr
IR = αr

0 + αr
2q

2 + αr
4q

4 + · · · , (B2)

where q is a small quantity. For notational convenience, we
have assumed only even powers of q. According to the above
assumption, αr

0 violates the power counting. Renormalizing the
loop contribution in the EOMS scheme amounts to subtracting
the power-counting-violating term αr

0 from Loopr
IR [18]. In

other words, Loopr
IR is replaced by LoopR

IR , and Eq. (B2)
simply becomes

LoopR
IR = αR

2 q2 + αR
4 q4 + · · · . (B3)

Note that, in general, the higher-order coefficients α2, α4, . . .
are expressed in terms of EOMS-renormalized quantities. In
this case, the expression for the mass reads

m = LECR + LoopR, (B4)
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FIG. 9. (Color online) Results for the multipole E0+ (left) and
the reduced multipole Ē2− with ẽ49 = 0 (solid line) and ẽ49 = −35.7
GeV−3 (dashed line). The latter value stems from a free fit to the
data.

where the renormalized constant LECR now absorbs the
power-counting-violating part. Comparing Eqs. (B1) and (B4),
the following connection can be made:

LECr + αr
0 = LECR. (B5)

The two expressions LECr and LECR only differ by the
(numerical) value of αr

0. In conclusion, adjusting LECs
numerically is sufficient to renormalize diagrams. However,
this procedure also has some drawbacks. First of all, only the
sum of the adjusted LECs and the loop diagrams satisfies the
power counting whereas in the standard EOMS procedure each
renormalized diagram satisfies the power counting separately.
As a consequence, in our calculation we cannot separate the
fourth-order loop correction for P3. Another general problem
is that the LEC does not necessarily have to be of natural size
anymore, as it contains a power-counting-violating part. In our
specific case this is true for loop diagrams at fourth order that
are renormalized in terms of d̃9. Nevertheless, in the present
case, it turns out that this part is either small or has the opposite
sign and same magnitude of the numerical contribution of the
renormalized coupling, because even though d̃9 contains a
power-counting-violating part it is of natural size.

APPENDIX C: THE LEC ẽ49

In principle, the LEC ẽ49 appears in all multipoles, but as
one can see from Eq. (A6) it mainly affects E2−. This multipole
mixes strongly with E0+. When performing a completely
unconstrained fit, the solution with the lowest χ2

red now is
χ2

red = 1.14 and changes the values of E2− significantly. The
numerical value for ẽ49 becomes unnaturally large, as one can
see from Table IV. The multipoles affected most are shown
in Fig. 9. From the point of view of naturalness, it is very

TABLE IV. LECs of the contact diagrams in a fit including ẽ49.
The di are given in units of GeV−2 and the ei in units of GeV−3.

LEC Value

d̃9 := d8 + d9 −2.30
ẽ48 := e48 + e67 2.44
ẽ49 := e49 + e68 −35.7
ẽ50 := e50 + e69 1.8
ẽ51 := e51 + e71 −8.6
ẽ112 := e112 + e113 −4.8
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unlikely that an LEC picks up such a large value. Therefore,
we believe such a large value to be an artifact until beam-target
double polarization observables E and F are available. This
artifact can also be seen in the heavy-baryon calculation.

There, we used the lowest-order contribution of the LEC for
E2− [see Eq. (A6)], as it would appear in exactly the same
way in a true heavy-baryon calculation at O(q4) including D
waves.
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