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Damping of high-energy particle-hole-type nuclear excitations: A semimicroscopic model
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A semimicroscopic model (particle-hole dispersive optical model) is formulated to describe the main relaxation
modes of high-energy particle-hole-type excitations in medium-heavy mass nuclei. Within this model, Landau
damping and the single-particle continuum are considered microscopically, while the spreading effect is treated
phenomenologically, employing a statistical assumption. Description of direct nucleon decay of the above-
mentioned excitations (including giant resonances) is a unique feature of the proposed model, which in applying
to closed-shell nuclei is arranged for practical implementations. The methodical similarity of formulations of the
single-quasiparticle and particle-hole optical models is emphasized.
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I. INTRODUCTION

High-energy particle-hole-type excitations are the doorway
states for many nuclear reactions. To use information deduced
from reaction cross sections for an analysis of nuclear structure
and reaction mechanisms, it is desirable to develop a model
that describes damping of the above-mentioned excitations. A
great variety of these excitations, including giant resonances
(GRs), is characterized by three main relaxation modes. They
are as follows: (i) the particle-hole (p-h) strength distribution,
or Landau damping, which is a result of the shell structure of
nuclei; (ii) coupling of (p-h)-type states with the single-particle
continuum that leads to direct nucleon decay of these states
and related phenomena; and (iii) coupling of (p-h)-type states
with many-quasiparticle configurations, or chaotic states,
that leads to the spreading effect. Actually, the interplay
of these relaxation modes varies with increasing excitation
energy. Giant resonances correspond to collective (p-h)-type
excitations.

As applied to the description of GR damping, we developed
a semimicroscopic approach based on the continuum-random-
phase-approximation (cRPA) version of Migdal’s finite Fermi-
system theory [1]. Within this approach, Landau damping
and coupling with the single-particle continuum are described
microscopically, using a mean field and p-h interaction, while
the spreading effect is phenomenologically taken into account
directly in the cRPA equations for energy-averaged quantities
in terms of an effective single-particle optical-model potential.
Such a method allows one to realize the statistical assumption:
After energy averaging, different (p-h)-type states, having the
same angular momentum and parity, “decay” into chaotic
states independently of one another. In implementations of the
approach to describe GR main properties, a phenomenological
mean field and the Landau-Migdal p-h interaction bound by
some self-consistency conditions are used. The imaginary part
of the effective single-particle optical-model potential deter-
mines the contribution of the spreading effect to the GR main
characteristics together with the corresponding real part found
from a proper dispersive relationship. The intensity of the
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imaginary part, which is parameterized as a universal function,
exhibiting a saturation-like energy dependence, is adjusted to
describe the experimental GR strength distribution. In such
a description the semimicroscopic approach is intermediate
between “fully microscopic” (chaotic states are substituted by
a number of 2p-2h configurations) and semiclassical (the shell
structure of nuclei is ignored) approaches. The unique feature
of the semimicroscopic approach is a possibility to describe
direct-nucleon-decay properties of GRs without the use of
specific adjustable parameters. Formulation and a diversity of
implementations of the semimicroscopic approach, which is
valid in the “pole” approximation (i.e., at the close range of
the GR energy) are reviewed in Refs. [2,3].

It is essential that the semimicroscopic approach should be
extended to an energy region far from the centroid energy of the
GR (to describe, for instance, the GR high- and/or low-energy
“tails”). Such a need appears in the “Coulomb” description of
the isobaric analog resonance properties, which are determined
by the low-energy “tail” of the charge-exchange monopole GR
[4,5]. Another example is the asymmetry (relative 90◦) of the
differential photoneutron and inverse reaction cross sections in
the energy region of the isovector E2-GR [6]. The asymmetry
is due to interference of the E1- and E2-reaction amplitudes.
Recently, a problem with explanation of experimental data
on distribution of the isoscalar monopole strength in a wide
excitation energy interval has appeared [7]. One more reason
for formulation of an extended model is a verification of the
method used within the semimicroscopic approach for the
phenomenological description of the spreading effect on GR
properties.

In the present work we extend the above-outlined semimi-
croscopic approach to describe damping of (p-h)-type states at
arbitrary (but high-enough) excitation energies. The extended
version is formulated starting from the many-body nonlocal
p-h Green function, which satisfies the Bethe-Goldstone-type
equation. We call this version the p-h dispersive optical model
(PHDOM), bearing in mind the analogy with a transition to the
single-quasiparticle dispersive optical model (SQDOM). The
latter is also formulated semimicroscopically, starting from
the many-body single-particle Green function, which satis-
fies the Dyson equation. The proper parametrization of the
averaged self-energy operator in this equation leads, finally,
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to the basic equations of the SQDOM—the equations for
the optical-model single-particle Green function and nucleon-
nucleus scattering wave function [8,9]—and to a dispersive
relationship for the real part of the optical-model potential [9].
Direct nucleon decay of sub-barrier single-particle quasis-
tationary states can be also described within the SQDOM
[10,11]. As compared with the semimicroscopic description
of GR damping [2,3], no new model parameters are used in
the formulation of the PHDOM. First attempts to formulate
this model have been undertaken in Ref. [12]. Preliminary
consideration and a brief description are given in Refs. [3]
and [13], respectively.

The paper is organized as follows. In Sec. II the PHDOM
is formulated as an extension of the standard cRPA version
by taking the spreading effect into account to describe the
energy-averaged strength functions and transition densities
of high-energy (p-h)-type excitations. Formulation of the
PHDOM as an extension of the cRPA nonstandard version for
describing direct-nucleon-decay properties of the mentioned
excitations is presented in Sec. III. The methodical similarity
of formulations of the SQDOM and PHDOM is discussed in
Sec. IV, where an example of implementations of the new
model and concluding remarks are also given.

II. BASIC QUANTITIES AND EQUATIONS
OF THE PHDOM

A. Nonlocal p-h Green function

The basic quantity used within the cRPA standard version
is the local p-h Green function (GF) A(x, x1; ω) [14]. Here,
x is the set of single-particle coordinates, including the spin
and isospin variables, and ω is the current excitation energy.
To realize the statistical assumption concerned with spreading
(p-h)-type excitations at arbitrary energies (Sec. II C), we start
the formulation of the PHDOM from the nonlocal p-h GF
A(x, x ′; x1, x

′
1; ω) satisfying the spectral expansion (see, e.g.,

Ref. [1]):

A(x, x ′; x1, x
′
1; ω) =

∑
s

[
ρ∗

s (x, x ′)ρs(x1, x
′
1)

ω − ωs + i0

− ρ∗
s (x ′

1, x1)ρs(x, x ′)
ω + ωs − i0

]
. (1)

Here ωs = Es − E0 is the excitation energy of an exact state |s〉
of the system, ρs(x, x ′) = 〈s|�̂+(x)�̂(x ′)|0〉 is the transition
density matrix, and �̂+(x) is the operator of nucleon creation at
the point x. Being a superposition of 1p–1h, 2p–2h, 3p–3h, . . .
configurations, states |s〉 belong to the continuum if ωs > BN

(BN is the nucleon separation energy). In such a case, which
is predominantly considered below, wave functions |s〉 are
normalized to the delta-function of the energy.

The transition density matrix and various strength functions
are related to the main characteristics of (p-h)-type excitations.
In accordance with the expansion of Eq. (1), the squared
transition density matrix in the continuum region is determined
by ImA as follows:

− 1

π
ImA(x, x ′; x1, x

′
1; ω) = ρ∗(x, x ′; ω)ρ(x1, x

′
1; ω). (2)

The strength function SV0 (ω) = ∑
s |(V̂0)s0|2δ(ω − ωs), cor-

responding to a nonlocal single-particle external field
V̂0 = ∫

�̂+(x)V0(x, x ′)�̂(x ′)dxdx ′ = [[�̂+V0�̂]] (hereafter
the brackets [[. . . ]] mean proper integration over coordinates,
the number of the brackets corresponds to the number of
integrations), is also determined by ImA:

SV0 (ω) = − 1

π
Im[[[[V+

0 A(ω)V0]]]]. (3)

The alternative representation of the strength function SV0 in
the continuum region follows from Eqs. (1)–(3):

SV0 (ω) = |[[ρ(ω)V0]]|2. (4)

In accordance with the expansion of Eq. (1), the free
p-h GF A0(x, x ′; x1, x

′
1; ω) is determined by a mean field

and the ground-state occupation numbers. Let H0(x) be a
single-particle Hamiltonian: [H0(x) − ελ]φλ(x) = 0, where φλ

and ελ are, respectively, the single-particle wave functions and
energies. The free p-h transition density matrices ρ(0)

s (x, x ′) =
(1 − nλ)nμφ∗

λ(x)φμ(x ′), where nλ,μ are the single-particle
occupation numbers, are orthogonal: [[ρ(0)∗

s ′ ρ(0)
s ]] = δs ′s . This

point allows one to realize the above-mentioned statistical
assumption (Sec. II C) and, therefore, makes reasonable the
use of the nonlocal p-h GF in the formulation of the PHDOM.
Using further the free (p-h)-state energies ω(0)

s = ελ − εμ, one
gets the expression for A0 in the form

A0(x, x ′; x1, x
′
1; ω) =

∑
λμ

Aλμ(ω)φλ(x)φ∗
μ(x ′)φμ(x ′

1)φ∗
λ(x1);

Aλμ(ω) = nλ − nμ

ελ − εμ − ω
. (5)

Following the standard cRPA version [14], we introduce the
GF of the single-particle Schrodinger equation: [H0(x) −
ε]g(x, x ′; ε) = −δ(x − x ′). The use of the spectral expansion
of this GF allows one to get the alternative expression for A0:

A0(x, x ′; x1, x
′
1; ω)=

∑
μ

nμφ∗
μ(x ′)φμ(x ′

1)g(x, x1; εμ + ω)

+
∑

λ

nλφ
∗
λ(x1)φλ(x)g(x ′

1, x
′; ελ−ω).

(6)

As is well known, the radial component of g(x, x ′; ε) can be
presented as a product of regular and irregular solutions of
the proper radial Schrödinger equation. After separation of the
spin-angular and isobaric variables in Eq. (6), the use of the
mentioned presentation allows one to take exactly the single-
particle continuum into account.

The above-given expressions are also related to the local
GF A(x, x1; ω) = A(x = x ′; x1 = x ′

1; ω). In such a case, the
external field is supposed to be local: V0(x, x ′) = V0(x)δ(x −
x ′). It is noteworthy that the spectral expansion for A(x, x ′; ω)
contains the transition densities ρs(x). The free transition
densities ρ(0)

s (x) are obviously not orthogonal.

B. Interaction in the p-h channel

The p-h interaction Fl-r, leading to long-range correlations
[in particular, to formation of GRs, as collective (p-h)-type
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excitations], can be presented in the form

Fl-r(x, x ′; x1, x
′
1) = F (x, x1)δ(x − x ′)δ(x1 − x ′

1). (7)

Here F is the p-h interaction near the Fermi surface. This
interaction can be calculated “microscopically” (starting, e.g.,
from the Skyrme-type forces) or taken phenomenologically
(using, e.g., the Landau-Migdal forces). The cRPA standard
version is formulated in terms of the local p-h GF A(x, x1; ω)
and p-h interaction F (x, x1) [14]:

A(ω) = A0(ω) + [[A0(ω)FA(ω)]]. (8)

The alternative (and fully equivalent) cRPA standard version is
formulated in terms of the effective external field V (x, ω) cor-
responding to an external field (or to a probing operator) V0(x).
The effective-field method (initially proposed in Ref. [1])
can be also based on the definition [A(ω)V0] = [A0(ω)V (ω)].
From this definition and Eq. (8) follows the equation for the
effective field:

V (ω) = V0 + [[FA0(ω)V (ω)]]. (9)

The strength function corresponding to the probing operator
V0(x) is determined by the effective field as follows:

SV0 (ω) = − 1

π
Im[[V +

0 A0(ω)V (ω)]] (10)

[compare with Eq. (3)].
For high-enough excitation energies, an additional specific

interaction appears in the p-h channel, Fspr(x, x ′; x1, x
′
1; ω),

responsible for the spreading effect. This interaction is
determined by the p-h polarization operator, or the p-h frag-
mentation scattering amplitude, π (x, x ′; x1, x

′
1; ω), describing

coupling of (p-h)-type states with many-quasiparticle config-
urations. Because 2p-2h configurations are the doorway states
for the spread of (p-h)-type states, the polarization operator is
the convolution of the (local) 2p-2h GF, B(x1, x2, x3, x4; ω),
with a “residual” pair interaction H ′(x, x ′):

π (ω) = [[H ′B(ω)H ′]]. (11)

The polarization operator is described by a set of diagrams
irreducible in the p-h channel and takes into account the
interference between particle and hole “decays” into chaotic
states. Using the spectral expansion of the 2p-2h GF, one can
present the spectral expansion of the polarization operator in
the form

π (x, x ′; x1, x
′
1; ω) =

∑
m

[
v∗

m(x, x ′)vm(x1, x
′
1)

ω − ωm + i0

− v∗
m(x ′

1, x1)vm(x ′, x)

ω − ωm + i0

]
. (12)

Here the chaotic state |m〉 is a complicate superposition of 2p–
2h, 3p–3h, . . . , configurations; ωm and vm are, respectively,
the chaotic-state energy and transition potential matrix. The
latter is the convolution of H ′(x, x ′) and the transition den-
sity matrix ρm(x, x ′) = 〈m|�̂+(x)�̂(x)�̂+(x ′)�̂(x ′)|0〉: vm =
[H ′ρm]. The chaotic-state level density d−1 is extremely high
and can be described by statistical formulas. After proper
parametrization the quantity π (ω = 0) should be included
into the interaction Fl−r (7), so the difference π (ω) − π (0)

can be considered as the p-h interaction Fspr(ω) responsible
for the spreading effect.

C. Extension of the cRPA standard version

The Bethe-Goldstone–type equation for the nonlocal p-h
GF incorporates the full p-h interaction,

A(ω) = A0(ω) + [[[[A0(ω)(Fl-r + Fspr(ω))A(ω)]]]]. (13)

Being considered at high excitation energies, this equation
presents formally the extension of the RPA standard version
for taking the spreading effect into account.

In view of the high density of poles in the energy
dependence of the polarization operator π (ω) (12) and,
therefore, of the p-h interaction Fspr(ω) in Eq. (13), only
the energy-averaged functions π̄ (ω) = π (ω + iJ ), F̄spr(ω) =
Fspr(ω + iJ ) (J � d) can be properly parameterized and then
considered as phenomenological quantities:

F̄spr(x, x ′; x1, x
′
1; ω) = [−iW(x, x ′; ω) + P(x, x ′; ω)]

× δ(x − x1)δ(x ′ − x ′
1). (14)

The delta-functions in this parametrization appear due to a
large momentum transfer (of order of the Fermi momentum)
at the “decay” of (p-h)-type states into many-quasiparticle con-
figurations. Appearance of an imaginary part is the specific fea-
ture of the interaction F̄spr, W(x, x ′; ω) = (π/d)|vm(x, x ′)|2,
as it follows from (12) and (14). Supposing the coordinate
dependence of W and P is the same, i.e., W(x, x ′; ω) =
f (x, x ′)W (ω) and P(x, x ′; ω) = f (x, x ′)P (ω), one gets from
(12) and (14) the dispersive relationship

P (ω) = 2

π
P.V.

∫ ∞

0
W (ω′)

(
ω′

ω2 − ω′2 + 1

ω′

)
dω′. (15)

It is reasonable to suppose that the energy dependence of W (ω)
starts from zero at a gap value 
 (that means formally the
appearance of chaotic states at a finite excitation energy). In
such a case instead of (15) we have

P (ω) = 2

π
P.V.

∫ ∞




W (ω′)
(

ω′

ω2 − ω′2 − ω′


2 − ω′2

)
dω′.

(16)

This dispersive relationship is exploited in implementations of
the semimicroscopic approach [15]. Within this approach the
following parametrization of W (ω) is used:

2W (ω � 
) = α
(ω − 
)2

1 + (ω − 
)2/B2
, 2W (ω � 
) = 0,

(17)

where α 	 0.1 MeV−1 is the adjustable parameter, while the
“gap” parameter 
 = 3 MeV and the “saturation” parameter
B = 7 MeV are taken as the universal phenomenological
quantities [2,3]. It is noteworthy that the phenomenological
description of the spreading effect in medium-heavy nuclei
is justified at high-enough excitation energies (practically at
ω � BN ), when the statistical formulas for the level density do
work. Being obtained with the use of the parametrization (17),
the rather cumbersome expression for P (ω) (16) is given in
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Ref. [15]. In the limit 
 = 0, which corresponds to Eq. (15),
this expression is simplified as

P (ω) = α

π

ω2B2

ω2 + B2
ln

ω

B
. (18)

Due to the use of the dispersive relationships (15) and (16)
the full basis of many-quasiparticle configurations is formally
taken into account within the phenomenological description of
the spreading effect. This advantage, allowing us to describe
correctly the energy shift of (p-h)-type excitations caused by
the spreading effect, is lost within the “fully microscopic”
approaches which include, as a rule, only a limited number of
2p-2h configurations (see, e.g., Ref. [16]).

In applying to the “decay” of free p-h states |s(0)〉 into
many-quasiparticle configurations the statistical assumption
mentioned in the Introduction means the following [17]:

2π

d

〈
s

(0)
1

∣∣Ĥ ′|m〉〈m|Ĥ ′|s(0)〉 = �
↓
s(0)δs(0)s

(0)
1

. (19)

Here, �
↓
s(0) is the spreading width of the state |s(0)〉. The

condition (19) can be expressed in terms of ImF̄spr (14) and
the free transition density matrices ρ(0)

s (x, x ′) considered in
Sec. II A:

�
↓
s(0)δs

(0)
1 s(0) = 2π

d

[[
ρ

(0)
s1 vm

]]∗[[
vmρ

(0)
s

]]
= 2W

(
ω(0)

s

)[[
ρ(0)∗

s1
fρ(0)

s

]]
. (20)

Since the different free transition density matrices are or-
thogonal, the condition (20) is fulfilled provided that the
coordinate dependence of W(x, x ′; ω) in Eq. (14) is taken to
be constant in the nuclear volume. Depending on applications,
we take this dependence as f (x, x ′) = fWS(x)fWS(x ′), or
f (x, x ′) = fWS(x), where fWS(x) is the well-known Woods-
Saxon function. Such a choice leads, for instance, to the
expression �

↓
λμ = 2W (ω = ελ − εμ)(1 − nλ)nμfλfμ, where

fλ = [φ∗
λfWSφλ].

The initial equation (13) for the nonlocal p-h GF can be
practically used only after energy averaging,

Ā(ω) = A0(ω) + [[[[A0(ω)(Fl−r + F̄spr)Ā(ω)]]]]. (21)

Here, the free p-h GF is determined by Eq. (5). To solve
Eq. (21), we introduce the energy-averaged free nonlocal p-h
GF Ā0(x, x ′; x1, x

′
1; ω) satisfying the equation

Ā0(ω) = A0(ω) + [[[[A0(ω)F̄sprĀ0(ω)]]]]. (22)

The basic Eq. (21) for Ā(ω) can be expressed in terms of Ā0

and Fl−r ,

Ā(ω) = Ā0(ω) + [[[[Ā0(ω)Fl-rĀ(ω))]]]]. (23)

The auxiliary Eq. (22), corresponding to the model of non-
interacting damping quasiparticles, can be analytically solved
with taking the statistical assumption into account in the spirit

of Eq. (20). The result has the form similar to Eq. (5):

Ā0(x, x ′; x1, x
′
1; ω) =

∑
λμ

Āλμ(ω)φλ(x)φ∗
μ(x ′)φμ(x ′

1)φ∗
λ(x1),

Āλμ(ω) = (nλ − nμ)

{ελ − εμ − ω + (nλ − nμ)[iW (ω) − P (ω)]fλfμ} .
(24)

Here, the quantities P (ω) and W (ω) can be taken in accordance
with Eqs. (16) and (17), respectively. The solution (24) of
Eq. (22) means actually that the free p-h transition density
matrices are not changed after taking the spreading effect
together with the statistical assumption into account.

D. PHDOM equations

The analytical solution of Eq. (22) makes possible the
formulation of the PHDOM equations, which can be further
used for practical implementations. For this purpose, we turn
from Eqs. (23) and (24) to their local limit and, as a result, get
direct extension of the RPA equations for taking the spreading
effect into account. In particular, the solution of the PHDOM
equation

Ā(ω) = Ā0(ω) + [[Ā0(ω)FĀ(ω)]] (25)

[compare with Eq. (8)] allows one to get (i) the energy-
averaged strength function corresponding to the local probing
operator V0(x),

S̄V0 (ω) = − 1

π
Im[[V +

0 Ā(ω)V0(ω)]], (26)

[compare with Eq. (3)] and (ii) the energy-averaged squared
transition density and strength function in the continuum
region,

− 1

π
ImĀ(x, x1; ω) = ρ∗(x, ω)ρ(x1, ω), (27)

S̄V0 (ω) = |[ρ(ω)V0]|2 (28)

[compare with Eqs. (2) and (4), respectively].
Within the PHDOM the effective-field method can be

formulated using the definition [Ā(ω)V0] = [Ā0(ω)V̄ (ω)].
From this definition and Eqs. (25) and (26) follows (i) the
equation for the energy-averaged effective field V̄ (x, ω),

V̄ (ω) = V0 + [[FĀ0(ω)V̄ (ω)]] (29)

[compare with Eq. (9)] and (ii) the expression for the energy-
averaged strength function via V̄ (x, ω),

S̄V0 (ω) = − 1

π
Im[[V +

0 Ā0(ω)V̄ (ω)]], (30)

[compare with Eq. (10)]. Extending the Migdal’s terminology
of Ref. [1], one can say that Eqs. (25)– (30) correspond to the
model of interacting and damping quasiparticles.

Supposing the summation in the expression for Ā0

Ā0(x, ; x1; ω) =
∑
λμ

Āλμ(ω)φλ(x)φ∗
μ(x)φ∗

λ(x1)φμ(x1), (31)
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[with Āλμ(ω) taken from (24)] is limited by the bound (and
quasibound) single-particle states, we get in this approxi-
mation Eqs. (25), (26), (29), and (30), which correspond to
the extended discrete-RPA (dRPA) version. As an illustrative
example of this version, we consider the simplest (“two-level”)
model. Within this model the (“single-level”) GR is formed
due to p-h transitions from the filled level “1” (simulates
the closed shell) to an empty level “2” (simulates the open
shell). The energy-averaged strength function corresponding
to a low-multipole external field V0(x) then can be found in
accordance with Eqs. (29), (30), and (31),

S̄V0 (ω) = − 1

π
ImRd

[
1

ω − ωd + [iW (ω) − P (ω)]f1f2

− 1

ω + ωd − [iW (ω) − P (ω)]f1f2

]
. (32)

Here ωd is the GR energy determined by the intershell distance
and p-h interaction and Rd is the GR strength determined
by squared matrix elements of V0. Being valid in a wide
excitation energy interval, this equation illustrates the follow-
ing statement: taking the spreading effect into account in the
“pole” approximation by the substitution ω → ω + (iW − P )
directly in RPA equations (this procedure is widely used within
the semi-microscopic approach of Refs. [2,3]) leads to a rather
incorrect description of the GR low- and high-energy “tails.”

The extended cRPA standard version is based on the
representation of Eq. (31), which is obtained with the use
of the following approximate equalities:

∑
λ

φλ(x)φ∗
λ(x1)

ελ − εμ − ω − [iW (ω) − P (ω)]fλfμ

	 −ḡ(x, x1; εμ + ω), (33)

where ḡ(εμ + ω) is the single-particle optical-model GF,
satisfying the equation

{H0(x) − [εμ + ω + [iW (ω) − P (ω)]fμfWS(x)]}
× ḡ(x, x1; εμ + ω) = −δ(x − x1), (34)

∑
μ

φμ(x1)φ∗
μ(x)

ελ − εμ − ω + [iW (ω) − P (ω)]fλfμ

	 ḡ(x1, x; ελ − ω), (35)

where the single-particle optical-model GF ḡ(ελ − ω) satisfies
the equation

{H0(x1) − [ελ − ω + [iW (ω) − P (ω)]fλfWS(x1)]}
× ḡ(x1, x; ελ − ω) = −δ(x1 − x). (36)

From the approximate equalities (33) and (35) follows repre-
sentation of the GF Ā0(x, x1; ω) in the form, taking formally
into account the full basis of single-particle states,

Ā0(x, x1; ω) =
∑

μ

nμφ∗
μ(x)φμ(x1)ḡ(x, x1; εμ + ω)

+
∑

λ

nλφ
∗
λ(x1)φλ(x)ḡ(x1, x; ελ − ω)

+ 2
∑
μλ

nμnλφ
∗
μ(x)φμ(x1)φ∗

λ(x1)φλ(x)

× [iW (ω) − P (ω)]fλfμ

(ελ − εμ + ω)2 − [iW (ω) − P (ω)]2f 2
λ f 2

μ

.

(37)

In the absence of the spreading effect (W = P = 0), this
representation goes to the local limit of Eq. (6), A0(x, x1),
which is the basic quantity of the cRPA standard version.
Within the semimicroscopic approach of Refs. [2,3] the spread-
ing effect is, in particular, taken into account in the “pole”
approximation by substitution: A0(ω) → A0[ω + [iW (ω) −
P (ω)]] = Ā

(pole)
0 (ω). One can see that the leading (“pole”)

terms in the expressions for Ā
(pole)
0 and Ā0 are close, while other

(“nonpole”) terms differ. This difference might be noticeable
in the description of the GR “tails.”

III. DIRECT-DECAY PROPERTIES OF (P-H)-TYPE
EXCITATIONS WITHIN THE PHDOM

A. Extension of the cRPA nonstandard version

As mentioned in the Introduction, description of direct
nucleon decay and related phenomena concerned with (p-h)-
type excitations is the unique feature of the semimicroscopic
approach and an additional motivation to further develop the
approach. Within the cRPA standard version discussed in
Sec. II only the full basis of single-particle states is taken
into account, while direct-decay properties of these states are
outside the scope of this version. This weak point has been
overcome within the cRPA nonstandard version [2,3,17] used
for the continuum region and extended below to formulate the
PHDOM in applying to direct-decay properties of (p-h)-type
excitations.

Following the methods used in Refs. [2,3], we first derive
the alternative expression for the strength function of Eq. (3) in
terms of the effective (nonlocal) field V(x, x ′; ω). The latter is
defined by the relationship [[A(ω)V0]] = [[A0(ω)V(ω)]] and
satisfies the equation

V(ω) = V0 + [[[[F(ω)A0(ω)V(ω)]]]], (38)

which follows from the above-given definition and Eq. (13)
with F(ω) = Fl-r + Fspr(ω). In accordance with Eqs. (3)
and (38) we get the alternative expression for the strength
function:

SV0 (ω) = − 1

π
Im[[[[V+A0(ω)V(ω)]]]]. (39)

This equation is derived under supposition that (p-h)-type and
many-quasiparticle states have no common decay channels
(pre-equilibrium decay is neglected). Taking ImA0(ω) in the
continuum region from Eqs. (5) and (6), we further get from
Eq. (39) the following representation of the strength function
in this region:

SV0 (ω) =
∑

c

SV0,c(ω), SV0,c(ω) = |MV0,c(ω)|2,

(40)
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MV0,c(ω) = [[�(+)
c,0 (ω)V(ω)]],

(41)
�

(+)
c,0 (x, x ′; ω) = nμφ(+)

εc
(x)φ∗

μ(x ′).

Here, “c” is a set of the nucleon-decay-channel quantum num-
bers; the quantities SV0,c(ω) and MV0 (ω) can be respectively
called the decay-channel strength function and the amplitude
of the “direct+semi-direct” (DSD) reaction induced by the
external field V0; the quantity �

(+)
c,0 (x, x ′; ω) can be called the

free nonlocal decay-channel wave function, corresponding to
one hole [the bound-state wave function is φμ(x)] and one
particle in the continuum with the energy εc = εμ + ω > 0
[the continuum-state wave function is φ(+)

εc
(x)]. The partial

branching ratio for direct nucleon decay from an excitation
energy interval δ into channel “c” is defined as follows:

βc(δ) =
∫

δ

SV0,c(ω)dω

/ ∫
δ

SV0 (ω)dω. (42)

The partial branching ratios satisfy the unitary condition∑
c βc = 1 independently of δ, as it follows from (40)

and (42).
To get within the PHDOM an expression for the energy-

averaged DSD-reaction amplitude (see below), we derive,
first, the alternative expression for the amplitude MV0,c

(41). Let the convolution [[F(ω)�(+)
c,0 (ω)]] be the free decay-

channel transition potential matrix vc,0(x, x ′; ω). The effective
matrix vc(ω) = [[F(ω)�(+)

c (ω)]] defined by the equation
[[A0(ω)vc(ω)]] = [[A(ω)vc,0(ω)]] satisfies Eq. (38) after sub-
stitution V0 → vc,0(ω). As a result, we get the equation for the
effective decay-channel wave function �(+)

c (x, x ′; ω):

�(+)
c (ω) = �

(+)
c,0 (ω) + [[[[A0(ω)F(ω)�(+)

c (ω)]]]]. (43)

From Eqs. (38) and (43) follows the alternative expression for
the DSD-reaction amplitude (41):

MV0,c(ω) = [[�(+)
c (ω)V0]]. (44)

In the local limit and absence of the spreading effect
the corresponding quantities SV0,c(ω), MV0,c(ω), ψ

(+)
c,0 (x, ω),

ψ (+)
c (x, ω), bc(δ) and the equations for these quantities are

related to the cRPA nonstandard version [3,17]. Within this
version, nucleon-nucleus scattering accompanied by excitation
of (p-h)-type states is described in terms of the p-h scatter-
ing amplitude �(x, x1; ω) [3,17]. The amplitude defined as
[FA(ω)] = [�(ω)A0(ω)] satisfies the equation [1]

�(ω) = F + [[FA0(ω)�(ω)]]. (45)

Matrix elements of �, �c′c(ω) = [[�(+)
c,0 (ω)�(ω)�(+)

c,0 (ω)]],
determine the S-matrix elements as follows:

Sc′c(ω) = Spot
cc δc′c − 2πi�c′c(ω), (46)

where S
pot
cc is the potential-scattering matrix and∑

c′ |Sc′c|2 = 1.

B. Energy averaging and PHDOM equations

Being energy averaged, the relationships given in the
preceding section lead to the PHDOM equations, which can
be practically implemented. We start from averaging Eq. (43),

which is then identically transformed in the same way as was
done for Eq. (21), related to the nonlocal energy-averaged p-h
GF. The resulting equation for the nonlocal energy-averaged
effective decay-channel wave function �̄(+)

c (x, x ′; ω) is the
following:

�̄(+)
c (ω) = �̄

(+)
c,0 (ω) + [[[[Ā0(ω)Fl−r �̄

(+)
c (ω)]]]] (47)

[compare with Eq. (23)]. Here Ā0(ω) is the energy-averaged
free nonlocal p-h GF of Eq. (22) and �̄

(+)
c,0 (x, x ′; ω) is the

energy-averaged free nonlocal decay-channel wave function.
The latter satisfies the auxiliary equation:

�̄
(+)
c,0 (ω) = �

(+)
c,0 (ω) + [[[[A0(ω)F̄spr (ω)�̄(+)

c,0 (ω)]]]] (48)

[compare with Eq. (22)]. Being sought in the form
�̄

(+)
c,0 (x, x ′; ω) = nμφ̄(+)

εc
(x)φ∗

μ(x ′), the analytical solution of
Eq. (48) can be found with taking the statistical assumption
into account. The result consists in the integral equation for
the energy-averaged continuum-state wave function φ̄(+)

εc
(x).

This equation is equivalent to the corresponding differential
equation:

{H0(x) − [εc + [iW (ω) − P (ω)]fμfWS(x)]}φ̄(+)
εc

= 0 (49)

[compare with Eq. (34)].
As follows from Eq. (44), the energy-averaged DSD-

reaction amplitude, corresponding to the local external field
V0(x), equals the convolution,

M̄V0,c(ω) = [ψ̄ (+)
c (ω)V0]. (50)

The structure of the PHDOM equations for both the
energy-averaged effective local decay-channel wave function
ψ̄ (+)

c (x, ω) [follows from Eq. (47)] and the energy-averaged
effective local external field V̄ (x, ω) [Eq. (29)] is the same.
This point allows one to get the alternative expression for the
amplitude of Eq. (50),

M̄V0,c(ω) = [ψ̄ (+)
c,0 (ω)V̄ (ω)], (51)

which is the direct extension of the corresponding expression
used within the semimicroscopic approach of Refs. [2,3].

The energy-averaged DSD-reaction amplitude of Eq. (51)
is the basic quantity in the PHDOM description of direct-
nucleon-decay properties of high-energy (p-h)-type excita-
tions. Apart from the energy-averaged DSD-reaction cross
sections, the energy-averaged squared amplitude determines
the partial branching ratio for direct nucleon decay bc(δ):

bc(δ) =
∫

δ

S̄V0,c(ω)dω

/ ∫
δ

S̄V0 (ω)dω (52)

[compare with Eq. (42)]. Here S̄V0 (ω) is the strength function
of Eq. (30), and S̄V0,c(ω) = |M̄V0,c(ω)|2 is the energy-averaged
decay-channel strength function (the fluctuating part of this
strength function is neglected). In view of the spreading effect,
the total branching ratio btot(δ) = ∑

c bc(δ) is less than unity.
Therefore, the difference 1 − btot, which is proportional to
W (ω), can be considered as the branching ratio for statistical
(mainly, neutron) decay.

Implementations of the PHDOM to describe nucleon-
nucleus scattering accompanied by (p-h)-type excitations seem
to be inevident (probably with the exception of excitation of the

044330-6



DAMPING OF HIGH-ENERGY PARTICLE-HOLE-TYPE . . . PHYSICAL REVIEW C 87, 044330 (2013)

isobaric analog and Gamow-Teller resonances). For complete-
ness, we give the corresponding PHDOM relationships in the
“pole” approximation. Starting from Eqs. (45) and (46), one
gets the expression for the energy-averaged S-matrix elements:

S̄
pole
c′c (ω) = Sbkg

cc δc′c − 2πi
[[

ψ̄
(+)
c′,0(ω)Fψ̄ (+)(pole)

c (ω)
]]

. (53)

Here S
bkg
cc is the “background” S matrix usually eval-

uated within the ordinary single-particle optical model,
and ψ̄

(+)(pole)
c (x, ω) is the energy-averaged local effective

decay-channel wave function, satisfying an equation simi-
lar to Eq. (47). The difference 1 − ∑

c′ |S̄c′c(ω)|2 = Tc(ω)
determines the reaction cross section for a given entrance
channel “c.”

IV. OPTICAL MODELS. IMPLEMENTATIONS
OF THE PHDOM

A. Single-quasiparticle and particle-hole optical models

Possibilities to use the optical models to describe the simple
modes of high-energy [single-quasiparticle and (p-h)-type]
nuclear excitations are due to the fact that these modes do
not lose their “individuality” because of their damping. There
is a methodical similarity in formulations of the PHDOM and
SQDOM. In both cases, the equations for the corresponding
many-body GFs are used as the starting point. In formulating
the SQDOM, the Dyson equation for the many-body single-
particle GF G(x, x1; ε) was exploited in Ref. [8] as follows:

G(ε) = G0(ε) + [[G0(ε)�(ε)G(ε)]] . (54)

Here G0(x, x ′; ε) is the free single-particle GF determined by
the mean-field and occupation numbers and �(x, x ′; ε)
is the self-energy operator describing coupling of
single-quasiparticle states with many-qausiparticle
configurations and satisfying the proper spectral expansion [1].
In view of the high density of poles in the energy dependence
of �(ε) at high-enough excitation energies |ε − μ| (μ is the
chemical potential), only the energy-averaged quantity �̄(ε) =
�[ε + iJ sgn(ε − μ)] can be reasonably parameterized and
then considered as a phenomenological quantity:

�̄(x, x ′; ε) = sgn(ε − μ)[−iw(x, ε) + p(x, ε)]δ(x − x ′).
(55)

[compare with Eq. (14)]. Supposing that the imaginary
and real parts of �̄ have the same coordinate dependence,
i.e., w(x, ε) = w(ε)q(x) and p(x, ε) = p(ε)q(x), one
gets the proper dispersive relationship for p(ε) [9].
After energy averaging from Eqs. (54) and (55) follows
the equation for the single-particle optical-model GF
ḡ(ε) = G[ε + iJ sgn(ε − μ)]:

[H0(x) − ε + sgn(ε − μ)[−iw(ε) + p(ε)]q(x)]

× ḡ(x, x ′; ε) = −δ(x − x ′). (56)

[compare with Eqs. (34) and (36)]. The GF of Eq. (56)
determines the energy-averaged single-particle (s.p.) strength
function as follows: S̄s.p.(ε) = − 1

π
sgn(ε − μ)Im

∫
ḡ(x =

x ′; ε)dx. It should be stressed that the imaginary and dispersive

real parts of the single-particle optical-model potential in
Eqs. (34), (36), and (56) differ markedly in magnitude. Being
taken at the same excitation energy the quantity W (ω) of
Eq. (17) is noticeably less than w(|ε − μ|) in view of a
(destructive) interference in spreading of particles and holes.

Turning to the description of nucleon-nucleus scattering
within the SQDOM, one can define the energy-averaged
single-particle continuum-state wave function φ̄(+)

ε (x) in ac-
cordance with the Dyson-type equation,

φ̄(+)
ε = φ(+)

ε + [[g(ε)�̄(ε)φ̄(+)
ε ]]. (57)

Here φ(+)
ε (x) is the potential scattering wave function, and the

GF g(x, x ′; ε) is defined before Eq. (6). Instead of this integral
equation one can use the equivalent homogeneous differential
equation [see Eq. (56)], which is the main SQDOM equation in
the continuum region. The relative probability for direct decay
of a single-particle sub-barrier quasistationary state is defined
similarly to Eq. (52) [10,11]:

bs.p. =
∫

|[f ∗φ̄(+)
ε ]|2dε/

(
− 1

π

)
Im

∫
[[f ∗ḡ(ε)f ]]dε. (58)

Here integration is performed over the single-particle-
resonance region, so the value of bs.p. 	 �

↑
s.p./(�↓

s.p. + �
↑
s.p.) is

almost independent of the form factor f (x) related to excitation
of the sub-barrier state. Thus, we see again the similarity
of formulations of the particle-hole and single-quasiparticle
optical models.

B. Implementations of the PHDOM. Concluding remarks

To calculate within the PHDOM the main properties
of high-energy (p-h)-type excitations, namely the strength
function of Eq. (26), which corresponds to a spin-multipole
isospin-dependent single-particle external field, the squared
transition density of Eq. (27), the DSD-reaction amplitudes
of Eq. (51), and the partial direct-nucleon-decay probabilities
of Eq. (52), it is necessary to separate in these relationships
and in the basic Eqs. (25), (29), (37), and (49) the spin-
angular and isospin variables. This straightforward procedure
is described, e.g., in Refs. [1,3]. As a result, the corresponding
radial equations, having the same structure as the above-listed
equations, should be solved numerically. Apart from a mean
field and p-h interaction, leading to long-range correlations,
the intensity of the imaginary part of the p-h interaction
(14) should be also adopted. The specific parameter α in
parametrization (17) for W (ω) can be adjusted to reproduce
the experimental total width (or the rms energy dispersion) of
a given GR in PHDOM calculations of the strength functions.
The above-mentioned properties of the (p-h)-type excitations
of a given spin-angular and isospin symmetry then can be
described in a wide excitation-energy interval without the use
of new parameters.

First implementations of the PHDOM applied to the
description of neutron radiaive capture accompanied by exci-
tation of the isovector giant dipole and quadrupole resonances
in a few medium-heavy mass spherical nuclei are given
in Ref. [18]. This description is a direct extension of the
semimicroscopic approach to the same problem given in
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FIG. 1. The isoscalar monopole strength functions calculated
for 208Pb within the PHDOM (full line) and the semimicroscopic
approach to the description of GR damping (dotted line).

Ref. [6]. Here we show only one example concerned with
calculations of the isoscalar monopole strength functions
S̄V0 (ω) and S̄

(pole)
V0

(ω) (V0 = r2Y00) in a vicinity of the isoscalar
monopole GR in 208Pb. (Fig. 1). (Details of calculations are
briefly given in Ref. [18]). The ratio R(ω) = 2[S̄V0 (ω) −
S̄

(pole)
V0

(ω)]/[S̄V0 (ω) + S̄
(pole)
V0

(ω)] illustrates the difference of
the results obtained within the PHDOM and semimicroscopic
approach to the description of GR damping (Fig. 2). As
expected, the relative difference R(ω) is noticeable at the GR
“tails” where the considered strength functions are relatively
small.

In conclusion, in the present work we formulate a
new semimicroscopic model (particle-hole dispersive optical
model) to describe the main relaxation modes of high-energy
particle-hole-type excitations in medium-heavy mass nuclei.
Within this model, which is the extension and verification
of the previously developed semimicroscopic approach ap-
plied to the description of giant resonance damping, Landau
damping and the single-particle continuum are considered

R

FIG. 2. The relative difference of the isoscalar monopole strength
functions calculated for 208Pb within the PHDOM and the semimi-
croscopic approach to the description of GR damping (the definition
is given in the text).

microscopically, while the spreading effect is treated phe-
nomenologically by employing a statistical assumption. The
model is valid at arbitrary (but high-enough) excitation
energies. The description of direct-nucleon-decay properties
of the above-mentioned excitations (including giant reso-
nances) is a unique feature of the proposed model, which
in applying to closed-shell nuclei is formulated for practical
implementations.
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