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One-loop contributions in the effective field theory for the �N → NN transition
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We consider the �N → NN weak transition, responsible for a large fraction of the nonmesonic weak decay
of hypernuclei. We follow the previously derived effective field theory and compute the next-to-leading one-loop
corrections. Explicit expressions for all diagrams are provided, which result in contributions to all relevant partial
waves.
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I. INTRODUCTION

One of the major challenges in nuclear physics is to un-
derstand the interactions among hadrons from first principles.
For more than 20 years, many research groups have directed
their efforts to develop effective field theories (EFTs), working
with the idea of separating the nuclear force in long-range
and short-range components. The underlying premise was
that low-energy processes, as the ones encountered in nuclear
physics, should not be affected by the specific details of the
high-energy physics.

The typical energies associated with nuclear phenomena
suggest that the appropriate degrees of freedom are nucleons
and pions (or the ground-state baryon and pseudoscalar octets
for processes involving strangeness), interacting derivatively
as it is dictated by the effective chiral Lagrangian. The nuclear
interaction is characterized by the presence of very different
scales, going from the values of the masses of the light
pseudoscalar bosons to the ones of the ground-state octet
baryons. The EFT formalism makes use of this separation of
scales to construct an expansion of the Lagrangian in terms of
a parameter built up from ratios of these scales. For example,
in the study of the low-energy nucleon-nucleon interaction,
a clear separation of scales is seen between the external
momentum of the interacting nucleons, a soft scale which
typically takes values up to the pion mass, and a hard scale
corresponding to the nucleon mass. While the long-range part
of this interaction is governed by the light scale through the
pion-exchange mechanism, short-range forces are accounted
for by zero-range contact operators, organized according to an
increasing number of derivatives. These contact terms, which
respect chiral symmetry, have values which are not constrained
by the chiral Lagrangian, and therefore, their relative strength
(encapsulated in the size of the low-energy coefficients,
LECs) has to be obtained from a fit to nuclear observables.
The large amount of experimental data for the interaction
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among pions and nucleons has made it possible to perform
successful EFT calculations of the strong nucleon-nucleon
interaction up to fourth order in the momentum expansion
[O(p4)], at next-to-next-to-next-to-leading order (N3LO) in
the heavy-baryon formalism [1,2]. In the weak sector, the
study of nucleon-nucleon parity violation (PV) with an EFT
at leading order has been undertaken in Ref. [3], where the
authors discuss existing and possible few-body measurements
that can help in constraining the relevant (five) low-energy
constants at order p in the momentum expansion and the ones
associated with dynamical pions.

In the strange sector, the experimental situation is less
favorable owing to the short lifetime of hyperons, unsta-
ble against the weak interaction. This fact complicates the
extraction of information regarding the strong interaction
among baryons in free space away from the nucleonic sector.
Nevertheless, SU(3) extensions of the EFT for nucleons and
pions have been developed at leading order (LO) [4–7] and
next-to-leading (NLO) order [8]. In the present work we
consider the weak four-body �N → NN interaction, which
is accessible experimentally by looking at the decay of �-
hypernuclei, bound systems composed of nucleons and one
� hyperon. These aggregates decay weakly through mesonic
(� → Nπ ) and nonmesonic (�N → NN ) modes, the former
being suppressed for mass numbers of the order or larger
than 5, owing to the Pauli blocking effect acting on the
outgoing nucleon. In contrast to the weak NN PV interaction,
which is masked by the much stronger parity conserving (PC)
strong NN signal, the weak |�S| = 1 �N interaction has the
advantage of presenting a change of flavor as a signature,
favoring its detection in the presence of the strong interaction.

The first studies of the weak �N interaction using a
lowest order effective theory were presented in Refs. [9–11].
These works included the exchange of the lighter pseudoscalar
mesons while parametrizing the short-range part of the
interaction with contact terms at order O(q0), where q denotes
the momentum exchanged between the interacting baryons.
While the results of Ref. [11] show that it is possible to
reproduce the hypernuclear decay data with the lowest order
effective Lagrangian, the stability of the momentum expansion
has to be checked by including the next order in the EFT.
If an EFT can be built for the weak �N → NN transition,
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the values for the LECs of the theory, which encode the
high-energy components of the interaction, should vary within
a reasonable and natural range when one includes higher orders
in the calculation. Compared to the LO calculation, which
involves two LECs, the unknown baryon-baryon-kaon vertices
and the pseudoscalar cutoff parameter in the form factor, the
NLO calculation introduces additional unknowns, namely, the
parameters associated with the new contact terms (three when
one neglects the small value of the momentum of the initial
particles, a nucleon and a hyperon bound in the hypernucleus,
in front of the momentum of the two outgoing nucleons) and
the couplings appearing in the two-pion exchange diagrams.
Therefore, to constrain the EFT at NLO, one needs to
collect enough data, either through the accurate measure of
hypernuclear decay observables or through the measure of the
inverse reaction in free space, np → �p. Unfortunately, the
small values of the cross sections for the weak strangeness
production mechanism, of the order of 10−12 mb [12–14], has
prevented, for the time being, its consideration as part of the
experimental data set, despite the effort invested in extracting
different polarization observables for this process [15,16]. At
present, quantitative experimental information on the |�S| =
1 weak interaction in the baryonic sector comes from the
measure of the total and partial decay rates of hypernuclei
and an asymmetry in the number of protons detected parallel
and antiparallel to the polarization axis, which comes from
the interference between the PC and PV weak amplitudes.
Because observables from one hypernucleus to another can
be related through hypernuclear structure coefficients, one has
to be careful in selecting the data that can be used in the
EFT calculation. For example, while one may indeed expect
measurements from different p-shell hypernuclei, say, A = 12
and 16, to provide with the same constraint, the situation is
different when including data from s-shell hypernuclei like
A = 5. For the latter, the initial �N pair can only be in a
relative s state, while for the former, relative p states are
allowed as well.

In this paper we present the analytic expressions to be
included at NLO in the effective theory for the weak �N
interaction. These expressions have been derived by consid-
ering four-fermion contact terms with a derivative operator
insertion together with the two-pion exchange mechanism.

The paper is organized as follows. In Sec. II we introduce
the Lagrangians and the power counting scheme we use to
calculate the relevant Feynman diagrams. In Secs. III and IV
we present the LO and NLO potentials for the �N → NN
transition, and a comparison between both contributions is
performed in Sec. V. We conclude and summarize in Sec. VI.

II. INTERACTION LAGRANGIANS AND
COUNTING SCHEME

The nonmesonic weak decay of the � involves both the
strong and the electroweak interactions. The � decay is
mediated by the presence of a nucleon which in the simplest
meson-exchange picture, exchanges a meson, e.g., π , K , with
the �. Thus, computing the transition requires the knowledge
of the strong and weak Lagrangians involving all the hadrons

Λ N

π q

Σ N

π q

N N

K q

FIG. 1. Weak vertices for the �Nπ , �Nπ , and NNK stemming
from the Lagrangians in Eq. (2.1). The weak vertex is represented by
a solid black circle.

entering in the process. In this section we describe the
strong and weak Lagrangians entering at LO and NLO in
the �N → NN interaction.

The weak interaction between the �, �, and N baryons
and the pseudoscalar π and K mesons is described by the
phenomenological Lagrangians

Lw
�Nπ = −iGF m2

π�N (A + Bγ 5)�τ · �π��,

Lw
�Nπ = −iGF m2

π�N ( �A�i
+ �B�i

γ 5) · �π��i
,

(2.1)
Lw

NNK = −iGF m2
π

[
ψN

(
0
1

)
(CPV

K + CPC
K γ5) (φK )†ψN

+ψNψN (DPV
K + DPC

K γ5) (φK )†
(

0
1

)]
,

where GF m2
π = 2.21 × 10−7 is the weak Fermi coupling

constant, γ are the Dirac matrices, and τ the Pauli matrices
(see Fig. 1). The index i appearing in the � field refers to the
different isospurion states for the � hyperon:

�� 1
2

=
⎛
⎝−

√
2
3�+

1√
3
�0

⎞
⎠ , �� 3

2
=

⎛
⎜⎜⎜⎜⎝

0

− 1√
3
�+√

2
3�0

�−

⎞
⎟⎟⎟⎟⎠ . (2.2)

The PV and PC structures, �A�i
and �B�i

, contain the corre-
sponding weak coupling constants together with the isospin
operators τ a for 1

2 → 1
2 transitions and T a for 1

2 → 3
2 tran-

sitions. The weak couplings A = 1.05, B = −7.15, A� 1
2

=
−0.59, A� 3

2
= 2.00, B� 1

2
= −15.68, and B� 3

2
= −0.26 [17]

are fixed to reproduce the experimental data of the corre-
sponding hyperon decays, while the ones involving kaons,
CPC

K = −18.9, DPC
K = 6.63, CPV

K = 0.76, and DPV
K = 2.09, are

derived using SU(3) symmetry.
The other two weak vertices entering at the considered order

(Fig. 2) are obtained from the weak SU(3) chiral Lagrangian,

Lw
�Nππ = GF m2

π

h2π

f 2
π

(�π · �π )���,

(2.3)
Lw

�N = iGF m2
πh�N���,

Λ N

π

q1 q2

π
a b

Λ N

FIG. 2. Weak vertices corresponding to the �Nππ and �N

interactions. The corresponding Lagrangians are given in Eq. (2.3).
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FIG. 3. Strong vertices for the NNπ , NNππ , ��π , and �NK

which arise from the Lagrangians in Eq. (2.4).

with h2π = (D + 3F )/(8
√

6GF m2
π ) = −10.13 MeV and

h�N = −(D + 3F )/(
√

6GF m2
π ) = 81.02 MeV.D and F are

the couplings parametrizing the weak chiral SU(3) Lagrangian,
and can be fitted through the pole model to the experimentally
known hyperon decays. In that case, one finds that when s-
wave amplitudes are correctly reproduced, p-wave amplitude
predictions disagree with the experiment [18].

The strong vertices for the interaction between our baryonic
and mesonic degrees of freedom are obtained from the strong
SU(3) chiral Lagrangian [18],

Ls
NNπ = − gA

2fπ

�γ μγ5 �τ� · ∂μ �π,

Ls
NNππ = − 1

4f 2
π

�γ μ�τ · (�π × ∂μ �π )�,

(2.4)

Ls
��π = − Ds√

3
��γ μγ5�� · ∂μ �π,

Ls
�NK = Ds + 3Fs

2
√

3fπ

�Nγ μγ5 ∂μφK��,

where we have taken the convention which gives us �� · �π =
��+π− + ��−π+ + ��0π0, and we consider gA = 1.290,
fπ = 92.4 MeV, Ds = 0.822, and Fs = 0.468. These strong
coupling constants are taken from NN interaction models
such as the Jülich [19] or Nijmegen [20] potentials. The four
interaction vertices corresponding to these Lagrangians are
depicted in Fig. 3.

Once the interaction Lagrangians involving the relevant
degrees of freedom have been presented, we need to define
the power counting scheme which allows us to organize the
different contributions to the full amplitude.

A. Power counting scheme

The amplitude for the �N → NN transition is built as the
sum of medium- and long-range one-meson exchanges (i.e.,
π and K), the contribution from the two-pion exchanges, and
the contribution of the contact interactions up to O(q2/M2), as
described below. The order in which the different terms enter
the perturbative expansion of the amplitudes is given by the
so-called Weinberg power counting scheme [21].

In our calculations we employ the heavy-baryon formalism
[22]. This technique introduces a perturbative expansion in

the baryon masses appearing in the Lagrangians, so that this
new large scale does not disrupt the well-defined Weinberg
power counting. It is worth noting that, in the heavy-baryon
formalism, terms of the type �Bγ 5�B are subleading in front
of terms like �B�B , because they show up at one order higher
in the heavy-baryon expansion. In our calculation, we choose
to keep both terms in our Lagrangians of Eqs. (2.1) because
the experimental values for the couplings B� and B� are much
larger than A� and A� . For example, A� = 1.05 and B� =
−7.15 [18].

Our calculation is characterized by the presence of different
octet baryons in the relevant Feynman diagrams, contributing
in both the spinors and the propagators. The spinors for the
incoming � and N with masses M� and MN , energies E�

p and
EN

p , and momenta �p and − �p are

u1
(
E�

p , �p) =
√

E�
p + M�

2M�

⎛
⎝ 1

�σ1· �p
E�

p + M�

⎞
⎠ ,

(2.5)

u2
(
EN

p ,− �p) =
√

EN
p + MN

2MN

⎛
⎝ 1

− �σ2· �p
EN

p + MN

⎞
⎠ ,

and for the outgoing nucleons with momenta �p ′ and − �p ′, and
energy E′ ≡ 1

2 (E�
p + EN

p ),

ū1(E′, �p ′) =
√

E′ + MN

2MN

(
1 − �σ1· �p ′

E′ + MN

)
,

(2.6)

ū2(E′,− �p ′) =
√

E′ + MN

2MN

(
1

�σ2· �p ′

E′ + MN

)
.

The relativistic propagator of a baryon with mass MB and
momentum p reads

i

/p − MB + iε
= i(/p + MB)

p2 − M2
B + iε

. (2.7)

Heavy-baryon expanding with these spinors and propagators
introduces mass differences (M� − MN , M� − M�) in the
baryonic propagators. A reasonable approach would be to
consider these mass differences of order O(�q 2/�2), MB =
M + O(�q 2/�2), and thus they would not enter in the loop
diagrams. We have chosen to leave the physical masses in
both the initial and the final spinors and also in the intermediate
propagators; i.e., we consider the mass differences as another
scale in the heavy-baryon expansion. The corresponding SU(3)
symmetric limit is also given at the end of Sec. IV B and can
be easily obtained from our expressions by setting the mass
differences, which we explicitly retain, to zero.

The procedure we follow to compute the different Feynman
diagrams entering the transition amplitude is the following:
First we write down the relativistic expressions for each
diagram, and then afterwards we perform the heavy-baryon
expansion.

In the next sections we describe the LO and NLO con-
tributions to the process �N → NN , following the scheme
presented here. The explicit expressions and details of the
calculations are given in the Appendices.
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Λ N

N N

π

Λ N

N N

K
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N N

FIG. 4. LO contributions to the EFT coming from one-pion-
exchange, one-kaon-exchange and contact interactions.

III. LEADING ORDER CONTRIBUTIONS

For completeness, we rewrite here the LO EFT already
presented in Ref. [11] and then build the NLO contributions
in the next section.

At tree level, the transition potential �N → NN involves
the LO contact terms and π and K exchanges, as depicted in
Fig. 4. First, the contact interaction can be written as the most
general Lorentz invariant potential with no derivatives. The
four-fermion (4P) interaction in momentum space at LO (in
units of GF ) is

V4P (�q ) = C0
0 + C1

0 �σ1 �σ2, (3.1)

where C0
0 and C1

0 are low-energy constants which need to be
fitted by direct comparison to experimental data. In Ref. [11]
we presented several sets of values which were to a large extent
compatible with the scarce data on hypernuclear decay.

The potentials for the one-pion and one-kaon exchanges,
as functions of transferred momentum �q ≡ �p ′ − �p, read,
respectively [23],

Vπ (�q ) = −GF m2
πgNNπ

2MN

(
Aπ − Bπ

2M
�σ1 �q

)

× �σ2 �q
−q2

0 + �q 2 + m2
π

�τ1 · �τ2, (3.2)

VK (�q ) = GF m2
πg�NK

2M

(
Â + B̂

2MN

�σ2 �q
)

× �σ1 �q
−q2

0 + �q 2 + m2
K

, (3.3)

where mπ = 138 MeV and mK = 495 MeV, q0 ≡ 1
2 (M� −

MN ), gNNπ ≡ gAMN

fπ
, g�NK ≡ −Ds+3Fs

2
√

3fπ
, M ≡ 1

2 (MN + M�),
and

Â =
(

CPV
K

2
+ DPV

K + CPV
K

2
�τ1 �τ2

)
,

B̂ =
(

CPC
K

2
+ DPC

K + CPC
K

2
�τ1 �τ2

)
.

IV. NEXT-TO-LEADING ORDER CONTRIBUTIONS

The NLO contribution to the weak decay process, �N →
NN , includes contact interactions with one and two deriva-
tive operators, caramel diagrams, and two-pion-exchange
diagrams.

TABLE I. All possible PC and PV NLO operational structures
connecting the initial and final spin and angular momentum states.
There are a total of 20.

Order Parity Structures

0 PC 1, �σ1 · �σ2

1 PV
�σ1 · �q, �σ1 · �p, �σ2 · �q,

�σ2 · �p, (�σ1 × �σ2) · �q, (�σ1 × �σ2) · �p,

2 PC
�q2, �p2, (�σ1 · �σ2)�q2, (�σ1 · �σ2) �p2, (�σ1 · �q)(�σ2 · �q),

(�σ1 · �p)(�σ2 · �p), (�σ1 + �σ2) · (�q × �p)

2 PV
�q · �p, (�σ1 · �σ2)�q · �p, (�σ1 · �q)(�σ2 · �p),
(�σ1 · �p)(�σ2 · �q), (�σ1 − �σ2) · (�q × �p)

A. NLO contact potential

In principle, the NLO contact potential should include, in
the center of mass, structures involving both the initial ( �p ) and
final ( �p ′) momenta, or independent linear combinations, e.g.,
�q ≡ �p ′ − �p and �p. Table I lists all these possible structures.
At NLO there are 18 LECs—6 PV ones at order O(q/M),
7 PC ones at order O(q2/M2), and 5 PV ones at order
O(q2/M2)—which must be fitted to experiment. This is
not feasible with current experimental data on hypernuclear
decay. A reasonable way to reduce the number of LECs and
render the fitting procedure more tractable is to note that the
pionless weak decay mechanism we are interested in takes
place inside a bound hypernucleus. Thus, one can consider
that in the �N → NN transition potential the initial baryons
have a fairly small momentum. Moreover, the final nucleons
gain an extra momentum from the surplus mass of the �
(M� − MN = 116 MeV), which in most cases make it possible
to consider �p ′ � �p. In this case, one may approximate �q � �p ′
and �p = 0. Within this approximation, the NLO part of the
contact potential reads (in units of GF )

V4P (�q ) = C0
1

�σ1 �q
2MN

+ C1
1

�σ2 �q
2MN

+ i C2
1

(�σ1 × �σ2) �q
2MN

+C0
2

�σ1 �q �σ2 �q
4M2

N

+ C1
2

�σ1 �σ2 �q 2

4M2
N

+ C2
2

�q 2

4M2
N

. (4.1)

Using strong and weak LO contact interactions and two
baryonic propagators, one can also build three diagrams that
enter at NLO. These caramel-like diagrams are shown in Fig. 5.
They differ only in the position of the strong and weak vertices
and in the mass of the upper-leg baryonic propagator. To
write a general expression for the three caramel diagrams
we label the mass of the upper-leg propagating baryon Mα

(Ma = MN , Mb = M�, and Mc = M�) and the corresponding

Λ N

N N

N

N

Λ N

N N

Λ

N

Λ N

N N

Σ

N

(a) (b) (c)

FIG. 5. Caramel diagrams contributing to the process at NLO.
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Σ
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FIG. 6. Corrections to the LO contact interactions. The contribu-
tions of all these diagrams can be accounted for by an adequate shift
of the coefficients of the LO contact terms.

strong and weak contact vertices Cα
S(s) + Cα

T (s) �σ1 · �σ2 and
Cα

S(w) + Cα
T (w) �σ1 · �σ2, where α = a, b, c corresponds to the

labels of Fig. 5. It is also convenient to define Mα = MN + �α .
In the heavy-baryon formalism these diagrams only contribute
with an imaginary part of the form

Vα = i
GF m2

π

16πMN

(
Cα

S(s) + Cα
T (s) �σ1 · �σ2

) (
Cα

S(w) + Cα
T (w) �σ1 · �σ2

)
×

√
(�b − �α)

[
1
2 (�b + �α) + MN

] + �p2. (4.2)

Few more details are given in Appendix A.
One pion corrections to the LO contact interactions, shown

in Fig. 6, also enter at NLO. The net contribution of these
diagrams is to shift the coefficients of the LO contact terms
with functions dependent on mπ , M� − MN , and M� − MN .

B. Two-pion-exchange diagrams

The two-pion-exchange contributions are organized accord-
ing to the different topologies—balls, triangles, and boxes—
such that most of the integration techniques are shared by
each class of diagrams. There are two types of ball diagrams,
of which only one gives a nonzero contribution, depicted in
Fig. 7. In addition, there are four triangle diagrams, shown
in Fig. 8, and two box and crossed-box diagrams, shown in
Fig. 9. The topologies contain, respectively, zero, one, and
two baryonic propagators, which may correspond to N or �
baryons. All the diagrams contain two relativistic propagators
from the 2−π exchange.

Λ N

N N

N

(a)

FIG. 7. The ball diagram contributing to the process at NLO.

The technical details of the evaluation of the Feynman
diagrams for the ball, triangle, and box diagrams are given
in Appendices B, C, and D, respectively. The main technique
used is to introduce a number of master integrals, which appear
in different diagrams, and which reduce the mathematical
complexity of the problem (see Appendix E). Once they
are defined, we derive a number of relations between the
master integrals, which can in most cases be easily checked.
Full details are provided to ensure the future use of these
expressions.

Using the labels defined in Figs. 7, 8 and 9 we organize the
contributions of all the 2 − π exchange diagrams in Eq. (4.3).
The corresponding coefficients in terms of the coupling
constants, baryon and meson masses, and momenta can be
read off from the full expressions given in the Appendices B,
C, and D:

Va = ca1 �τ1 · �τ2, Vb = cb1, Vc = cc1 �τ1 · �τ2,

Vd = [cd1 + cd2 �σ1 · �q + cd3 (�q · �p)

+ cd4 �σ1 · (�q × �p)](�τ1 · �τ2), (4.3)

Ve = (ce1 + ce2 �σ1 · �q)(�τ1 · �τ2),

Vf = [cf 1 + cf 2 �σ1 · �σ2 + cf 3 �σ1 · �q + cf 4(�σ1 × �σ2) · �q
+ cf 5(�σ1 · �q)(�σ2 · �q) + cf 6(�σ1 · �q)(�σ2 · �p)

+ cf 7 �σ1 · ( �p × �q) + cf 8 �σ2 · ( �p × �q)](c′
f 1 + c′

f 2 �τ1 · �τ2),

Vg = [cg1 + cg2 �σ1 · �σ2 + cg3(�σ1 · �q)(�σ2 · �q)]

× (c′
g1 + c′

g2 �τ1 · �τ2)

+ [cg4 �σ1 · �q + cg5(�σ1 × �σ2) · �q](c′′
g1 + c′′

g2 �τ1 · �τ2),
(4.4)

Vh = [ch1 + ch2 �σ1 · �σ2 + ch3 �σ1 · �q + ch4(�σ1 × �σ2) · �q
+ ch5(�σ1 · �q)(�σ2 · �q) + ch6(�σ1 · �q)(�σ2 · �p)

+ ch7 �σ1 · ( �p × �q) + ch8 �σ2 · ( �p × �q)](c′
h1 + c′

h2 �τ1 · �τ2),

Vi = [ci1 + ci2 �σ1 · �σ2 + ci3(�σ1 · �q)(�σ2 · �q)]

× (c′
i1 + c′

i2 �τ1 · �τ2)

+ [ci4 �σ1 · �q + ci5(�σ1 × �σ2) · �q](c′′
i1 + c′′

i2 �τ1 · �τ2).

Considering the SU(3) limit where all the baryon masses
are considered to take the same value (q0 = q ′

0 = 0) the

Λ N

N NN

Λ N

N NN

N Λ N

N N

N Λ N

N N

Σ

(b) (c) (d) (e)

FIG. 8. Triangle diagrams which contribute to the process at NLO.
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Λ N

N NN

N Λ N

N NN

Σ Λ N

N NN

N Λ N

N NN

Σ

(f ) (g) (h) (i)

FIG. 9. Box diagrams which contribute to the process at NLO.

expressions above become much more simple. Defining

At(q) ≡ 1

2q
arctan

(
q

2mπ

)
,

L(q) ≡
√

4m2
π + q2

q
ln

(√
4m2

π + q2 + q

2mπ

)
,

q ≡
√

�q 2,

and extracting the baryonic poles and the polynomial terms,
one obtains

Va = − h�N

192π2f 4
π (M� − MN )

(
4m2

π + q2
)
L(q)(�τ1 · �τ2), (4.5)

Vb = 3g2
Ah2π

32πf 4
π

(
2m2

π + q2
)

At (q), (4.6)

Vc = − g2
Ah�N

384π2f 4
π (M� − MN )

(
8m2

π + 5q2
)
L(q)(�τ1 · �τ2),

(4.7)

Vd = gA

64π2f 3
π MN

L(q)(�τ1 · �τ2)
[−2Bm2

π − B �q2 + B(�q · �p)

+ 6AMN (�σ1 · �q) − 3iB �σ1 · (�q × �p)
]
, (4.8)

Ve =
√

3Ds

384π2f 3
π MN

L(q)
[
B�1

(
4m2

π + 3�q2
)

− 4A�1MN (�σ1 · �q)
]
, (4.9)

Vf = g3
A

512π2f 3
π MN

(
4m2

π + �q2
)L(q)(−3 + 2�τ1 · �τ2)

×
{

1

6
B

[
448m4

π + 4m2
π (−24�q · �p + 47�q2) + 25�q4

− 36�q2(�q · �p)
] + 4iB(4m2

π + �q2)�σ2 · (�q × �p)

− 4AMN

(
8m2

π + 3�q2
)�σ1 · �q

+ 2iB
(
8m2

π + 3�q2
)�σ1 · (�q × �p)

+ 4B
(
4m2

π + �q2
)
(�σ1 · �q)(�σ2 · �p)

− 4B
(
4m2

π + �q2
)
(�σ1 · �q)(�σ2 · �q)

− 4B
(
4m2

π + �q2
)
(�q · �p − �q2)(�σ1 · �σ2)

− 8iAMN

(
4m2

π + �q2
)
(�σ1 × �σ2) · �q

}
, (4.10)

Vg = Dsg
2
A

256
√

3π2f 3
π MN

(
4m2

π + �q2
)L(q)

×
[
−1

6
B�2

(
448m4

π + 188m2
π �q2 + 25�q4)

+ 4A�2MN

(
8m2

π + 3�q2
)
(�σ1 · �q)

+ 4B�2
(
4m2

π + �q2
)
(�σ1 · �q)(�σ2 · �q)

− 4B�2
(
4m2

π + �q2)�q2(�σ1 · �σ2)

− 8iA�2MN

(
4m2

π + �q2
)
(�σ1 × �σ2) · �q

]
, (4.11)

Vh = g3
A

512π2f 3
π MN

(
4m2

π + �q2
)L(q)(3 + 2�τ1 · �τ2)

×
{

1

6
B

[
448m4

π + 4m2
π (−24�q · �p + 47�q2) + 25�q4

− 36�q2(�q · �p)
] − 4iB

(
4m2

π + �q2)�σ2 · (�q × �p)
− 4AMN

(
8m2

π + 3�q2
)�σ1 · �q

− 2iB
(
8m2

π + 3�q2
)�σ1 · (�q × �p)

+ 4B
(
4m2

π + �q2)(�σ1 · �q)(�σ2 · �p)

− 4B
(
4m2

π + �q2
)
(�σ1 · �q)(�σ2 · �q)

− 4B
(
4m2

π + �q2
)
(�q · �p − �q2)(�σ1 · �σ2)

+ 8iAMN

(
4m2

π + �q2
)
(�σ1 × �σ2) · �q

}
, (4.12)

Vi = Dsg
2
A

256
√

3π2f 3
π MN

(
4m2

π + �q2
)L(q)

×
[

1

6
B�3

(
448m4

π + 188m2
π �q2 + 25�q4

)
+A�3MN

(
8m2

π + 3�q2
)
(�σ1 · �q)

+ 4B�3
(
4m2

π + �q2
)
(�σ1 · �q)(�σ2 · �q)

− 4B�3
(
4m2

π + �q2)�q2(�σ1 · �σ2)

+ 4iA�3MN

(
4m2

π + �q2
)
(�σ1 × �σ2) · �q

]
. (4.13)

The isospin part for the potentials that contain � propagators
(Ve, Vg , Vi) is taken into account by making the replacements:

A�1 → 2
3

(√
3A

�
1
2

+ A
�

3
2

) �τ1 · �τ2,

B�1 → 2
3

(√
3B

�
1
2

+ B
�

3
2

) �τ1 · �τ2,

A�2 → −
√

3A
�

1
2

+ 2A
�

3
2

+ 2
3

(√
3A

�
1
2

+ A
�

3
2

)�τ1 · �τ2,

B�2 → −
√

3B
�

1
2

+ 2B
�

3
2

+ 2
3

(√
3B

�
1
2

+ B
�

3
2

)�τ1 · �τ2,

A�3 → −
√

3A
�

1
2

+ 2A
�

3
2

− 2
3

(√
3A

�
1
2

+ 2A
�

3
2

)�τ1 · �τ2,

B�3 → −
√

3B
�

1
2

+ 2B
�

3
2

− 2
3

(√
3B

�
1
2

+ 2B
�

3
2

)�τ1 · �τ2.

Note that Eqs. (4.5) and (4.7) only have physical meaning
away from the SU(3) limit.

We note here that the role played by the two-pion exchange
mechanism in the weak decay of hypernuclei was also
considered in Ref. [24]. This work scales the expressions
obtained in the strong NN sector within the chiral unitary
approach [25] to account for the PC amplitudes in the weak
transitions, the scaling factor being the ratio between the
weak and strong baryon-baryon-meson coupling constants.
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Although the formalism is not directly comparable with our
EFT approach, it provides an insight on the role played by
the interferences between the different diagrams considered
(one-meson exchange and uncorrelated and correlated two-
pion exchanges).

V. BRIEF COMPARISON OF LO AND NLO
CONTRIBUTIONS

In Eqs. (4.3) and (4.4) we provide the explicit momen-
tum and spin structures arising from the different Feynman
diagrams. Some features can be easily read off from the
different terms. First, the ball in Fig. 7(a) and first two triangle
diagrams in Figs. 8(b) and 8(c) only contribute to the PC
part of the transition potential. Most other diagrams have a
nontrivial contribution, involving all allowed momenta and
spin structures.

To provide a sample of the contribution of the different
diagrams to the full amplitude, we consider one particular
transition, 3S1 → 3S1. In particular, we compare the π and
K exchanges with the ball, triangle, and box diagrams for the
�n → nn interaction. Because the transition is PC, none of the
parity-violating structures of Table I contribute. For structures
of the type (�σ1 · �q)(�σ2 · �q) we have that

(�σ1 · �q)(�σ2 · �q) = �q 2

3
(�σ1 · �σ2) + �q2

3
Ŝ12(q̂), (5.1)

1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

r fm

V
r
M
eV

2

a
pion
kaon
a ball

b up triangle
c up triangle 2
d down triangle Real
d down triangle Imaginary
e down triangle 2

1 2 3 4 5
1.0

0.5

0.0

0.5

1.0

r fm

V
r
M
eV

2

bpion
kaon
f box 1 Real
f box 1 Imaginary
g box 2

h crossed box 1 Real
h crossed box 1 Imaginary
i crossed box 2

FIG. 10. (Color online) (a) Medium- to long-range part of
the potentials for the one-pion-exchange, one-kaon-exchange, ball
diagrams, and triangle diagrams. (b) Medium- to long-range part of
the potentials for the one-pion-exchange, one-kaon-exchange, box,
and crossed-box diagrams.

where the tensor operator Ŝ12(q̂) changes two units of angular
momentum and does not contribute to this transition. The
potential, therefore, depends only on the modulus of the
momentum (or �q 2). To obtain the potential in position space
we Fourier-transform the expressions for the one-meson-
exchange contributions, Eqs. (3.2) and (3.3), and the loop
expressions in the Appendices B, C, and D. More explicitly,

Ṽ (r) = F[V (�q 2)F (�q 2)] ≡
∫ ∞

−∞

d3q

(2π )3
ei �q·�rV (�q2)F (�q 2),

with q ≡ |�q| and r ≡ |�r| and where we have included a form
factor to regularize the potential. Following the formalism
developed in Ref. [23] we use a monopole form factor for the
meson exchange contribution at each vertex, while the 2 − π

terms use a Gaussian form of the type F (�q2) ≡ e−�q 4/�4
.

The expressions for each loop have been calculated using
dimensional regularization and are shown in Appendices B, C,
and D. They are written in terms of the couplings appearing in
Sec. II and of the master integrals appearing in Appendix E. η
is the regularization parameter that appears when integrating
in D ≡ 4 − η dimensions. The modified minimal subtraction
scheme (MS) has been used; we have expanded in powers of
η the expressions for the different loop contributions and then
subtracted the term R ≡ − 2

η
+ γ − 1 − ln (4π ).

1 2 3 4 5
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0.0
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1.0
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V
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M
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a
pion
kaon
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b up triangle
c up triangle 2
d down triangle
e down triangle 2

1 2 3 4 5
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0.5

1.0
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V
r
M
eV

2

b
pion
kaon

f box 1
g box 2
h crossed box 1
i crossed box 2

FIG. 11. (Color online) (a) Medium- to long-range part of the
potentials in the SU(3) limit for the one-pion-exchange, one-kaon-
exchange, ball diagrams, and triangle diagrams. (b) Medium- to
long-range part of the potentials in the SU(3) limit for the one-pion-
exchange, one-kaon-exchange, box, and crossed-box diagrams.
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In Fig. 10, we show the respective contributions to the
potential in position space. The contribution from the different
2 − π exchange potentials are seen to be sizable at all
distances. In particular, the box (f),(g),(h) and triangle (d)
diagrams give larger contributions than the pion in the
medium and long range. The ball diagram (a) and the
triangles (c),(e),(h),(i) are attractive while all the others are
repulsive. Notice that diagrams (d),(f),(h) contribute with an
imaginary part. This is characteristic of diagrams with a �Nπ
vertex, which may be on shell because M� > MN + mπ . This
imaginary part is taking into account the amplitude for the
possible �N → NNπ transition. We stress that the imaginary
part of the box diagram (f) that comes from the baryonic pole
has been extracted, so no iterated part is considered in Fig. 10.

Figure 11 shows the same potentials but taking q0 = q ′
0 =

0. All diagrams seem to have a smaller contribution when
the baryon mass differences are neglected. The attractive and
repulsive character of the different potentials does not change
except for the second box diagram and the second crossed-box
diagram, which become attractive and repulsive, respectively,
when taking the SU(3) limit.

VI. CONCLUSIONS

The weak decay of hypernuclei is dominated for large
enough number of nucleons by the nonmesonic weak decay
modes. In these modes, the bound � particle decays in the pres-
ence of nucleons by means of a process which involves weak
and strong interaction vertices describing the production and
absorption of mesons. The relevant, experimentally known,
partial and total decay rates of hypernuclei are successfully
described by meson-exchange models and also by a lowest-
order EFT description of the weak �N → NN process, when
appropriate nuclear wave functions are used for the initial and
final nuclear systems. Nevertheless, the stability of the EFT
approach which has to be tested by looking at higher orders in
the theory, could not be analyzed yet, mainly because of the
very scarce world database for such observables, a situation
that should be improved in the near future.

In this article we have presented the one-loop contribution
to the previously obtained LO EFT for the weak �S = 1 �N
transition.

As expected, the structure of the transition amplitude
is considerably more involved than the corresponding LO
amplitude and contains more LECs which ought to be fitted
to data. In the present formal work we have solely presented
the calculation of the amplitude terms and have not attempted
to make any comparison to experimental data; therefore, no
fit to extract the new unknowns has been performed. The
different structures which appear in the obtained transition
amplitude, involving spin, isospin, and orbital degrees of
freedom, produce sizable contributions to all relevant partial
waves. To illustrate this fact, we have presented the potential
in r space corresponding to the different Feynman diagrams
for the 3S1-3S1 partial wave. Box and cross-box diagrams
are found to produce substantial contributions at distances
of the order of 1 fm, larger than the ones corresponding to
the one-pion-exchange and one-kaon-exchange mechanisms.
In view of this result, it would be interesting to see if one-loop

contributions play an equivalent role in other partial wave
transitions, testing possible cancellations or enhancements that
would leave the results for the decay rates either unchanged
or modified. A complete analysis of the higher order terms
would require a larger set of independent hypernuclear
decay measurements and a more accurate measure of some
observables, especially those related to the parity violating
asymmetry for s-shell and p-shell hypernuclei. Moreover,
it would be desirable to arrange for alternative experiments
focused to obtain information on the weak �S = 1 interaction.
A step in this direction was taken more than 10 years ago by
experimental groups at Research Center for Nuclear Physics
in Osaka (Japan) [15,16], by looking at the weak strangeness
production reaction np → �p. Unfortunately, the small value
for the cross-section for this process precluded the compilation
of new data. We think that it is important to foster new
experimental avenues of approaching the weak interaction
among baryons in the strange sector, and even try to recover
the Osaka experiment within the research plan of the new
experimental facilities devoted to the study of strange systems.

To ease the use of the obtained EFT amplitudes, we have
provided the explicit analytic expressions for all diagrams
which will in future work be implemented in the calculation
of hypernuclear decay observables.
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APPENDIX A: CARAMEL DIAGRAMS

Using the same notation that is described in Sec. IV A
we write a general expression for the three caramel diagrams
that depends on the label α = a, b, c, which corresponds,
respectively, to the masses and vertices of Figs. 12, 13, and 14.

Λ N

N N

N(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

kN = (EΛ
p + l0, l)

N

rN = (Ep − l0,−l)

FIG. 12. First caramel-type Feynman diagram.
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Λ N

N N

Λ(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

kN = (EΛ
p + l0, l)

N

rN = (Ep − l0,−l)

FIG. 13. Second caramel-type Feynman diagram.

The relativistic expression for our caramel diagrams is

Vα = iGF m2
π

(
Cα

S(s) + Cα
T (s) �σ1 · �σ2

) (
Cα

S(w) + Cα
T (w) �σ1 · �σ2

)
×

∫
d4l

(2π )4

1

(Ep − l0)2 − �l2 − M2
N + iε

× 1(
E�

p + l0
)2 − �l2 − M2

α

.

To not miss the relativistic pole we must first integrate
the temporal part (l0) before heavy-baryon expanding the
expression. Proceeding in this manner one obtains a purely
imaginary part (the real is suppressed in the heavy-baryon
expansion):

Vα = −GF m2
π

4MN

(
Cα

S(s) + Cα
T (s) �σ1 · �σ2

) (
Cα

S(w) + Cα
T (w) �σ1 · �σ2

)
×

∫
d3l

(2π )3

1

(�b − �α)
[

1
2 (�b + �α) + MN

] + �p2 − �l2

= i
GF m2

π

16πMN

(
Cα

S(s) + Cα
T (s) �σ1 · �σ2

) (
Cα

S(w) + Cα
T (w) �σ1 · �σ2

)

×
√

(�b − �α)

[
1

2
(�b + �α) + MN

]
+ �p2.

APPENDIX B: BALL DIAGRAMS

In our calculation we have two different kind of ball dia-
grams depending on the position of the weak vertex, although
only one of them actually contributes. Their contribution can
be written in terms of the B integrals defined in Appendix E.

Λ N

N N

Σ(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

kN = (EΛ
p + l0, l)

N

rN = (Ep − l0,−l)

FIG. 14. Third caramel-type Feynman diagram.

Λ N

N N

(l0, l)

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 − ΔEp
2 , l + p − p ) ≡ l + q

μ

a b

FIG. 15. Kinematical variables of the first kind of ball diagram.

Here and in the following sections we first write the rela-
tivistic amplitude using V = i M and then the corresponding
heavy-baryon expression.

For the first type of ball diagram, depicted in Fig. 15, we
obtain the contribution

Vball 1 = GF m2
πh2π

4f 4
π

δab εabcτ c

×
∫

d4l

(2π )4

1

l2 − m2
π + iε

1

(l − q)2 − m2
π + iε

× u1(E, �p ′)u1
(
E�

p , �p)
× u2(Ep,− �p ′)γμ(qμ − 2lμ)u2(Ep,− �p)

= 0,

which is shown to vanish owing to the isospin factor,
δabε

abcτ c = 0.
The amplitude corresponding to the diagram in Fig. 16

reads

Va = −i
GF m2

πh�N

8f 4
π

(�τ1 · �τ2)

×
∫

d4l

(2π )4

1

l2 − m2
π + iε

1

(l + q)2 − m2
π + iε

× (2lμ + qμ)(qν + 2lν)

k2
N − M2

N + iε

× u1(E, �p ′)γμ(/kN + MN )u1
(
E�

p , �p)
× u2(Ep,− �p ′)γνu2(Ep,− �p). (B1)

Using heavy-baryon expansion,

Va = GF m2
πh�N

8�Mf 4
π

(�τ1 · �τ2)
(
4B20 + 4q0B10 + q2

0B
)
, (B2)

where we have used the master integrals with q0 = −M�−MN

2
and �q = �p ′ − �p.

Λ N

N N

(l0, l)

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 − ΔEp
2 , l + p − p ) ≡ l + q

ν

a b

N

kN = (EΛ
p p)

μ

FIG. 16. Kinematical variables of the second kind of ball diagram.
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Λ N

N NN

(l0, l)

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 +
ΔEp

2 , l + p − p ) ≡ l + q

ν μ

a b

kN = (Ep − l0,−p − l)

FIG. 17. Up triangle diagram contributing at NLO.

APPENDIX C: TRIANGLE DIAGRAMS

Two up triangles and two down triangles contribute to the
interaction. The final expressions are written in terms of the
integrals I defined in Appendix E . The amplitude for the first
up triangle, depicted in Fig. 17, is

Vb = −i
3

8

GF m2
πh2πg2

A

MNf 4
π

∫
d4l

(2π )4

1

l2 − m2
π + iε

× 1

(l + q)2 − m2
π + iε

(lμ + qμ)lν

k2
N − M2

N + iε

× u1(Ep, �p ′)u1
(
E�

p , �p)
× u2(Ep,− �p ′)γμγ5(/kN + MN )γνγ5u2(Ep,− �p).

(C1)

Using heavy-baryon expansion,

Vb = 3

4

GF m2
πh2πg2

A

f 4
π

[(3 − η)I22 + �q2I23 + �q2I11], (C2)

where, we have used the master integrals with q0 = M�−MN

2 ,
q ′

0 = 0, and �q = �p ′ − �p.
For the second up triangle, depicted in Fig. 18, the

relativistic amplitude is

Vc = −i
GF m2

πh�Ng2
A

8f 4
π

(
r2
N − M2

N

) �τ1 · �τ2

∫
d4l

(2π )4

1

l2 − m2
π + iε

× 1

(l + q)2 − m2
π + iε

(2lρ + qρ)(lμ + qμ)lν

k2
N − M2

N + iε

× u1(E, �p ′)γρ(/k′
N + MN )u1

(
E�

p , �p)
× u2(Ep,− �p ′)γμγ5(/kN + MN )γνγ5u2(Ep,− �p). (C3)

Λ N

N NN

(l0, l)

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 +
ΔEp

2 , l + p − p ) ≡ l + q

ν μ

a b

kN = (Ep − l0,−p − l)

rN = (EΛ
p p)

N ρ

FIG. 18. Second up triangle contribution at NLO.

Λ N

N N

N

(l0, l) ≡ l

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 − ΔEp
2 , l + p − p) ≡ l + q

ν

μ

a b

kN = (EΛ − l0 p − l)

FIG. 19. Down triangle contribution at NLO.

Using heavy-baryon expansion,

Vc = GF m2
πh�Ng2

A

8�Mf 4
π

�τ1 · �τ2[2(3 − η)I32 + 2�q2I33 + 2�q2I21

+ (3 − η)q0I22 + q0 �q2I23 + q0 �q2I11], (C4)

where, we have used the master integrals with q0 = M�−MN

2 ,
q ′

0 = 0, and �q = �p ′ − �p.
The amplitude for the first down triangle (Fig. 19) is

Vd = i
GF m2

πgA

4f 3
π

(�τ1 · �τ2)
∫

d4l

(2π )4

1

l2 − m2
π + iε

× 1

(l + q)2 − m2
π + iε

(lν + qν)(2lμ + qμ)

k2
N − M2

N + iε

× u1(E, �p ′)γνγ5(/kN + MN )(A + Bγ5)u1
(
E�

p , �p)
× u2(Ep,− �p ′)γμu2(Ep,− �p); (C5)

with the heavy-baryon expansion, it reduces to

Vd = −GF m2
πgA

8MNf 3
π

(�τ1 · �τ2)
{
B

[
2I30 + 7q0I20 + 7q2

0I10

+ 2q3
0I − 2(3 − η)I32 − (3 − η)q0I22

]
−B(2I21 + q0I11 + 2I33 + q0I23)�q2

−B(2I10 + 2I21 + q0I + q0I11)(�q · �p)

+ 2AMN (2I21 + q0I11 − 2I10 − q0I )�σ1 · �q
+ iB(−2I21 − q0I11 + 2I10 + q0I )�σ1(�q × �p)

}
. (C6)

We have used the master integrals with q0 = −M�−MN

2 , q ′
0 =

−M� + MN , and �q = �p′ − �p.
The second type of down triangle diagram involves

the intermediate exchange of the � (Fig. 20). Its

Λ N

N N

Σ

(l0, l) ≡ l

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 − ΔEp
2 , l + p − p) ≡ l + q

ρ

μ

a b

kN = (EΛ
p − l0 p − l)

ν

FIG. 20. Second type of down triangle involving the intermediate
exchange of a �.
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Λ N

N N

N

l ≡ (l0, l)

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 − ΔEp
2 , l + p − p) ≡ l + q

ν bμ a

kN = (EΛ
p − l0 p − l)

N

ρ cd

rN = (Ep + l0,−p + l)

FIG. 21. Box diagram contributing at NLO.

amplitude is

Ve = GF m2
πDs

4
√

3f 3
π

∫
d4l

(2π )4

1

l2 − m2
π + iε

× 1

(l + q)2 − m2
π + iε

(2lμ + qμ)lν

k2
N − M2

� + iε

× u1(E, �p ′)(A� + B�γ5)(/kN + M�)γνγ5u1
(
E�

p , �p)
× u2(Ep,− �p ′)γμu2(Ep,− �p).

Using the heavy-baryon expansion

Ve = − GF m2
πDs

8
√

3MNf 3
π

{B�[−2I30 + (−5q0 − 2�M�)I20

+ 2(3 − η)I32 + 2�q2I33 + 2�q2I21 + �q2I21

+ q0(−2q0 − �M�)I10 + (3 − η)q0I22 + q0 �q2I23

+ q0 �q2I11] − 2A�MN (2I21 + q0I11)(�σ1 · �q)}. (C7)

The isospin is taken into account by replacing every A� and
B� with

2
3 (

√
3A� 1

2
+ A� 3

2
) �τ1 · �τ2,

2
3 (

√
3B� 1

2
+ B� 3

2
) �τ1 · �τ2,

where we have used the master integrals with q0 = −M�−MN

2 ,
q ′

0 = M� − M�, and �q = �p′ − �p.

APPENDIX D: BOX DIAGRAMS

We have two kind of direct box diagrams and two cross-box
ones. Direct box diagrams usually present a pinch singularity.
This is because the poles appearing in the baryonic propagators
get infinitesimally close to one another. In our integrals the
denominators appearing in the baryonic propagators also
contain terms proportional to M� − MN and M� − M�, and
this avoids the singularity.

The integrals entering in the expression of the amplitudes
are the J and K defined in Appendix E . The amplitude for
the first type of box diagram (Fig. 21) is

Vf = i
GF m2

πg3
A

8f 3
π

(3 − 2�τ1 · �τ2)
∫

d4l

(2π )4

1

l2 − m2
π + iε

× 1

(l + q)2 − m2
π + iε

1

k2
N − M2

N + iε
a

× (lρ + qρ)(lν + qν)lμ

r2
N − M2

N + iε

Λ N

NN

Σ

l ≡ (l0, l)

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0 − ΔEp
2 , l + p − p) ≡ l + q

ν bμ a

kN = (EΛ
p − l0 p − l)

N

ρ c d

rN = (Ep + l0,−p + l)

FIG. 22. Second box-type Feynman diagram.

× u1(E, �p ′)γργ5(/kN + MN )(A + Bγ5)u1
(
E�

p , �p)
× u2(Ep,− �p ′)γνγ5(/rN + MN )γμγ5u2(Ep,− �p).

Using the heavy-baryon expansion,

Vf = −GF m2
πg3

A

32MNf 3
π

(3 − 2�τ1 · �τ2)
( − 4AMN [4K22 + K11 �q2

+ 2K23 �q2 + K35 �q2 + (5 − η)K34]�σ1 · �q
− 2BK22(�σ1 · �q)(�σ2 · �q) + 2BK22(�σ1 · �q)(�σ2 · �p)

− 4iAMNK22(�σ1 × �σ2) · �q − 2B( �p · �q − �q2)K22 �σ1 · �σ2

+ 2iB[K11 �q2 + 2K23 �q2 + K35 �q2(4 − η)K22

+ (5 − η)K34]�σ1 · ( �p × �q) + 2iBK22 �σ2 · ( �p × �q)

− 2B
{
K11 �q2( �p · �q + 2q0

2) + K23
(
2 �p · �q �q2 + 2q2

0 �q2

+ �q4
) + K35( �p · �q �q2 + 2�q4) + K22

[
(4 − η) �p · �q

+ �q2 + (6 − 2η)q2
0

] + (5 − η)K34( �p · �q + 2�q2)

+K48 �q4 + K21 �q2q0 + K33 �q2q0 − K31 �q2 − K43 �q2

+ 2(5 − η)K47 �q2 + (3 − η)K32q0 − (3 − η)K42

+ (15 − 8η)K46
})

,

where we have used the master integrals with q0 = −M�−MN

2 ,
q ′

0 = MN − M�, and �q = �p′ − �p.
The second box diagram (Fig. 22), which involves a �

propagator, contributes with

Vg = −i
GF m2

πg2
ADs

4
√

3f 3
π

∫
d4l

(2π )4

1

l2 − m2
π + iε

× 1

(l + q)2 − m2
π + iε

1

k2
N − M2

� + iε

× lρ(lν + qν)lμ

r2
N − M2

N + iε

× u1(E, �p ′)(A� + B�γ5)(/kN + MN )γργ5u1
(
E�

p , �p)
× u2(Ep,− �p ′)γνγ5(/rN + MN )γμγ5u2(Ep,− �p). (D1)

Using the heavy-baryon expansion,

Vg = GF m2
πg2

ADs

16
√

3MNf 3
π

{−2B�K22 �q2 �σ1 · �σ2

− 4A�K22MNi(�σ1 × �σ2)�q
− 4A�MN (�q2K23 + 5K34 + �q2K35 + K22)�σ1 · �q
+ 2B�K22(�σ1 · �q)(�σ2 · �q) + 2B�[�q2K22 + �q4K23
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Λ N

N N

N

(l0 +
ΔEp

2 , l + p − p ) ≡ l + q

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0, l)

ν bμ a

kN = (Ep − l0 p − l)

N

ρ cd

rN = (Ep − l0,−p − l)

FIG. 23. Crossed-box diagram contributing at NLO.

− �q2K31 + (3 − η)(�M − �M�)K32

+ �q2(�M − �M�)K33 + 2(5 − η)�q2K34 + 2�q4K35

− (3 − η)K42 − �q2K43 + (15 − 8η)K46

+ 2(5 − η)�q2K47 + �q4K48 + �q2K21(�M − �M�)]}.
To take into account the isospin we must replace every A� and
B� with

A → −
√

3A
�

1
2

+ 2A
�

3
2

+ 2
3

(√
3A

�
1
2

+ A
�

3
2

)�τ1 · �τ2,

B → −
√

3B
�

1
2

+ 2B
�

3
2

+ 2
3

(√
3B

�
1
2

+ B
�

3
2

)�τ1 · �τ2.

We have used the master integrals with q0 = −M�−MN

2 , q ′
0 =

M� − M�, and �q = �p′ − �p.
The first crossed-box diagram (Fig. 23) and contributes to

the potential with

Vh = i
GF m2

πg3
A

8f 3
π

(3 + 2�τ1 · �τ2)
∫

d4l

(2π )4

1

(l + q)2 − m2
π + iε

× 1

l2 − m2
π + iε

1

r2
N − M2

N + iε

(lρ)(lν + qν)(lμ)

k2
N − M2

N + iε

× u1(E, �p ′)γργ5(/kN + MN )(A + Bγ5)u1
(
E�

p , �p)
× u2(Ep,− �p ′)γνγ5(/rN + MN )γμγ5u2(Ep,− �p).

Using heavy-baryon expansion and the master integrals of
Sec. VI, and redefining �q ≡ �p ′ − �p,

Vh = −GF m2
πg3

A

32MNf 3
π

(3 + 2�τ1 · �τ2){−2iBJ22 �σ2( �p × �q)

+ 2BJ22(− �p · �q + �q2)�σ1 · �σ2

+ 2iB[J22 + �q2J23 + (5 + η)J34 + �q2J35]�σ1 · ( �p × �q)

+ 4iAJ22MN (�σ1 × �σ2)�q + 4AMN (�q2J23 + 5J34

+ �q2J35 + J22)�σ1 · �q + 2BJ22(�σ1 · �q)(�σ2 · �p)

− 2BJ22(�σ1 · �q)(�σ2 · �q) − 2B[�q2q0J21

+ (− �p · �q + �q2)J22 + (− �p · �q �q2 + �q4)J23

− �q2J31 + (3 − η)q0J32 + �q2q0J33

+ (5 − η)(− �p · �q + 2�q2)J34 + (− �p · �q �q2 + 2�q4)J35

− (3 − η)J42 − �q2J43 + (15 − 8η)J46 + 2(5 − η)�q2J47

+ �q4J48]}. (D2)

We have used the master integrals with q0 = M�−MN

2 , q ′
0 =

−M�−MN

2 , and �q = �p′ − �p.

Λ N

N N

Σ

(l0 +
ΔEp

2 , l + p − p ) ≡ l + q

(EΛ
p p)

(Ep,−p)

(Ep p )

(Ep,−p )

(l0, l)

ν bμ a

kN = (Ep − l0 p − l)

N

ρ c d

rN = (Ep − l0,−p − l)

FIG. 24. Second crossed-box-type Feynman diagram.

The amplitude for the crossed-box diagram with a �
propagator (Fig. 24) is

Vi = −i
GF m2

πg2
ADs

16
√

3M2
Nf 3

π

∫
d4l

(2π )4

1

(l + q)2 − m2
π + iε

× 1

l2 − m2
π + iε

1

r2
N − M2

N + iε

× (lρ + �qρ)(lν + qν)(lμ)

k2
N − M2

� + iε

× u1(E, �p ′)(A� + B�γ5)(/kN + M�)γργ5u1
(
E�

p , �p)
× u2(Ep,− �p ′)γνγ5(/rN + MN )γμγ5u2(Ep,− �p). (D3)

Using heavy-baryon expansion and the master integrals of
Sec. VI, and redefining �q ≡ �p ′ − �p,

Vi = GF m2
πg2

ADs

16
√

3MNf 3
π

{
2B�J22 �q2 �σ1 · �σ2

− 2iA�J22MN (�σ1 × �σ2)·�q − A�MN (�q2J11 + 2�q2J23

+ 5J34 + �q2J35 + 4J22)�σ1 · �q
− 2B�J22(�σ1 · �q)(�σ2 · �q)

+ 2B�

[
(�q2 − (3 − η)q0(q0 + �M�)J22

+ (�q4 − �q2q2
0 − �q2q0�M�

)
J23 − �q2J31

− (3 − η)(2q0 + �M�)J32 − (2�q2q0 + �q2�M�)J33

+ 2(5 − η)�q2J34 + 2�q4J35 − (3 − η)J42 − �q2J43

+ (15 − 8η)J46 + 2(5 − η)�q2J47 + �q4J48

− �q2q0J11(q0 + �M�) − �q2J21(2q0 + �M�)
]}

.

To take into account the isospin we must replace every A� and
B� with

A� → −
√

3A
�

1
2

+ 2A
�

3
2

− 2
3

(√
3A

�
1
2

+ 2A
�

3
2

)�τ1 · �τ2,

B� → −
√

3B
�

1
2

+ 2B
�

3
2

− 2
3

(√
3B

�
1
2

+ 2B
�

3
2

)�τ1 · �τ2.

We have used the master integrals with q0 = M�−MN

2 , q ′
0 =

M� − M� + M�−MN

2 , and �q = �p′ − �p.

044614-12



ONE-LOOP CONTRIBUTIONS IN THE EFFECTIVE FIELD . . . PHYSICAL REVIEW C 87, 044614 (2013)

APPENDIX E: MASTER INTEGRALS

1. Definitions

We need the following integrals to calculate the Feynman
diagrams. The B’s, I ’s, J ’s, and K’s appear, respectively, in
the ball, triangle, box, and crossed-box diagrams:

B;μ;μν ≡ 1

i

∫
d4l

(2π )4

1

l2 − m2 + iε

(1; lμ; lμlν)

(l + q)2 − m2 + iε
,

I;μ;μν;μνρ ≡ 1

i

∫
d4l

(2π )4

1

l2 − m2 + iε

1

(l + q)2 − m2 + iε

× 1

−l0 − q ′
0 + iε

(1; lμ; lμlν ; lμlν lρ),

J;μ;μν;μνρ ≡ 1

i

∫
d4l

(2π )4

1

l2 − m2 + iε

1

(l + q)2 − m2 + iε

× 1

−l0 − q ′
0 + iε

(1; lμ; lμlν ; lμlν lρ)

−l0 + iε
,

K;μ;μν;μνρ ≡ 1

i

∫
d4l

(2π )4

1

l2 − m2 + iε

1

(l + q)2 − m2 + iε

× 1

−l0 − q ′
0 + iε

(1; lμ; lμlν ; lμlν lρ)

l0 + iε
.

The strategy is to calculate explicitly the integrals with no
subindex (no integrated momenta in the numerators) and then
relate the others to simpler integrals. To do so, we also need to
explicitly calculate the following integrals:

A(m) ≡ 1

i

∫
d4l

(2π )4

1

l2 − m2 + iε
,

A;μ;μν(q, q ′) ≡ 1

i

∫
d4l

(2π )4

1

(l + q)2 − m2 + iε

× 1

−l0 − q ′
0 + iε

(1; lμ; lμlν),

C;μ;μν;μνρ(q0, q
′
0) ≡ 1

i

∫
d4l

(2π )4

1

(l + q)2 − m2 + iε

× 1

−l0 − q ′
0 + iε

(1; lμ; lμlν ; lμlν lρ)

−l0 + iε
,

D;μ;μν;μνρ(q0, q
′
0) ≡ 1

i

∫
d4l

(2π )4

1

(l + q)2 − m2 + iε

× 1

−l0 − q ′
0 + iε

(1; lμ; lμlν ; lμlν lρ)

l0 + iε
.

The integrals can be divided depending on their subindexes
being temporal or spatial. We show explicitly all the cases for
the integrals J . The same definitions are used for all the other
integrals. Therefore, to know any other integral one needs to
replace in Eq. (E1) J with A, B, I , etc.,

Jμ ≡ δμ0J10 + δμiJ11 �qi,

Jμν ≡ δμ0δν0J20 + (δμ0δνi + δμiδν0)J21 �qi

+ δμiδνj (J22δij + J23 �qi �qj ),

Jμνρ ≡ δμ0δν0δρ0J30 + δδδ{μνρ00i} �qiJ31

+ δδδ{μνρ0ij}(δij J32 + �qi �qjJ33)

+ δμiδνj δρk(δ�q{ijk}J34 + �qi �qj �qkJ35),

Jμνρσ ≡ δμ0δν0δρ0δσ0J40 + δδδδ{μνρσ000i} �qiJ41

+ δδδδ{μνρσ00ij}(δij J42 + �qi �qjJ43)

+ δδδδ{μνρσ0ijk}(δ�q{ijk}J44 + �qi �qj �qkJ45)

+ δμiδνj δρkδσ l(δδ{ijkl}J46 + δ�q �q{ijkl}J47

+ �qi �qj �qk �qlJ48). (E1)

All coefficients J10, J11, etc., have been written explicitly as
functions of I , J , K , which can be integrated numerically, and
the other simpler functions. The following definitions have
been employed:

δ�q{ijk} = δij �qk + δik �qj + δjk �qi,

δ�q �q{ijkl} = δij �qk �ql + δik �qj �ql + δil �qj �qk

+ δjk �qi �ql + δjl �qi �qk + δkl �qi �qj ,

δδ{ijkl} = δij δkl + δikδjl + δilδjk.

The other quantities, δδδ{μνρ00i}, δδδ{μνρ0ij}, etc., are not meant
to be contracted with the indexes i, j , and k appearing in the
rest of the expressions. They only indicate how many of the
indexes μ, ν, ρ, and σ must be temporal and how many spatial.
It does not matter the order in which 0, i, j , and k are assigned
to μ, ν, ρ, and σ , because all the integrals Jμν , Jμνρ , etc., are
symmetric with respect to these indexes. For example,

J00i = J0i0 = Ji00 = �qiJ31.

2. Results for the master integrals

We have regularized the master integrals via dimensional
regularization, where the integrals depend on the momentum
dimension Dη, or more specifically, on the parameter η, defined
through Dη = 4 − η, and on the renormalization scale μ, for
which we have taken μ = mπ . In the following we use

R = −2

η
− 1 + γ − ln(4π ), q ′′

0 = q ′
0 − q0.

The integrals A(m), A(q0, q
′
0), and B(q0, |�q|) appear, for

example, in Ref. [26]. We have checked that both results
coincide. It is important to maintain the −iε prescription;
otherwise the integrals may give a wrong result. We take it
into account by replacing q ′

0 → q ′
0 − iε when evaluating the

integrals.

a. A(m), A(q0, q ′
0), and B(q0, �q)

We have

A(m) = − 1

8π2
m2

[
1

2
R + ln

(
m

μ

)]
, (E2)

A(q0, q
′
0) ≡ − q ′′

0

8π2

[
π

√
m2 − q ′′2

0

q ′′
0

+ 1 − R − 2 ln

(
m

μ

)

−
2
√

(m2 − q ′′
0

2) arctan
( q ′′

0√
m2−q ′′

0
2

)
q ′′

0

]
, (E3)
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A. PÉREZ-OBIOL et al. PHYSICAL REVIEW C 87, 044614 (2013)

B(q0, �q) = − 1

16π2

[
−1 + R + 2 ln

(
m

μ

)
+ 2L(|q|)

]
,

(E4)

with

L(|q|) ≡ w

|q| ln

(
w + |q|

2m

)
,

w ≡
√

4m2 + |q|2, |q| ≡
√

�q2 − q2
0 , and q2 ≡ q2

0 − �q2 � 0.

b. C(q0, q ′
0) and D(q0, q ′

0)

We have

C(q0, q
′
0) = 1

8π2q ′
0

[
π (v − v′′) + q ′

0(−1 + R)

+ 2v arctan

(
q0

v

)
− 2v′′ arctan

(
q ′′

0

v′′

)]
,

with v ≡
√

m2 − q2
0 and v′′ ≡

√
m2 − q ′′

0
2, and

D(q0, q
′
0) = −C(q0, q

′
0) + 1

q ′
0

1
4π

√
m2 − q2

0 .

c. I(q0, |�q|, q ′
0)

We have

I (q0, q, q ′
0) = − 1

8π2

∫ 1

0
dx

∫ 1

0
dy

[
π

2

1√
sx

− 3

4
y− 1

2 (1 − y)C ′
q

1

sxy

+ 1

2
y

1
2 (1 − y)C ′3

q

1

s2
xy

]
,

with C ′
q = −q0(1 − x) + q ′

0, sx ≡ −q2x(1 − x) − (q ′
0 − q0

+ q0x)2 + m2
π , and sxy ≡ −q2x(1 − x) − (q ′

0 − q0 + q0x)2

(1 − y) + m2
π .

d. J(q0, |�q|, q ′
0) and K (q0, |�q|, q ′

0)

We have

J = − 1

8π2

∫ 1

0
dx

∫ 1

0
dy y(1 − y)

([ − C ′3
q − C ′2

q Cq

−C ′
qC

2
q − C3

q + 2sx(C ′
q + Cq

)] 3π

8s
5
2
xy

+ (C ′
q + Cq)

π

8s
3
2
xy

+ 105

16

∫ 1

0
dz z3

√
1 − z

{
− 3

sxyz

+ (
C ′2

q − 5C ′
qCq + C2

q − 9sx

) 2

7s2
xyz

+ [ − 9s2
x + 2sx

(
C ′2

q − 5C ′
qCq + C2

q

)
+ 3C ′3

q Cq + C ′2
q C2

q + 3C ′
qC

3
q

] 8

35s3
xyz

+ [ − 3s3
x + s2

x

(
C ′2

q − 5C ′
qCq + C2

q

)
+ sx

(
3C ′3

q Cq + C ′2
q C2

q + 3C ′
qC

3
q

) − C ′3
q C3

q

] 16

35s4
xyz

})
,

with Cq ≡ −q0(1 − x), C ′
q ≡ −q0(1 − x) + q ′

0, sx ≡
−q2x(1 − x) + m2

π , sxy ≡ sx − C2
q + y(C2

q − C ′2
q ), and

sxyz ≡ sx + z · y(C2
q − C ′2

q ) − zC2
q .

K = −J + 1

8πq ′
0

∫ 1

0
dx

1√
m2 + (1 − x)

(�q2x − q2
0

) .

3. Results for the master integrals with q0 = q ′
0 = 0

We have

A(m) = − 1

8π2
m2

[
1

2
R + ln

(
m

μ

)]
,

A(0, 0) = − m

8π
,

B(0, �q) = − 1

16π2

[
−1 + R + 2 ln

(
m

μ

)
+ 2L(q)

]
,

C(0, 0) = − 1

4π2

[
−R

2
− 1

2
− ln

(
m

μ

)]
,

I (0, �q, 0) = − 1

4π
At(q),

J (0, �q, 0) = 1

2π2 �q2
L(q),

where L(q) and At(q) are defined with

At(q) ≡ 1

2q
arctan

(
q

2mπ

)
,

L(q) ≡
√

4m2
π + q2

q
ln

(√
4m2

π + q2 + q

2mπ

)
.

4. Relations between master integrals

a. Aμ(q0, q ′
0)

We have

A10 = −A(m) − q ′
0A, A11 = −A.

b. Aμν(q, q ′)

We have

A20 = [
(q0 + q ′

0)A(m) + q ′
0

2
A

]
, A21 = A(m) + q ′

0A,

A22 = 1

Dη − 1

[
q ′′

0 A(m) + (q ′′
0

2 − m2)A
]
, A23 = A.

c. Bμ(q)

We have

B10 = −q0

2
B, B11 = −1

2
B.
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d. Bμν(q)

We have

B20 = 1

2(Dη − 1)q2

{[
q2 + q2

0 (Dη − 2)
]
A(m)

−
[

2�q2m2 + 1

2
q2(q2 − Dηq

2
0 )

]
B

}
,

B21 = q0

2(Dη − 1)q2

[
(Dη − 2)A(m) +

(
Dη

2
q2 − 2m2

)
B

]
,

B22 = − 1

2(Dη − 1)

[
A(m) +

(
2m2 − q2

2

)
B

]
,

B23 = 1

2(Dη − 1)q2

[
(Dη − 2)A(m) +

(
Dη

2
q2 − 2m2

)
B

]
.

e. Cμ(q0, q ′
0)

We have

C10 = −A, C11 = −C.

f. Cμν(q0, q ′
0)

We have

C20 = −A10, C21 ≡ −A11,

C22 = 1

Dη − 1

[
C20 + 2q0C10 + (

q2
0 − m2

)
C

]
, C23 = C.

g. Cμνρ(q0, q ′
0)

We have

C30 = −A20, C31 = −A21,

C32 = −A22, C33 = −A23

C34 ≡ −C22, C35 = −6C11 − 3C23 − 4C.

h. Dμ(q0, q ′
0)

We have

D10 = A, D11 = −D.

i. Dμν(q0, q ′
0)

We have

D20 ≡ A10, D21 ≡ A11,

D22 = 1

Dη − 1

[
D20 + 2q0D10 + (

q2
0 − m2

)
D

]
, D23 = D.

j. Dμνρ(q0, q ′
0)

We have

D30 ≡ A20, D31 ≡ A21,

D32 ≡ A20, D33 ≡ A21,

D34 ≡ −D22, D35 ≡ −6D11 − 3D23 − 4D.

k. Iμ

We have

I10 = −B − q ′
0I,

I11 = 1

2�q2

[ − A(0, q ′
0, r0) + A − 2q0B

+ (
q2

0 − �q2 − 2q0q
′
0

)
I
]
.

l. Iμν

We have

I20 = −B10 − q ′
0I10, I21 = −B11 − q ′

0I11,

I22 = 1

(Dη − 2)�q 2
[−I(�l·�q)2 + �q2I(�l2)],

I23 = 1

(Dη − 2)�q 4
[(Dη − 1)I(�l·�q)2 − �q2I(�l2)],

I(�l2) = −A(q, q ′) − m2I0 − B10 − q ′
0I10,

I(�l·�q)2 = 1

2
�q2[A11(q, q ′) − 2q0B11 + (q2 − 2q0q

′
0)I11].

m. Iμνρ

We have

I30 = −B20 − q ′
0I20, I31 = −B21 − q ′

0I21,

I32 = −B22 − q ′
0I22, I33 = −B23 − q ′

0I23,

I34 = −I(�l·�q)3 + �q2I(�l·�q)�l2

�q4(Dη − 2)
, I35 = (Dη + 1)I(�l·�q)3 − 3�q2I(�l·�q)�l2

�q6(Dη − 2)
,

I(�l·�q)3 = 1
2 �q2[−A22(0, q ′

0) − �q2A23(0, q ′
0) − �q2A(0, q ′

0)

− 2�q2A11(0, q ′
0)A22 + �q2A23 + q2I22 + q2 �q2I23

− 2q0B22 − 2q0 �q2B23 − 2q0q
′
0I22 − 2q0q

′
0 �q2I23],

I(�l·�q)�l2 = �q2(−A11 − m2I11 − B21 − q ′
0I21).

n. Jμ

We have

J10 ≡ −I, J11 ≡ 1

2�q2
[−C(0, q ′

0) + C − 2q0I + q2J ].
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o. Jμν

We have

J20 ≡ −I10, J21 ≡ −I11,

J22 ≡ 1

(Dη − 2)�q 2
[−J(�l·�q)2 + �q2J(�l2)],

J23 ≡ 1

(Dη − 2)�q 4
[(Dη − 1)J(�l·�q)2 − �q2J(�l2)],

J(�l2) = −C − m2J − I10,

J(�l·�q)2 = 1
2 [C11 + q2J11 − 2q0I11]�q2.

p. Jμνρ

We have

J30 ≡ −I20, J31 ≡ −I21,

J32 ≡ −I22, J33 ≡ −I23,

J34 ≡ −J(�l·�q)3 + �q2J(�l·�q)�l2

�q4(Dη − 2)
,

J35 ≡ (Dη + 1)J(�l·�q)3 − 3�q2J(�l·�q)�l2

�q6(Dη − 2)
,

J(�l·�q)3 = �q2

2
[−C20(0, q ′

0) − �q2C21(0, q ′
0) − �q2C(0, q ′

0)

− 2�q2C11(0, q ′
0) + C20 + C21 �q2

+ q2(J22 + J23 �q2) − 2q0(I22 + I23 �q2)],

J(�l·�q)�l2 = −�q2[C11 + m2J11 + I21].

q. Jμνρσ

We have

J40 ≡ −I30, J41 ≡ −I31,

J42 ≡ −I32, J43 ≡ −I33,

J44 ≡ −I34, J45 ≡ −I35,

J46 = 2
−J�l2(�l·�q)2 + �q2J�l4

�q2(D − 2)(2D + 3)
,

J47 = −(2D + 3)J(�l·�q)4 + 2(2 + D)�q2J�l2(�l·�q)2 − �q4J�l4

�q6(D − 2)(2D + 3)
,

J48 = (D + 4)J(�l·�q)4 − 6�q2J�l2(�l·�q)2

�q8(D − 2)
,

J(�l·�q)4 = �q4

2
[3C34 + �q2C35 + q2(3J34 + �q2J35)

− 2q0(3I34 + �q2I35)],

J�l2(�l·�q)2 = −�q2[C22 + �q2C23 + m2(J22 + J23 �q2) + I32

+ �q2I33],

J�l4 = −[C22(Dη − 1) + C23 �q2]

−m2[J22(Dη − 1) + J23 �q2] − [I32(Dη − 1)

+ I33 �q2].

r. Kμ

We have

K10 = I, K11 ≡ 1

2�q2
[−D(0, q ′

0) + D + q2K + 2q0I ].

s. Kμν

For the first two cases we apply the tricks

K20 ≡ I10, K21 ≡ I11,

K22 ≡ 1

(Dη − 2)�q 2
[−K(�l·�q)2 + �q2K(�l2)],

K23 ≡ 1

(Dη − 2)�q 4
[(Dη − 1)K(�l·�q)2 − �q2K(�l2)],

giving the following results

K(�l2) = −D − m2K + I10 − r0K10,

K(�l·�q)2 = 1
2 [D11 + q2K11 + 2q0I11]�q2.

t. Kμνρ

We have

K30 ≡ I20, K31 ≡ I21,

K32 ≡ I22, K33 ≡ I23,

K34 = −K(�l·�q)3 + �q2K(�l·�q)�l2

�q4(Dη − 2)
,

K35 ≡ (Dη + 1)K(�l·�q)3 − 3�q2K(�l·�q)�l2

�q6(Dη − 2)
,

K(�l·�q)3 = �q2

2
[−D22(0, q ′

0) − �q2D23(0, q ′
0) − �q2D(0, q ′

0)

− 2�q2D11(0, q ′
0) + D22 + �q2D23

+ q2(K22 + K23 �q2) + 2q0(I22 + I23 �q2)],

K(�l·�q)�l2 = −�q2[D11 + m2K11 − I21 + r0K21].

u. Kμνρσ

We have

K40 ≡ I30, K41 ≡ I31,

K42 ≡ I32, K43 ≡ I33,

K44 ≡ I34, K45 ≡ I35,

K46 = 2
−K�l2(�l·�q)2 + �q2K�l4

�q2(D − 2)(2D + 3)
,

K47 = −(2D + 3)K(�l·�q)4 + 2(2 + D)�q2K�l2(�l·�q)2 − �q4K�l4

�q6(D − 2)(2D + 3)
,

K48 = (D + 4)K(�l·�q)4 − 6�q2K�l2(�l·�q)2

�q8(D − 2)
,
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K(�l·�q)4 = 1
2 [2D10 �q4 + �q4D + q2(K22 �q2 + K23 �q4) + 2q0(I22 �q2 + I23 �q4)],

K�l2(�l·�q)2 = −[D22 + D23 �q2 + m2(K22 + K23 �q2) − I32 − I33 �q2]�q2,

K�l4 = −[D22(Dη − 1) + D23 �q2] − m2[K22(Dη − 1) + K23 �q2] + [I32(Dη − 1) + I33 �q2].
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