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Nuclear reaction cross sections from a simple effective density using a Glauber model
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We have studied the nuclear reaction dynamics of few halo nuclei in the framework of the well-known Glauber
formalism using relativistic (NL3) and nonrelativistic (SEI-I) densities. We find reasonably good agreement with
the experimental data of reaction cross sections. A further careful inspection of the results shows that the SEI-I
density reproduces better results as compared to the NL3 results.
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I. INTRODUCTION

In recent years, the study of exotic nuclei has attracted
considerable theoretical and experimental attention. With the
advancements in the radioactive ion beam facilities, it has
become possible to perform numerous experiments to get more
information regarding the structures of such nuclei. Neutron
and proton halos, Borromean structure, neutron skin, and
bubble structure are some of the current issues of interest.
The most exotic phenomenon is the formation of a neutron
halo by the extremely weak bound neutrons that decouple
from the nuclear core. The interaction cross sections of
nuclei like 6,8He, 11Li, and 11,14Be [1,2] have been found
to be anomalously larger values due to their respective large
root-mean-square (rms) radii. The investigation of large matter
radii and interaction cross sections for 19C, 22N, 23O, and 24F
suggest the feature of one-neutron halo nuclei [3].

Recently, a new member 31Ne has been included in the
family of neutron halos [4]. The isotope 31Ne having N = 21
breaks the shell closer structure and, as a consequence, a large
amount of deformation gets associated with the strong intruder
configuration. Eventually this nuclear system lies at the island
of inversion [5]. The measurement of nuclear reaction cross
section for 19,20,22C [6,7] shows that the drip-line nucleus 22C
has a halo. The one- and two-neutron removal cross sections
and momentum distribution are used to get an indication of
the existence of halo nuclei. 22C has N = 16 which is a
new magic number in neutron-rich nuclei [8,9] and forms a
Borromean halo structure (21C is unstable). Therefore, these
are the points that motivate us to study the reaction dynamics
of such halo candidates. Second, the successful development
of simple effective interaction (SEI) [10] encourages us to use
the formalism for such systems. In our recent publication [11],
we have shown that the density obtained from the relativistic
mean-field (RMF) approximation in the framework of the
Glauber model predicts the nuclear reaction cross section
σR much closer to the experimental data. Although, it is
known that the mean-field approaches do not reproduce the
halo structure of nuclei quantitatively, it predicts the drip-line
properties quite well even for the light nuclei region. Thus, it
is instructive to use the SEI densities and calculate σR for such
interesting systems and compare the results with the known
RMF(NL3) formalism [12].

This paper is organized as follows. Section II contains a
brief description of the Glauber model, the SEI formalism, and
the RMF theory. The calculations and results are presented
in Sec. III. Here, the ground-state properties like binding
energy, rms radii, and density distribution are evaluated in
the framework of the RMF and SEI formalisms. Then the
total reaction cross section σR is estimated for some of the
selected exotic nuclei. Finally the summary and conclusions
are outlined in Sec. IV.

II. THE FORMALISM

We use the well-known Glauber approach (core + one nu-
cleon) to investigate reaction dynamics [13,14]. This approach
strongly depends on the densities of the projectile and target
nuclei. We use the axially deformed microscopic RMF densi-
ties with the NL3 parameters [12] and the density obtained by
the recently proposed SEI parametrizations [10]. The details
about the formalism and interaction parameters can be found
in Refs. [13–16], [12,17–19], and [10] for the Glauber, RMF,
and SEI models, respectively. For completeness, the essential
features of these formalisms are outlined in Secs. II A, II B,
and II C.

A. Glauber model

1. Reaction cross section

The theoretical formalism to study the reaction cross
sections using the Glauber approach has been given by
Glauber [13]. The nucleus-nucleus elastic scattering amplitude
is written as

F (q) = ιK

2π

∫
dbe−ι·q·b(1 − eιχ(b)). (1)

At low energy, this model is modified to take care of finite
range effects in the profile function and Coulomb-modified
trajectories. The elastic scattering amplitude including the
Coulomb interaction is expressed as

F (q) = eιχs

{
FCoul(q) + ιK

2π

∫
dbe−ι·q·b+2ιη ln(Kb)(1 − eιχ (b))

}
,

(2)
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with the Coulomb elastic scattering amplitude

FCoul(q)= −2ηK

q2
exp

{
−2ιη ln

(
q

2K

)
+2ι arg �(1 + ιη)

}
,

(3)

where K is the momentum of the projectile and q is the
momentum transferred from the projectile to the target.
Here η = ZP ZT e2/h̄v is the Sommerfeld parameter, v is the
incident velocity of the projectile, and χs = −2η ln(2Ka),
with a being a screening radius. The elastic differential cross
section is given by

dσ

d�
= |F (q)|2. (4)

The standard Glauber form for total reaction cross sections is
expressed as [13,15]

σR = 2π

∫ ∞

0
b[1 − T (b)]db, (5)

where T (b) is the transparency function with impact parameter
b. The function T (b) can be expressed in terms of the phase
shift function by

T (b) = e|ιχPT(b)|2 . (6)

Here, χPT is the projectile-target phase shift function. The
phase shift function has been expressed for the two-body (core
+ neutron) projectile system as

ιχPT(b) = ιχCT(b) + ιχNT(b), (7)

where

ιχCT(b) = −
∫

p

∫
t

∑
i,j

�ij (
−→
b − −→s + −→

s ′ )

× ρpi(
−→
s ′ )ρtj (−→s )

−→
ds

−→
ds ′, (8)

and

ιχNT(b) = −
∫

t

�ij (
−→
b − −→s )ρtj (−→s )

−→
ds. (9)

The profile function �NN for the optical limit approxima-
tion is defined as

�NN = �ij (beff) = 1 − ιαNN

2πβ2
NN

σNN exp

(
− b2

eff

2β2
NN

)
(10)

for the finite range and

�NN = �ij (beff) = 1 − ιαNN

2
σNNδ(b) (11)

for the zero range, where beff = |−→b − −→s + −→
s ′ |, −→

b is the

impact parameter, and −→s and
−→
s ′ are the projections of intrinsic

coordinates of projectile and target densities, respectively, onto
the impact parameter plane. The z-integrated densities are
defined as

ρ(ω) =
∫ ∞

−∞
ρ(

√
w2 + z2)dz, (12)

with ω2 = x2 + y2. Initially the Glauber model was designed
for the high-energy approximation. However it was found to

work reasonably well for both the nucleus-nucleus reaction
and the differential elastic cross sections over a broad en-
ergy range [16]. The parameters σNN , αNN , and βNN are
usually dependent upon the proton-proton, neutron-neutron,
and proton-neutron interactions. It should be noted that these
parameters which are used exclusively in the Glauber model
are entirely independent and the input densities are obtained
from two completely different formalisms.

B. Hartree-Fock with simple effective interactions

The SEI similar to Gogny is used to study the bulk properties
of finite nuclei within the framework of the Hartree-Fock (HF)
formalism. The form of SEI is given by [10]

νeff(r) = t0(1 + x0Pσ )δ(r)

+ t3(1 + x3Pσ )

(
ρ(R)

1 + bρ(R)

)γ

δ(r)

+ (W + BPσ − HPτ − MPσPτ )f (r), (13)

where f (r) is the functional form of the finite range interaction
in term of the Gaussian function f (r) = e−r2/α2

, which
contains a single range parameter α. The other terms have
their usual meaning [10].

The Hamiltonian density functional using the SEI [Eq. (13)]
is written as

H = K + HNucl + HSO(r) + HCoul(r) + HRC, (14)

where K = h̄2

2m
(τn + τp) is the kinetic energy term, with τn and

τp being the proton and neutron kinetic energy densities of the
nucleus. The second term of the Hamiltonian is the nuclear
contribution, which contains the direct and exchange parts.
The direct contribution of the nuclear energy density comes
from the central part of the effective interaction. The third term
is the spin-orbit interaction, written as

HSO(r) = −1

2
W0[ρ(r)∇J + ρn(r)∇Jn + ρp(r)∇Jp]. (15)

The fourth term is due to the Coulomb interaction, which
contains both direct and exchange terms given as [10]

HCoul(r) = 1

2

∫
ρp(ŕ)

|r − ŕ|d
3ŕ − 3

4

(
3

π

)1/3

ρ4/3
p . (16)

The last term of the equation arises from the zero range part of
the SEI, which plays the role of residual correlation energy:

HRC = t0

4

∫ {
(1 − x0)

[
ρ2

n(r) + ρ2
p(r)

]}

+ t0

4

∫
[(4 + 2x0)ρn(r)ρp(r)]

+ t3

24

∫ {
(1 − x3)

[
ρ2

n(r) + ρ2
p(r)

]}

+ t3

24

∫
[(4 + 2x3)ρn(r)ρp(r)]

(
ρ(r)

1 + bρ(r)

)γ

. (17)

Here ρn, ρp, ρ, Jn, Jp, and J are the neutron, proton, and total
nuclear and current densities, respectively. The 12 parameters
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TABLE I. The ground-state properties of projectile and target nuclei obtained from the RMF(NL3) and HF(SEI-I) calculations are compared
with experimental data wherever available. The difference between the experimental and calculated binding energy, �B.E.RMF and �B.E.HF,
for RMF and HF, respectively, are given. The binding energy (B.E.) is in MeV, and rrms and rc are in fm.

Nuclei B.E. �B.E. �B.E. rrms rc β2

RMF HF(SEI) Expt. [22,23] RMF HF(SEI) RMF HF(SEI) RMF HF(SEI) Expt. [24] RMF

12C 89.761 88.422 92.160 ± 1.7 2.399 3.738 2.554 2.413 2.696 2.436 2.47(00) 0.068
4He 34.466 29.003 28.292 ± 0.000 −6.174 −0.711 1.965 1.881 2.128 1.900 1.68(00) 0.011
5He 33.692 31.314 27.560 ± 0.02 −6.132 −3.754 2.618 2.139 2.513 1.917 0.250
6He 34.332 33.144 29.270 ± 0.042 −5.062 −3.874 2.411 2.296 2.100 1.926 2.07(01) 0.689
10Li 52.663 51.107 45.130 ± 0.01 −7.533 −5.977 2.609 2.661 2.347 2.197 0.028
11Li 54.585 52.737 45.709 ± 0.001 −8.876 −7.028 2.700 2.661 2.356 2.226 2.48(04) 0.019
10Be 65.403 62.561 64.970 ± 0.08 2.409 2.587 2.600 2.379 2.588 2.286 2.36(02) 0.384
11Be 67.954 69.380 65.472 ± 0.000 −2.482 −3.908 2.541 2.510 2.449 2.330 2.46(02) 0.366
14C 107.348 105.829 105.280 ± 0.00 −2.068 −0.549 2.645 2.551 2.647 2.470 2.56(5) 0.025
15C 108.719 108.846 106.500 ± 0.000 −2.219 −2.346 2.627 2.643 2.536 2.480 0.217
18C 116.928 116.707 115.280 ± 0.306 −1.648 −1.427 2.909 2.859 2.616 2.509 0.437
19C 119.655 119.015 116.242 ± 0.098 −3.413 −2.773 2.983 2.920 2.631 2.521 −0.432
21C 121.630 123.096 119.154 ± 0.399 −2.476 −3.942 3.075 3.052 2.586 2.544 0.142
22C 124.157 124.770 120.736 ± 0.506 −3.421 −4.034 3.111 3.133 2.580 2.557 0.016
22O 163.353 164.763 162.008 ± 0.044 −1.345 −2.755 2.924 2.909 2.737 2.678 0.007
23O 167.328 169.040 164.749 ± 0.090 −2.579 −4.291 2.961 2.973 2.726 2.689 −0.015
30Ne 216.040 214.160 211.260 ± 0.270 −4.78 −2.900 3.260 3.236 2.996 2.933 0.004
31Ne 216.145 214.569 211.544 ± 1.619 −4.601 −3.025 3.336 3.289 3.026 2.944 0.236

γ , b, t0, t3, x0, x3, W , B, H , M , α, and W0 are used for the
calculation of ground-state properties. The detailed procedure
of calculations of ground-state properties (like binding energy,
charge radius, nuclear matter radius, etc., and parameters’
evaluation) in the HF approximation can be found in Ref. [10].
The values of parameters for SEI-I interactions are γ = 1

2 ,
b = 0.5914 fm3, t0 = 437.0 MeV fm3, t3 = 9955.2 MeV
fm3(γ+1), x0 = 0.6, x3 = −0.118, W = −589.09 MeV, B =
130.36 MeV, H = −272.42 MeV, M = −192.16 MeV, α =
0.7596 fm, and W0 = 115.0 MeV.

C. Relativistic mean-field densities

The RMF approach is well documented in Refs. [17–21].
The basic ingredient of the RMF model is the relativistic
Lagrangian density for a nucleon-meson many-body system,

which is defined as [20]

L = ψi(iγ
μ∂μ − M)ψi + 1

2
∂μσ∂μσ

− 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − gsψiψiσ

− 1

4
�μν�μν + 1

2
m2

wV μVμ

− gωψiγ
μψiVμ − 1

4
�Bμν · �Bμν

+ 1

2
m2

ρ
�Rμ · �Rμ − gρψiγ

μ−→τ ψi · −→
Rμ

− 1

4
FμνFμν − eψiγ

μ (1 − τ3i)

2
ψiAμ. (18)

Here σ , Vμ, and
−→
R μ are the fields for σ , ω, and ρ mesons,

respectively. Aμ is the electromagnetic field. The ψi are

TABLE II. The one-neutron (Sn) and two-neutron (S2n) separation energies along with single-particle (εn) energy values of halo nuclei
obtained by the nonrelativistic HF(SEI-I) and RMF(NL3) formalisms. The values of Sn, S2n, and εn are in MeV.

Nuclei HF(SEI-I) RMF(NL3) Expt. [3]

Sn S2n εn Sn S2n εn Sn S2n

6He 1.830 4.141 4.685 0.64 − 0.114 2.465 1.864 ± 0.001 0.974 ± 0.001
11Li 1.630 1.096 3.882 1.922 4.217 3.732 0.330 ± 0.030 0.300 ± 0.030
11Be 4.078 14.453 5.489 2.551 9.697 3.894 0.504 ± 0.006 7.317 ± 0.006
15C 3.017 11.357 2.591 1.371 10.315 2.566 1.218 ± 0.001 9.395 ± 0.018
19C 2.306 4.767 2.259 2.727 5.343 3.263 0.160 ± 0.120 4.350 ± 0.210
22C 3.616 5.755 2.876 2.527 4.438 3.782 1.450 ± 1.030 1.120 ± 0.920
23O 4.282 9.395 4.596 3.975 10.161 4.270 2.740 ± 0.120 9.590 ± 0.100
31Ne 0.409 3.736 0.417 0.105 4.613 1.639
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the Dirac spinors for the nucleons whose third component
of isospin is denoted by τ3i . gs , gω, gρ , and e2

4π
= 1

137 are
the coupling constants for the linear terms of the σ , ω,
and ρ mesons and photons, respectively. g2 and g3 are the
parameters for the nonlinear terms of the σ meson. M, mσ ,
mω, and mρ are the masses of the nucleons and the σ , ω,

and ρ mesons, respectively. ωμν ,
−→
B

μν
, and Fμν are the field

tensors for the V μ,
−→
R

μ
, and photon fields, respectively. The

quadrupole moment deformation parameter β2, rms radii, and
binding energy are evaluated using the standard relations [18].
The nuclear density ρ = ∑A

i=1ψ
†
i ψi is obtained by solving

the equation of motion obtained from the above Lagrangian
[18,20]. The values of the parameters for NL3 are given
as [12] gs = 10.217, gω = 12.868, gρ = 4.574, g2 = −10.431
(fm−1), g3 = −28.885, M = 939 MeV, mσ = 508.194 MeV,
mω = 782.501 MeV, and mρ = 763.0 MeV.

III. CALCULATIONS AND RESULTS

A. Ground-state properties using RMF(NL3) and HF(SEI-I)

The ground-state properties like binding energy (B.E.), rms
matter radius, charge radius, and β2 deformation of some of
the halo projectile and core of the projectiles, along with the C
target, have been studied with the well-known RMF formalism
with the NL3 parameters. These properties are also compared
with the nonrelativistic Hartree-Fock formalism using the
SEI with the SEI-I parameter along with the experimental
observations wherever available. We also give the results for
some of the known unbound nuclei like 5He and 10Li because of
their involvement in the present core and the valence Glauber
formalism.

1. Binding energy

The calculated values of the B.E. for the core of projectile
nuclei are presented in Table I using the RMF(NL3) and
nonrelativistic HF with the SEI-I parameters. The calculated
values of the B.E. closely agree with the experimental

FIG. 1. The radial plots of densities from RMF(NL3) and
HF(SEI-I) calculations of projectile (core) and target nuclei.

FIG. 2. The radial density plots of HF(SEI-I) calculations for
projectile nuclei in logarithmic scale.

observations [22,23]. In comparison the RMF(NL3) results
have B.E. values slightly higher than those of the HF(SEI-
I) results. The B.E. difference between the theoretical and
experimental values are also listed in Table I. Examining the
results of Table I, it can be inferred that both the formalisms
are equally capable of reproducing the experimental data.

2. Nuclear radii and quadrupole deformation

The calculated rms matter radius and charge radius of
projectile nuclei and core of the projectiles along with target
nuclei from both relativistic RMF(NL3) and nonrelativistic
HF(SEI-I) mean-field theories are presented in Table I. The
experimental data are also given for comparison wherever
available [24]. The rms proton radius rp is obtained from
the distribution of point protons inside the nucleus. The
charge radius rc is obtained by taking the finite size, 0.8 fm,
of the proton, which is evaluated from the formula [20]

rc =
√

r2
p + 0.06. This table demonstrates the success of these

FIG. 3. Same as Fig. 2 but for the RMF(NL3) approximation.

044606-4



NUCLEAR REACTION CROSS SECTIONS FROM A SIMPLE . . . PHYSICAL REVIEW C 87, 044606 (2013)

TABLE III. The nucleon-nucleon cross section σNN and other
parameters like αNN and βNN used to calculate the profile function.

E (MeV/A) σNN (fm2) αNN βNN (fm2)

240 3.266 868 0.680 0303 0.097 843 707
730 4.174 130 −0.082 869 336 0.189 6611
800 4.260 00 −0.070 00 0.210 000
950 4.318 554 −0.207 8482 0.214 2974
960 4.319 103 −0.221 3738 0.213 4798
965 4.319 310 −0.228 1574 0.213 0555

theories in their predictions by showing the surprisingly
comparable results.

Table I presents the quadrupole deformation parameter β2

for halo projectiles and the core of the projectile systems
obtained from the RMF model using the NL3 parameter set.
The projectile nuclei in Table I are prolate in shape except for
19C and 23O (both have oblate deformations).

3. One- and two-neutron separation energy

The one (Sn) and two (S2n) neutron separation energies of
6He, 11Li, 11Be, 15C, 19C, 22C, 23O and 31Ne halo nuclei are
presented in Table II. These energies have been estimated as

Sn = B.E(N,Z) − B.E(N − 1, Z) (19)

and

S2n = B.E(N,Z) − B.E(N − 2, Z). (20)

The calculated values of separation energies Sn and S2n for
halo nuclei obtained by both the formalisms HF(SEI-I) and
RMF(NL3) are compared with the experimental observations.
The small value of Sn energy for 11Be, 15C, 19C, 23O, and 31Ne
nuclei from their S2n values are the primary indications of
their one-neutron halo candidature. Table II also presents the
single-particle energy state of the last occupied neutron (εn)
of the considered halo nuclei from both the formalisms.

4. Nuclear densities

The densities of 12C, 5He, 10Li, 10Be, 14C, 18C, 20C, 22O, and
30Ne nuclei are obtained from axially deformed RMF(NL3)

and spherical HF(SEI-I) theories. These axially deformed
densities are converted into their spherical equivalent and
presented in Fig 1. Figure 1 (left panel) shows the spherical
equivalent of the deformed RMF(NL3) density. The right
panel of this figure shows the spherical density obtained
from the HF(SEI) formalism with SEI-I interaction parameters
[10]. We find almost similar densities from both RMF and
nonrelativistic mean-field approximations with SEI. Some
exceptions are seen in Fig. 1 for 12C, 10Be, and 30Ne nuclei.
In the case of RMF(NL3) the density of 12C shows a stiff
hike in the central portion and a sudden fall in the tail part.
On the other hand the behavior of 10Be is the opposite. The
density distribution of 30Ne shows a small depression at the
center indicating the structure of a bubble nucleus. The same
effect appeared to a small extent in 22O from both systems of
densities, similar to our earlier calculations [25].

Figures 2 and 3 show the proton and neutron density
distributions for projectiles as a function of radial distance
of the considered halo nuclei. Similar trends have appeared
in the density distribution of these nuclei for both RMF(NL3)
and HF(SEI-I) densities as seen in Figs. 2 and 3. The extension
of neutron density distributions are seen as compared to the
proton distributions. This may be because the neutron to proton
ratio is more than 1. The longer tail appeared in neutron density
distribution as compared to the proton density distribution
signify its neutron halo nature of these nuclei.

5. Various inputs for the Glauber model

One of the inputs for the evaluation of the profile function
in the Glauber model is the energy-dependent parameters σNN ,
αNN , and βNN , where σNN is the total nuclear reaction cross
section of a NN collision, αNN is the ratio of the real part to
the imaginary part of the forward nucleon-nucleon scattering
amplitude, and βNN is the slope parameter, which determines
the fall of the angular distribution of the NN scattering.
Table III presents these energy-dependent parameters for
various energy ranges. These parameters have been estimated
by using spline interpolation as suggested in Ref. [26].

The most important input in the Glauber model formalism
is the densities of the projectile and the target. The computer
code used here cannot use the density directly [14]. So, we
convert the densities into a Gaussian form and calculate the

TABLE IV. The Gaussian coefficients for the projectile (core) and target with RMF(NL3) and HF(SEI-I) densities.

Nuclei RMF(NL3) HF(SEI-I)

c1 a1 c2 a2 c1 a1 c2 a2

12C −0.159 36 0.632 931 0.415 315 0.304 586 −3.800 28 0.361 705 3.984 36 0.345 456
5He −1.209 18 0.363 434 1.405 51 0.363 380 −0.117 28 0.689 757 0.294 53 0.414 845
10Li −1.1064 0.329 244 1.282 38 0.303 979 −1.692 25 0.363 722 1.861 98 0.337 186
10Be −1.23 458 0.185 387 1.376 85 0.185 291 −3.365 76 0.379 683 3.547 75 0.363 577
14C −0.433 794 0.449 739 0.623 356 0.291 956 −1.886 75 0.342 428 2.045 96 0.308 693
18C −1.219 10 0.279 772 1.378 17 0.243 514 −1.942 06 0.291 905 2.098 75 0.263 030
21C −1.187 02 0.252 476 1.410 22 0.225 988 −3.993 17 0.249 448 4.160 38 0.238 052
22O −4.064 57 0.272 853 4.232 98 0.257 118 −2.568 38 0.269 287 2.699 32 0.244 516
30Ne −3.6109 0.221 938 3.743 09 0.206 388 −2.050 83 0.198 501 2.194 28 0.180 662
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FIG. 4. The total nuclear reaction cross section σR as a function
of projectile energy. The results obtained from RMF(NL3) and
HF(SEI-I) densities are compared with experimental data [14,26].

Gaussian coefficients ci and ai using the following relation:

ρ(r) =
n∑

i=1

ci exp[−air
2]. (21)

The Gaussian coefficients that are used as inputs in the Glauber
model code are listed in Table IV for both RMF(NL3) and
HF(SEI-I) interactions.

B. Total reaction cross sections

Figure 4 presents the variation of total nuclear reaction
cross sections for 12C + 12C as a function of projectile energy
over the range of 30–1200 MeV/A. The σR obtained from
RMF density up to the range of ∼30–120 MeV/A excellently
reproduce the experimental data. Beyond this value of the
projectile energy, σR have slightly greater values. The σR

values calculated with HF(SEI-I) are a little bit higher than
those calculated with RMF(NL3). The reaction cross sections
σR obtained by both the formalisms have reasonable values,
which compare well with the experimental observations.

Some results of our calculations are listed in Table V
for different projectiles with a 12C target. The reaction cross
section σR obtained using the NL3 and SEI-I densities are in

TABLE V. Total nuclear reaction cross section for various
projectiles with a 12C target. The experimental data [27] are given
for comparison.

Projectile Energy σR (mb)

(MeV/A) RMF(NL3) SEI(SEI-I) Expt.

6He 800 721 740 722 ± 6
11Li 800 930 944 1060 ± 10
11Be 950 1038 932 942 ± 8
15C 730 995 1054 945 ± 10
19C 960 1187 1202 1231 ± 28
23O 960 1242 1308 1308 ± 16
31Ne 240 1361 1465 1435 ± 22

FIG. 5. Reaction cross sections with different projectile energies,
Eproj, for 6He, 11Li, 11Be, 19C, 22C, and 31Ne with a 12C target. The
experimental data are given for comparison wherever available [27].

agreement with the experimental data. A further inspection of
the comparison reveals overall the superiority of the SEI-I
density over the NL3 density. It may be noted that the
microscopic density obtained from RMF theory with the NL3
set is quite successful for various applications including the
nuclear reaction cross section calculations [28] throughout the
periodic chart. In some of our earlier calculations, it is shown
that σR obtained with the NL3 set is superior to that obtained
with the microscopic nonrelativistic SkI4 Skyrme force [11].
However, it is remarkable to mention here that the SEI-I density
performs even better than the NL3 density for the estimation
of reaction cross sections for the chosen halo nuclei. Thus the
present calculations encouraged us to use the SEI density in
future calculations for the analysis of nuclear reactions.

Figure 5 shows the total reaction cross section as a function
of the projectile energy for 6He, 11Li, 11Be, 19C, 22C, and 31Ne
halo nuclei over a wide range of energy, 30–1000 MeV/A.
The value of σR is observed to be larger at small incident
energy and to start decreasing with the increase of Eproj up
to ∼300 MeV/A. A slight increase in σR is seen (Fig. 5) for
300–750 MeV/A and σR becomes almost independent of Eproj

beyond 750 MeV/A. The values of σR with SEI-I are slightly
greater than the NL3 results except from the 11Be channel,
and the overall comparison with experimental data is better
for SEI-I as compared to NL3.

IV. SUMMARY AND CONCLUSION

In summary, we have presented here some ground-state
properties and reaction cross sections for 6He, 11Li, 11Be,
15C, 19C, 22C, 23O, and 31Ne (some of the halo nuclei)
projectiles with a 12C target using the densities of relativistic
and nonrelativistic mean-field formalisms. These densities are
obtained from completely different sources, which are used
in the Glauber model approach for the evaluation of σR .
In general, the results obtained with both the RMF and HF
formalisms compare well with the experimental data with an
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edge of the density obtained from the SEI-I interaction. The
use of the SEI-I density will be of further interest to analyze
reaction dynamics and structural effects for other reactions
involving halo nuclei.
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