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Universal properties of infrared oscillator basis extrapolations
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Recent work has shown that a finite harmonic oscillator basis in nuclear many-body calculations effectively
imposes a hard-wall boundary condition in coordinate space, motivating infrared extrapolation formulas for
the energy and other observables. Here we further refine these formulas by studying two-body models and the
deuteron. We accurately determine the box size as a function of the model space parameters, and compute
scattering phase shifts in the harmonic oscillator basis. We show that the energy shift can be well approximated in
terms of the asymptotic normalization coefficient and the bound-state momentum, discuss higher-order corrections
for weakly bound systems, and illustrate this universal property using unitarily equivalent calculations of the
deuteron.
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I. INTRODUCTION

Harmonic oscillator (HO) basis expansions are widely used
in nuclear structure calculations, but limited computational
resources often require that the basis be truncated before
observables are fully converged. In such cases, a procedure
to extrapolate results to infinite basis size is needed. Such
schemes have conventionally been formulated using the basic
parameters defining the oscillator space, namely the maximum
number of oscillator quanta N and the frequency � of
the oscillator wave functions. An alternative approach to
extrapolations is motivated by effective field theory (EFT)
and based instead on explicitly considering the infrared (IR)
and ultraviolet (UV) cutoffs imposed by a finite oscillator
basis [1,2]. This has recently led to a theoretically motivated IR
correction formula and an empirical UV correction formula [2]
in which the basic extrapolation variables are an effective
hard-wall radius L and the analogous cutoff in momentum,
�UV. In terms of the oscillator length b ≡ √

h̄/(m�), rough
estimates of these variables are L ≈ √

2(N + 3/2)b ≡ L0 and
�UV ≈ √

2(N + 3/2)h̄/b [1,2].
The b dependence of L and �UV suggests that if the oscil-

lator length is small enough (i.e., if the oscillator frequency is
large enough), the UV correction will be negligible compared
to the IR correction. In this domain, an estimate for the energy
in the truncated basis was derived in Ref. [2] based on an
effective Dirichlet boundary condition at L:

E(L) = E∞ + Ae−2k∞L + O(e−4k∞L), (1)

where k∞ =
√

−2mE∞/h̄2 is the binding momentum defined
from the separation energy E∞. Consideration of the tails of
the HO wave functions motivated an improved choice for L
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given N and h̄� [2]:

L′
0 ≈ L0 + 0.54437 b (L0/b)−1/3. (2)

The extrapolation formula (1) is the leading-order correction
to the ground-state energy once UV corrections can be
neglected and once L exceeds the radius of the nucleus
under consideration. Test calculations of few- and many-
body nuclei using L = L′

0 and with E∞, A, and k∞ as
fit parameters showed that the IR correction formula (1)
can be used in practice [2]. (Note: The results in Ref. [2]
were derived in the laboratory system with m the particle
mass. Here for convenience we take m to be the reduced
mass μ, which rescales b and k∞ but leaves the expressions
unchanged.)

In the present work we seek a more complete understanding
of this correction formula and to more accurately determine
the hard-wall radius L. While the most useful application of
Eq. (1) is to few- or many-body nuclei, we specialize here
to the two-particle case, which we can control and calculate
precisely. In doing so we gain insight into the universal
features of the IR extrapolation, including its invariance to
phase-shift equivalent potentials and its application to excited
states. While the coefficient A was previously treated purely
as a fit parameter, we extend the derivation from Ref. [2] to
show how it can be expressed in terms of the observables
k∞ and the asymptotic normalization constant γ∞, just as
in the related Lüscher-type formulas developed for lattice
applications [3–6]. We examine the approximations leading to
Eq. (1) and derive a corrected formula appropriate for weakly
bound states, which is shown to work much better for the
deuteron.

Our strategy is to use a range of model potentials for which
the Schrödinger equation can be solved analytically or to any
desired precision numerically to broadly test and illustrate
various features, and then turn to the deuteron with a set of
phase-shift equivalent potentials for a real-world example. In
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MORE, EKSTRÖM, FURNSTAHL, HAGEN, AND PAPENBROCK PHYSICAL REVIEW C 87, 044326 (2013)

particular we will consider

Vsw(r) = −V0 θ (R − r) [square well], (3)

Vexp(r) = −V0 e−(r/R) [exponential], (4)

Vg(r) = −V0 e−(r/R)2
[Gaussian], (5)

Vq(r) = −V0 e−(r/R)4
[quartic], (6)

where for each of the models we work in units with h̄ = 1,
reduced mass μ = 1, and express all lengths in units of R and
all energies in units of h̄2/μR2. For the realistic potential we
use the Entem-Machleidt 500 MeV chiral EFT N3LO potential
[7] and unitarily evolve it with the similarity renormalization
group (SRG). These potentials provide a diverse set of tests
for universal properties. Because we can go to very high h̄�
and N for the two-particle bound states (and therefore large
�UV), it is possible to always ensure that UV corrections are
negligible.

In Sec. II we determine a more accurate value for L than
L′

0 and show that the theoretically founded exponential form
of the extrapolation is favored over Gaussian or power-law
alternatives in practical applications. The accurate determina-
tion of the box radius L also allows us to compute scattering
phase shifts directly in the oscillator basis. The derivation of
the exponential form from Ref. [2] is extended in Sec. III
to show that it depends only on observable quantities, and is
therefore independent of the potential and has the same form
for excited states. These formal conclusions are tested with
model potentials and the deuteron with a realistic potential in
Sec. IV. In Sec. V we summarize our conclusions and discuss
the implications for applications to larger nuclei.

II. SPATIAL CUTOFF FROM HO BASIS TRUNCATIONS

In this section, we determine the spatial extent of a finite HO
basis. We start with empirical considerations before presenting
an analytical understanding. Finally, we use the knowledge of
the spatial extent to compute phase shifts and demonstrate that
the theoretically founded exponential extrapolation law can be
distinguished from other empirical choices.

A. Empirical determination of L

The derivation of the IR correction formula Eq. (1) in
Ref. [2] starts from the observation that a truncated harmonic
oscillator (HO) basis effectively acts at low energies to impose
a hard-wall boundary condition in coordinate space. In Fig. 1
we can see how this happens for a representative model
case, a square well potential Eq. (3) with s-wave radial
wave functions. In the top panel, the exact ground-state
radial wave function (dashed) is compared to the solution
in an oscillator basis truncated at N = 4 determined by
diagonalization (solid). The truncated basis cuts off the tail
of the exact wave function because the individual basis wave
functions have a radial extent that depends on h̄� (from
the Gaussian part) and on the largest power of r (from the
polynomial part). The latter is given by N = 2n + l. With
N = 4 and l = 0, this means that n = 2 gives the largest power.
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FIG. 1. (Color online) (a) The exact radial wave function (dashed)
for a square well Eq. (3) with depth V0 = 4 (and h̄ = μ = R = 1) is
compared to the wave function obtained from an HO basis truncated
at N = 4 with h̄� = 6 (solid). The spatial extent of the wave function
obtained from the HO basis truncation is dictated by the square of HO
wave function for the highest radial quantum number (dot-dashed).
(b) The wave functions obtained from imposing a Dirichlet boundary
condition at L0, L′

0, and L2 are compared to the wave function in
truncated HO basis.

The cutoff will then be determined by the n = 2 oscillator
wave function, uHO

n=2(r), whose square (which is the relevant
quantity) is also plotted in the top panel (dot-dashed). It is
evident that the tail of the wave function in the truncated basis
is fixed by this squared wave function. The premise of Ref. [2]
was that this cutoff is well modeled by a hard-wall (Dirichlet)
boundary condition at r = L. If so, the question remains how
best to quantitatively determine L given N and h̄�. Before
we present an analytical derivation of this quantity in the next
subsection, we compare empirically L′

0 from Eq. (2) and

Li ≡
√

2(N + 3/2 + i)b (7)

with integer i, which includes L0 as a special case. In the
bottom panel of Fig. 1 we show the wave functions for
several possible choices for L. L0 corresponds to choosing
the classical turning point (i.e., the half-height point of the tail
of [uHO

n=2(r)]2); it is manifestly too small. Using L′
0, which is

the linear extrapolation from the slope at the half-height point,
gives an improved estimate. However, choosing i = 2 [i.e.,
using L = L2 = √

2(N + 3/2 + 2)b] is found to be the best
choice in almost all examples.

The most direct illustration of this conclusion comes from
the bound-state energies. In the example in Fig. 1, the exact
energy (in dimensionless units) is −1.51 while the result for
the basis truncated at N = 4 is −1.33, which is therefore what
we hope to reproduce. With L0, the energy is −0.97, with L′

0
it is −1.21, and with L2 it is −1.29. While this is only one
example of a model problem, we have found that L2 always
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FIG. 2. (Color online) Ground-state energies versus (a) L0,
(b) L′

0, and (c) L2 for a Gaussian potential well Eq. (5) with
V0 = 5 (and h̄ = μ = R = 1). The crosses are the energies from
HO basis truncation. The energies obtained by numerically solving
the Schrödinger equation with a Dirichlet boundary condition at L lie
on the solid line. The horizontal dotted lines mark the exact energy,
E∞ = −1.27.

gives a better energy estimate than L′
0 (and L3 is almost always

worse).
Another signature that demonstrates the suitability of L2 is

that points from many different h̄� and N values all lie on the
same curve. Figures 2 and 3 show the energies from a wide
range of HO truncations for L0, L′

0, and L2 for the Gaussian
well and the square well potential, respectively. The energies
for different h̄� and N lie on the same smooth and unbroken
curve if we use L2 but not with the other choices. For L = L0

and L = L′
0, one finds that sets of points with different h̄� but

same N fall on smooth, N -dependent curves. For the square
well, there are small discontinuities visible even for L = L2. At
the square well radius, the wave function’s second derivative is
not smooth, and this is difficult to approximate with a finite set
of oscillator functions. This lack of UV convergence is likely
the origin of the very small discontinuities. As a further test,
we solve the Schrödinger equation with a vanishing Dirichlet
boundary condition (solid lines in Figs. 2 and 3) and compare
to the energies obtained from the HO truncations (crosses).
The finite oscillator basis energies are well approximated
by a Dirichlet boundary condition with a mapping from the
oscillator h̄� and N to an equivalent length given by L2.
Note that for large N , the differences between L0, L′

0, and L2

may be smaller than other uncertainties involved in nuclear
calculations, but for practical calculations one will want to
use small N results, where these considerations are very
relevant.

These results from model calculations are consistent with
those from realistic potentials applied to the deuteron. To
illustrate this, we use the N3LO 500 MeV potential of Entem
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FIG. 3. (Color online) Ground-state energies versus (a) L0,
(b) L′

0, and (c) L2 for a square well potential well Eq. (3) with
V0 = 4 (and h̄ = μ = R = 1). The crosses are the energies from HO
basis truncation. The energies obtained by numerically solving the
Schrödinger equation with a Dirichlet boundary condition at L lie
on the solid line. The horizontal dotted lines mark the exact energy,
E∞ = −1.51.

and Machleidt [7]. We generate results in an HO basis with h̄�
ranging from 1 to 100 MeV and N from 4 to 100 (in steps of 4
to avoid HO artifacts for the deuteron [8]). We then restrict the
data to where UV corrections are negligible (see Sec. IV C).
Figure 4 shows that the criterion of a continuous curve with the
smallest spread of points clearly favors L2. Similar comments
apply to the computation of the radius. Figure 5 shows that
the numerical results for the squared radius, when plotted as a
function of L2 (but not as a function of L0), fall on a continuous
curve with minimal spread.

B. Analytical derivation of L2

Naturally, the squared momentum operator p2 is the key
for understanding the IR properties of the harmonic oscillator
basis. Let us start with the spectrum of p2 in the oscillator
basis. In a finite basis with energies up to E = (N + 3/2)h̄�,
the operator p2 must be viewed as p2�(E − p2/(2m) −
(m/2)�2r2), where � denotes the unit step function. Let us
compute the number M(k) of s-wave states up to a momentum
k as a first step. We find

M(k) = Tr

[
�(h̄2k2 − p2)�

(
E − p2

2m
− m

2
�2r2

)]

≈ 1

2πh̄

∫ h̄k

−h̄k

dp

∫ ∞

0
dr �(h̄2k2 − p2)

�

(
E − p2

2m
− m

2
�2r2

)
. (8)
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FIG. 4. (Color online) Ground-state energies versus (a) L0,
(b) L′

0, and (c) L2 for the Entem-Machleidt 500 MeV N3LO
potential [7]. The horizontal dotted lines mark the exact energy,
E∞ = −2.2246 MeV.

Here, we apply the semiclassical approximation and write the
trace as a phase-space integral. We assume h̄2k2/(2m) � E,
perform the integrations, and use E/(h̄�) = N + 3/2. This
yields

M(k) = bk

2π

√
2N + 3 − b2k2 + N + 3/2

π
arcsin

bk√
2N + 3

,

(9)
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FIG. 5. (Color online) Deuteron radius squared versus (a) L0

and (b) L2 for the Entem-Machleidt 500 MeV N3LO potential
[7]. The horizontal dotted lines mark the exact radius squared,
r2
∞ = 3.9006 fm2. The insets show a magnification of data at smaller

lengths Ln.
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FIG. 6. (Color online) The staircase function of the s states of the
operator p2 in a finite oscillator basis with N = 32 (black) compared
to its semiclassical estimate (smooth red curve). M(k) denotes the
number of states of the operator p2 with eigenvalues p2 � h̄2k2.

where b is the oscillator length. Figure 6 shows a comparison
between the quantum mechanical staircase function and the
semiclassical estimate (9) for N = 32. For sufficiently small
values of kb � √

2N , the number of s-wave momentum
eigenstates grows linearly, and inspection of Eq. (9) shows
that the slope at the origin is L0/π semiclassically. The linear
growth of the number of eigenstates of p2 with k clearly
demonstrate that—at not too large values of kb—the spectrum
of p2 in the oscillator basis is indistinguishable from the
spectrum of p2 in a spherical box. For the determination of
the box radius L, we note that the lowest eigenvalue of p2 is
(π/L)2.

In what follows, we analytically compute the smallest
eigenvalue κ2

min of p2 in a finite oscillator basis and will see that
κmin = π/L2. In the remainder of this subsection, we set the
oscillator length to 1. We focus on s waves and thus consider
wave functions that are regular at the origin; i.e., the radial
wave functions are identical to the odd wave functions of the
one-dimensional harmonic oscillator.

The localized eigenfunction of the operator p2 with smallest
eigenvalue κ2 is

ψκ (r) =
{

sin κr, 0 � r � π
κ
,

0, r > π
κ
.

(10)

We employ the s-wave oscillator functions

ϕ2n+1(r) = (−1)n
√

2n!

�(n + 3/2)
rL1/2

n (r2)e−r2/2

= [π1/222n(2n + 1)]−1/2H2n+1(r)e−r2/2,

with energy E = (2n + 3/2)h̄�. Here, L
1/2
n denotes the

Laguerre polynomial, and it is convenient to rewrite this
function in terms of the Hermite polynomial Hn. We expand
the eigenfunction (10) as

ψκ (r) =
∞∑

n=0

c2n+1(κ)ϕ2n+1(r). (11)
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Before we turn to the computation of the expansion coefficients
c2n+1(κ), we consider the eigenvalue problem for the operator
p2. We have

p2 = a†a + 1
2 − 1

2 (a2 + (a†)2), (12)

where a and a† denote the annihilation and creation operator
for the one-dimensional harmonic oscillator, respectively. The
matrix of p2 is tridiagonal in the oscillator basis. For the matrix
representation, we order the basis states as (ϕ1, ϕ3, ϕ5, . . .).
Thus, the eigenvalue problem p2 − κ2 = 0 becomes a set
of rows of coupled linear equations. In an infinite basis,
the eigenvector (c1(κ), c3(κ), c5(κ), . . . ) identically satisfies
every row of the eigenvalue problem for any value of κ . In a
finite basis (ϕ1, ϕ3, ϕ5, . . . ϕ2n+1); however, the last row of the
eigenvalue problem,

(2n + 3/2 − κ2)c2n+1(κ) = 1
2

√
2n

√
2n + 1 c2n−1(κ), (13)

can only be fulfilled for certain values of κ , and this is the
quantization condition. To solve this eigenvalue problem we
need expressions for the expansion coefficients c2n+1(κ) for
n � 1. Those can be derived analytically as follows.

We rewrite the eigenfunction (10) as a Fourier transform

ψκ (r) =
√

2

π

∫ ∞

0
dkψ̃κ (k) sin kr, (14)

and expand the sine function in terms of oscillator functions
as

sin kr =
√

π

2

∞∑
n=0

(−1)nϕ2n+1(r)ϕ2n+1(k). (15)

Thus, the expansion coefficients in Eq. (11) are given in terms
of the Fourier transform ψ̃κ (k) as

c2n+1(κ) = (−1)n
∫ ∞

0
dk ψ̃κ (k)ϕ2n+1(k). (16)

So far, all manipulations have been exact. We need an
expression for c2n+1(κ) for n � 1 and use the asymptotic
expansion

ϕ2n+1(k) ≈ (−1)n
√

2

π1/4

(2n − 1)!!√
(2n)!

sin(
√

4n + 3k), (17)

which is valid for |k| � √
2n; see [9]. Using this approxima-

tion, one finds (making use of Fourier transforms)

c2n+1(κ) ≈ π1/4 (2n − 1)!!√
(2n)!

ψκ (
√

4n + 3)

= π1/4 (2n − 1)!!√
(2n)!

sin(
√

4n + 3κ), (18)

with κ � π/
√

4n + 3 due to Eq. (10).
Let us return to the solution of the quantization

condition (13). We make the ansatz

κ = π√
4n + 3 + 2�

, (19)

and must assume that � > 0. This ansatz is well motivated,
since the naive semiclassical estimate κ = π/L0 yields � = 0.
We insert the expansion coefficients (18) into the quantization

TABLE I. Comparison between the lowest momentum κmin,
π/L2, and π/L0 for model spaces with up to N oscillator quanta.

N κmin π/L2 π/L0

0 1.2247 1.1874 1.8138
2 0.9586 0.9472 1.1874
4 0.8163 0.8112 0.9472
6 0.7236 0.7207 0.8112
8 0.6568 0.6551 0.7207
10 0.6058 0.6046 0.6551
12 0.5651 0.5642 0.6046
14 0.5316 0.5310 0.5642
16 0.5035 0.5031 0.5310
18 0.4795 0.4791 0.5031
20 0.4585 0.4582 0.4791

condition (13) and consider its leading-order approximation
for n � 1 and n � �. This yields

� = 2 (20)

as the solution. Recalling that a truncation of the basis at ϕ2n+1

corresponds to the maximum energy E = (2n + 3/2)h̄�, we
see that we must identify N = 2n. Thus, κmin = π/L2 is the
lowest momentum (or minimum step of momentum) in a finite
oscillator basis with n � 1 basis states (and not 1/b as stated
in Ref. [1]). It is clear from its very definition that π/L2 is also
(a very precise approximation of) the natural infrared cutoff
in a finite oscillator basis, and that L2 (and not b as stated in
Refs. [10,13]) is the radial extent of the oscillator basis and the
analog to the extent of the lattice in lattice computations [3].

The derivation of our key result κmin = π/L2 is based on
the assumption that the number of shells N fulfills N � 1.
Table I shows a comparison of numerical results for κmin in
different model spaces. We see that π/L2 is a very good ap-
proximation already for N = 2, with a deviation of about 1%.

Note that this approach can be generalized to other
localized bases. As the number of basis states is increased,
the (numerical) computation of the lowest eigenvalue of the
momentum operator p2 yields the box size L corresponding
to the employed Hilbert space, and results can then be
extrapolated according to Eq. (1).

C. Scattering phase shifts

The argument for computing scattering phase shifts is as
follows: The oscillator basis appears as a spherical box of size
L. For low momenta we have L = L2, but at higher momentum
L deviates slightly from L2, and can be determined from the
eigenvalues of the operator p2. Thus, the positive-energy states
computed in the oscillator basis can be used to extract phase
shifts.

In a fixed harmonic oscillator basis (N,h̄�), the computa-
tion of the phase shifts for a given partial wave 2S+1lJ with
orbital angular momentum l proceeds as follows: First, one
computes the discrete eigenvalues p2

i of the operator p2 for
orbital angular momentum l. Second, we need to determine
the momentum-dependent box size Li = L(pi). Assuming
that the ith momentum eigenstate is the ith eigenstate of a
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FIG. 7. (Color online) The 1S0 phase shifts (in degrees) of the
N3LO chiral interaction (solid line) compared to the phase shifts
computed directly in the harmonic oscillator basis (circles).

spherical box, we must determine the ith zero of the spherical
Bessel function. Thus jl(piLi/h̄) = 0 determines L(pi). We
evaluate the smooth function L(p) for arbitrary momentum p
by interpolating between the discrete momenta pi . Third, we
compute the discrete positive energies Ei = h̄2k2

i /(2m) of the
neutron-proton system in relative coordinates for the partial
wave 2S+1lJ , and compute the phase shifts from the Dirichlet
boundary condition at r = L; i.e.,

tan δl(ki) = jl(kiL(h̄ki))
ηl(kiL(h̄ki))

. (21)

Here ηl is the spherical Neumann function. In practice one
repeats this procedure for several values of h̄� in order to get
sufficiently many data points that fall onto a smooth curve.

As examples we compute the scattering phase shifts for the
1S0 and 3P1 partial waves in model spaces with N = 32 and
h̄� = 20, 22, . . . , 40 MeV. Our calculations are based on the
Entem-Machleidt 500 MeV chiral EFT N3LO potential [7].
Figures 7 and 8 show the results and compare them to the
numerically exact phase shifts. For smaller N than our current
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FIG. 8. (Color online) The 3P1 phase shifts (in degrees) of the
N3LO chiral interaction (solid line) compared to the phase shifts
computed directly in the harmonic oscillator basis (circles).

choice, the computed phase shifts start to deviate from exact
phase shifts at higher energies. However, if one is interested
only in low-energy phase shifts and observables such as the
scattering length and the effective range, a smaller harmonic
oscillator basis is sufficient.

There are other methods to compute scattering phase shifts
in the harmonic oscillator basis. Bang et al. [11] used the
method of harmonic oscillator representation of scattering
equations (HORSE) for this purpose, and more recent works
[12,13] computed phase shifts to develop an EFT for nuclear
interactions directly in the oscillator basis [10]. References
[12,13] build on the results by Busch et al. [14] and their
generalization [15] to finite range corrections, and extract
scattering information from the energy shifts of bound states
in a harmonic oscillator potential. The resulting EFTs are
quite efficient for contact interactions and systems such as
ultracold trapped fermions, but nuclear potentials with a finite
range require an extrapolation of � → 0 [12]. The approach
presented in this subsection is more direct, as no external
oscillator potential is employed. We note that the analysis
presented in this subsection can easily be extended to coupled
channels as well.

Finally, we note again that the approach of this subsection
can be utilized in other localized basis sets. All that is required
is the diagonalization of the operator p2 in the employed basis
set, which yields the (momentum-dependent) box size.

D. Functional dependence of extrapolation

The extrapolation formula (1) with L = L2 is theoretically
founded. How well can the specific form of this extrapolation
be distinguished from other popular empirical choices? To
address this question, we test possible functional dependencies
of the energy correction �E on L. The most common extrap-
olation schemes employ an exponential in N (or equivalently
a Gaussian dependence on L),

E(N ) = E∞ + CNe−bN N , (22)

where CN and bN are determined separately for each h̄� (with
the option of a constrained fit of a common E∞ for special
h̄� values). Thus, unlike the extrapolation based on L, there
is no universal variable and no distinction between IR and
UV regions in h̄�. However, empirically the form in Eq. (22)
seems to work quite well [8,16–19]. Recently, Tolle et al.
[20] investigated the convergence properties of genuine and
smeared contact interactions in an effective theory of trapped
bosons and found that the smearing changed a power-law
dependence of the convergence to an exponential dependence.
Here we will consider all three functional dependencies on L:
exponential, Gaussian, and power law.

A purely empirical test can be made for our models
and the deuteron because we can calculate the exact E∞,
plot �E(L2) ≡ E(L2) − E∞ against L2, and then attempt
to fit each of the three choices of �E(L2). Figure 9 shows
the results for a representative model potential (a Gaussian)
with moderate depth while Fig. 10 shows the results for the
deuteron. The plots are made so that the candidate form would
yield a straight line if followed precisely. We see that the
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FIG. 9. (Color online) The IR energy correction �EL versus L2

for a Gaussian potential well Eq. (5) with V0 = 5 (and h̄ = μ= R= 1)
using a wide range of N and h̄�. The energies are fitted with
(a) exponential, (b) Gaussian, and (c) power-law dependence on L2.

exponential form is an excellent fit for the model throughout
the range of L2 and a reasonable but not perfect fit for the
deuteron. For the deuteron, the weak binding is a challenge as it
requires very large values of L2 for extrapolations. Corrections
to weak binding will be derived in Sec. III. In contrast to
the exponential extrapolation, Gaussian and power-law fits
fail over the full range of L2. This is consistent with Tolle
et al. [20]. For limited ranges of L2 a Gaussian does provide a
reasonable fit (and should give a good extrapolation for E∞ if
close enough to convergence), but not globally.

At this stage we have empirically verified the usefulness of
the extrapolation (1) in a very controlled setting. This corrobo-
rates the study in Ref. [2] and applications in Refs. [21,22]. The
fit result for k∞ has generally been quantitatively consistent
with nucleon separation energies (note, however, the case of
6He in Ref. [2]), but the constant A was not identified with
physical quantities. The next section will express A in terms of
observables for the two-particle system and present corrections
to the extrapolation law (1).

III. UNIVERSAL FORMULAS FOR IR CORRECTIONS

In this section we revisit the derivation of Eq. (1) and
obtain an expression for the coefficient A in terms of the
bound-state asymptotic normalization coefficient (ANC) γ∞
and k∞. This is in close analogy to correction formulas for
energies calculated with lattice regularization for periodic and
hard-wall boundary conditions [3–6]. Because k∞ and γ∞
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FIG. 10. (Color online) The IR energy correction �EL versus
L2 for the deuteron calculated with the chiral EFT potential from
Ref. [7] using a wide range of N and h̄�. The energies are fitted with
(a) exponential, (b) Gaussian, and (c) power-law dependence on L2.

are measurable, the result is universal in the sense that it is
the same for any potential that reproduces the experimental
observables for the bound state. The parameters in Eq. (1)
can be fully predicted and tested against precise numerical fits
for both our models and the deuteron, which is carried out in
Sec. IV. Corrections to Eq. (1) derived below are found to be
quantitatively important for shallow bound states.

A. Linear energy approximation

Our first approximation to the IR correction is based on what
is known in quantum chemistry as the linear energy method
[23]. Given a hard-wall boundary condition at r = L beyond
the range of the potential, we write the energy compared to
that for L = ∞ as

EL = E∞ + �EL. (23)

We seek an estimate for �EL, which is assumed to be
small, based on an expansion of the wave function in
�EL. Let uE(r) be a radial solution with regular boundary
condition at the origin and energy E. For convenience in using
standard quantum scattering formalism below, we choose the
normalization corresponding to what is called the “regular
solution” in Ref. [24], which means that uE(0) = 0 and the
slope at the origin is unity for all E. We denote the particular
solutions uEL

(r) ≡ uL(r) and uE∞ (r) ≡ u∞(r). Then there is
a smooth expansion of uE about E = E∞ at fixed r , so we
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FIG. 11. (Color online) Testing the linear energy approximation
Eq. (24) for (a) deep (V0 = 10) and (b) shallow (V0 = 2) Gaussian
potential well Eq. (5) (h̄ = μ = R = 1). The solid lines are the exact
solutions uL(r) for energies −3.5 and −0.020, respectively, whose
zero crossings determine the corresponding values for L.

approximate [23]

uL(r) ≈ u∞(r) + �EL

duE(r)

dE

∣∣∣∣
E∞

+ O(
�E2

L

)
, (24)

for r � L. By evaluating Eq. (24) at r = L with the boundary
condition uL(L) = 0, we find

�EL ≈ −u∞(L)

(
duE(L)

dE

∣∣∣∣
E∞

)−1

, (25)

which is the estimate for the IR correction.
We can check the accuracy of the linear energy approxi-

mation (24) by numerically solving the Schrödinger equation
with a specified energy. This determines L as the radius at
which the resulting wave function vanishes. Then we compare
this wave function for r � L to the right side of Eq. (24),
with the derivative calculated numerically. Figure 11 shows
representative examples for a deep and shallow Gaussian
potential. In these examples and other cases, the approximation
to the wave function is good, particularly in the interior. The
estimates for �EL using the right side of Eq. (25) are within
a few to ten percent: 0.68 versus 0.70 and 0.050 versus 0.055
for the two cases.

The good approximation to the wave function suggests
that for the calculation of other observables the linear energy
approximation will be useful. For observables most sensitive
to the long distance (outer) part of the wave function, such
as the radius, this has already been shown to be true [2]. But
the good approximation to the wave function at small r means
that corrections for short-range observables should also be
controlled, with the dominant contribution in an extrapolation
formula coming from the normalization.

B. Complete IR scaling

Next we derive an expression for the derivative in Eq. (25).
We assume we have a single partial-wave channel and
reserve the generalization to coupled channels (e.g., for a
complete treatment of the deuteron) for future work. For
general E < 0, the asymptotic form of the radial wave function
for r greater than the range of the potential is (using the notation
of Ref. [2])

uE(r)
r�R−→ AE(e−kEr + αEe+kEr ), (26)

with u∞(r)
r�R−→ A∞e−k∞r for E = E∞. We take the derivative

of Eq. (26) with respect to energy, evaluate at E = E∞ using
αE∞ = 0 and dkE/dE = −μ/(h̄2kE), to find

duE(r)

dE

∣∣∣∣
E∞

= A∞
dαE

dE

∣∣∣∣
E∞

e+k∞r + A∞
μ

h̄2

r

k∞
e−k∞r

+ dAE

dE

∣∣∣∣
E∞

e−k∞r . (27)

We now evaluate at r = L and anticipate that the e+k∞L term
dominates:

duE(L)

dE

∣∣∣∣
E∞

≈ A∞
dαE

dE

∣∣∣∣
E∞

e+k∞L + O(e−k∞L). (28)

Substituting Eq. (28) into Eq. (25), we obtain

�EL ≈ −
[

dαE

dE

∣∣∣∣
E∞

]−1

e−2k∞L + O(e−4k∞L), (29)

which is in the form of Eq. (1). Note that this result is
independent of the normalization of the wave function.

To calculate the derivative explicitly, we turn to scattering
theory, following the notation and discussion in Ref. [24]. In
particular, the asymptotic form of the regular scattering wave
function φl,k for orbital angular momentum l and for positive
energy E ≡ h̄2k2/2μ is given in terms of the Jost function
fl(k) [24],

φl,k(r) −→ i

2
[fl(k)ĥ−

l (kr) − fl(−k)ĥ+
l (kr)], (30)

where the ĥ±
l functions (related to Hankel functions) behave

asymptotically as

ĥ±
l (kr)

r→∞−→ e±i(kr−lπ/2). (31)

The ratio of the Jost functions appearing in Eq. (30) gives the
partial-wave S matrix sl(k):

sl(k) = fl(−k)

fl(+k)
, (32)

which is in turn related to the partial-wave scattering amplitude
fl(k) by

fl(k) = sl(k) − 1

2ik
. (33)

We will restrict ourselves to l = 0 for simplicity; the general-
ization to higher l is straightforward.
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To apply Eq. (30) to negative energies, we analytically
continue from real to (positive) imaginary k. So,

φ0,ikE
(r)

r�R−→ i

2
[f0(ikE)ekEr − f0(−ikE)e−kEr ]

= − i

2
f0(−ikE)

(
e−kEr − f0(−ikE)

f0(ikE)
ekEr

)
, (34)

where R is the range of the potential. Upon comparing to
Eq. (26) we conclude that

αE = − f0(ikE)

f0(−ikE)
= − 1

s0(ikE)
. (35)

Note that Eq. (35) is consistent with the bound-state limit of
Eq. (26): At a bound state where E∞ = −h̄2k2

∞/2μ there is a
simple pole in the S matrix, which means αE = 0 as expected
(no exponentially rising piece).

From Ref. [24] we learn that the residue as a function of E
of the partial-wave amplitude fl(E) at the bound-state pole is
(−1)l+1γ 2

∞h̄2/2μ, where γ∞ is the ANC. The ANC is defined
by the large-r behavior of the normalized bound-state wave
function:

unorm(r)
r�R−→ γ∞e−k∞r . (36)

Thus, near the bound-state pole (with E = h̄2k2/2μ),

f0(k) ≈ −h̄2γ 2
∞

2μ(E − E∞)
= −γ 2

∞
k2 + k2∞

, (37)

or, using Eqs. (33) and (35),

αE(k) ≈ − k2 + k2
∞

k2 + k2∞ − 2ikγ 2∞
. (38)

Now,

dαE

dE

∣∣∣∣
E∞

= dαE/dk|k=ik∞

dE/dk|k=ik∞
, (39)

so using Eq. (38) we find

dαE

dk

∣∣∣∣
k=ik∞

= −i

γ 2∞
, (40)

and therefore

dαE

dE

∣∣∣∣
E∞

= −μ

h̄2k∞γ 2∞
. (41)

Putting it all together, we have

�EL = h̄2k∞γ 2
∞

μ
e−2k∞L + O(e−4k∞L), (42)

in agreement with Eq. (1), but now we have identified A =
h̄2k∞γ 2

∞/μ.
If we apply this correction for a weakly bound state, such

that k∞ is small, we may not be justified in neglecting the
second term on the right side of Eq. (27). If we keep it instead,
then Eq. (28) becomes

duE(L)

dE

∣∣∣∣
E∞

≈ A∞e+k∞L

(
dαE

dE

∣∣∣∣
E∞

+ mL

k∞
e−2k∞L

)
, (43)

and we have a modified infrared scaling given by

(�EL)mod = h̄2k∞γ 2
∞

μ

e−2k∞L(
1 − γ 2∞Le−2k∞L

) . (44)

We will test both Eqs. (42) and (44) in Sec. IV.

C. Relation to Lüscher-type formulas

Starting with the seminal work of Lüscher [3], a wide
variety of formulas have been derived for the energy shift
of bound states in finite-volume lattice calculations. The
usual application is to simulations that use periodic boundary
conditions in cubic boxes (e.g., see Ref. [6]). The recent work
by Pine and Lee [4,5] extends the derivation to hard-wall
boundary conditions using effective field theory for zero-range
interactions and the method of images. The result for �EL

in a three-dimensional cubic box has a different functional
form than found here (the leading exponential is multiplied by
1/L with that geometry) and the subleading corrections are
parametrically larger.

However, because the HO truncation we consider is in
partial waves, the one-dimensional analysis and formula from
Ref. [5] are applicable (because k∞ and γ∞ are asymptotic
quantities, the result for zero-range interaction is actually
general for short-range interactions). The method of images
can be applied in a one-dimensional box of size 2L after
specializing to a particular partial wave and then extending the
space to odd solutions in r from −∞ to +∞. The leading-order
finite-volume correction agrees with Eq. (42), and the first
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FIG. 12. (Color online) Energy versus L2 for a quartic potential
well Eq. (6) for a wide range of N and h̄� (circles) (h̄ = μ = R = 1).
The solid line is a fit to Eq. (1) with A, k∞, and E∞ as fit parameters
while the dashed and dot-dashed lines are predictions from Eqs. (42)
and (44). The horizontal line is the exact energy, E∞ = −1.0115.
The inset illustrates the calculation of the asymptotic normalization
coefficient (ANC) from the (normalized) wave function.
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omitted term is of the same order. The methods presented
in [4,5] can be used to extend the present formulas to higher
orders and more general cases, including coupled channels.

IV. TESTS OF IR CORRECTION FORMULAS

In this section we test direct fits of Eq. (1), which has
three parameters, and the specialized expressions for �EL in
Eqs. (42) and (44), which have no free parameters if we take
k∞ and γ∞ from the exact solutions. Based on the results
presented in Sec. II, we use L2 in all our further analyses.
It is important that we isolate the IR corrections in making
these tests. The truncation in the HO basis also introduces
an ultraviolet error inversely proportional to the ultraviolet
cutoff �UV ≈ √

2μh̄�(N + 3/2). In the results here we use
combinations of h̄� and N values such that the UV error in
each case can be neglected compared to the IR error. (This is
verified quantitatively by using a fit ansatz from Ref. [2] for
the UV correction, which is assumed to be independent of the
IR correction.)

For each of the model potentials, the radial Schrödinger
equation is accurately solved numerically in coordinate space
for the energy, which yields k∞, and the wave functions.
The asymptotic normalization coefficient γ∞ is found by
multiplying the wave function by ek∞r and reading off its
asymptotic value. This is illustrated in the inset of Fig. 12,
which also shows the onset of the plateau that defines the
asymptotic region in L2 where we expect our correction
formulas to hold. For the deuteron, the Hamiltonian is
diagonalized in momentum space to find k∞, and then an
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FIG. 13. (Color online) Energy versus L2 for moderate-depth
(a) square well Eq. (3) and for (b) Gaussian potential well Eq. (5)
(h̄ = μ = R = 1) for a wide range of N and h̄� (circles). The solid
line is a fit to Eq. (1) with A, k∞, and E∞ as fit parameters while
the dashed and dot-dashed lines are predictions from Eqs. (42) and
(44). The horizontal dotted lines are the exact energies; square well:
E∞ = −1.5088, Gaussian well: E∞ = −1.2717.

extrapolation to the pole is used to find the s-wave and d-wave
ANCs [25]. In the present work we use only the s-wave ANC
for the deuteron.

A. Universal properties

The derivations in Sec. III imply that the energy correc-
tions should have the same exponential form and functional
dependence on the radius L at which the wave function is zero,
independent of the potential and for any bound state (although
the relationship between L and the oscillator determined L2 is
energy dependent). However, there are corrections to Eq. (42)
that become increasingly important if L is not sufficiently
large. Equation (44) incorporates one such correction but
we also have beyond-linear energy corrections and the third
term in Eq. (27). Here we make some representative tests of
a direct fit of Eq. (1) in comparison to applying Eqs. (42)
and (44).

Figure 12 shows results for a quartic potential with a
moderate depth. The fit to Eq. (1) is very good over a large
range in L2 for which the energy changes by 30%, and the
prediction for E∞ is accurate to 0.2%. However, the fit value
of k∞ is 1.61 compared to the exact value of 1.42. The dashed
curve shows the prediction from Eq. (42) using the exact k∞
and γ∞. It is evident that the approximation is very good above
L2 > 2 but increasingly deviates at smaller L2. The modified
energy correction from Eq. (44) (dot-dashed curve) matches
the energy results at the same level as the fit.

In Fig. 13, examples are shown for square well and Gaussian
potentials with a moderate depth. Again we find a good fit
to an exponential fall-off in L2, but in these cases not only
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FIG. 14. (Color online) Energy versus L2 for the deeply bound
ground state of a Gaussian potential for a wide range of N and h̄�

(circles) (h̄ = μ = R = 1). These are compared to the predictions of
Eq. (42) (dashed) and Eq. (44) (dot-dashed). The solid line is a fit to
Eq. (1) with A, k∞, and E∞ as fit parameters. The horizontal dotted
line is the exact energy, E∞ = −4.2806.
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are the energies well predicted (again to better than 0.2%)
but the fit values of k∞ are within 5% of the exact results.
However, the prediction from Eq. (44) actually degrades the
agreement for the Gaussian well compared to the prediction
from Eq. (42). Further investigation in these cases reveals that
the contributions from the second and third terms in Eq. (27)
are of comparable size and opposite sign. Therefore, keeping
only one of them is counterproductive.

For deeply bound states, Eqs. (42) and (44) can fail for a
different reason. The error in Eq. (42) is proportional to e−4k∞L,
so one might expect that the prediction to become increasingly
accurate as the state becomes more bound. However, as seen
in Figs. 14 and 15, results for deep Gaussian and exponential
potential wells do not match this expectation. In deriving the
energy corrections we used the asymptotic form of the wave
functions. This is valid only in the region r � R, where R is
the range of the potential. The potentials at the smaller values
of L2 shown in the figures are not negligible. Indeed, it is
evident from the insets in Figs. 14 and 15 that we are not in the
asymptotic region for those values of L. The lesson is that when
applying the IR extrapolation schemes discussed in the present
paper we need to make sure that the two conditions for its
applicability are fulfilled. First, we need N sufficiently large for
L2 to be the correct box size (see Table I). Second we need L2 to
be the largest length scale in the problem under consideration.

The results in Ref. [2] and the figures so far are for the
ground state of the potential. However, the linear energy
approximation and the specific derivations in the last section
should also hold for excited states. This is so because the
generalization of the results in Sec. II B shows that (jπ/L2)2 is
a very good approximation to the j th eigenvalue of the operator
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p2 for j � N . In Fig. 16 representative results for excited
states from two model potentials are shown. We find the same
systematics as with the ground-state results: The exponential
fit works very well but the extracted k∞ is only correct at
about the 10% level. In assessing the success of Eqs. (42) and
(44), we note that these excited states in deep potentials are
comparable to the ground states in moderate-depth potentials
shown in Fig. 13. The discussion there applies here as well,
namely that contributions from the second and third terms in
Eq. (27) are of comparable size and opposite sign, so that
Eq. (42) alone is a better approximation.

In summary, our tests confirm the expectation from Sec. III
that the exponential form of corrections for finite HO basis
size is universal for different potentials and also excited states
(and also in one dimension, not shown). The leading-order
expression Eq. (1) is moderately successful but not quantitative
if exact values for k∞ and γ∞ are used. This implies that one
should not expect to accurately extract k∞ from a fit to Eq. (1).
The modified energy correction Eq. (44) is not an improvement
for deep potentials because it is not the dominant subleading
correction, but we expect it to be the most important correction
for shallow bound states (including the deuteron), which we
consider next.

B. Shallow bound states

The case of weakly bound states is of special interest.
Figure 17(a) shows ground-state energies for many different
N and h̄� versus L2 using Gaussian model potentials whose
parameters are chosen so that the energies are the same as
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FIG. 17. (Color online) (a) Ground-state energy versus L2 for
model Gaussian potential. (b) Energy versus L for the square well.
The energies for the square well are from solving the Schrödinger
equation exactly with a Dirichlet boundary condition on wave
functions at r = L. The dashed and dot-dashed lines are predictions
from Eqs. (42) and (44). The depths of these model potentials are
chosen so that the scaled energies (with h̄ = μ = R = 1) are the
same as the deuteron binding energy.

the deuteron binding energy (scaled to units with h̄ = 1,
μ = 1, R = 1). The prediction Eq. (42) fails to reproduce
the data except at the highest values of L2. However, when
the correction from Eq. (44) is added there is significant
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FIG. 18. (Color online) Deuteron energy versus L2 for the
potential of Ref. [7]. To eliminate the UV contamination we only
keep points for which h̄� > 49. The dashed and dot-dashed lines are
predictions from Eqs. (42) and (44). The horizontal dotted line is the
deuteron binding energy.

improvement. We also note that, contrary to the situation with
Figs. 13 and 16, the correction from the third term in Eq. (27)
is much smaller and of the same sign as the contribution from
the second term included in Eq. (44). This is consistent with
the dot-dashed lines falling below the calculated energies at the
smallest L2 values. In Fig. 17(b) the same exercise is repeated
with a model square well. The energies in this case are obtained
by solving the Schrödinger equation exactly with a Dirichlet
boundary condition on wave functions at r = L. Comments
similar to those for model Gaussian potential well also apply
here.

In Fig. 18 we show analogous results from the deuteron
calculated with the chiral EFT potential of Ref. [7]. As
in Fig. 17, the modified IR correction Eq. (44) (evaluated
using the s-wave ANC) is a significant improvement over
Eq. (42), falling slightly below the calculations at the lowest
L2 values.

C. Effect of SRG evolution

As a final test of the universal applicability of the correction
formulas Eqs. (42) and (44), we consider a sequence of
unitarily equivalent potentials for the deuteron. In particular,
we use the similarity renormalization group (SRG) [26] to
evolve the initial Entem-Machleidt potential to four values of
the SRG evolution parameter λ. Because the transformation
is exactly unitary (up to very small numerical errors) at
the two-body level, the measurable quantities such as phase
shifts, bound-state energies, and ANCs are unchanged. As
λ decreases, the SRG systematically reduces the coupling
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FIG. 19. (Color online) Deuteron energy versus L2 for the
potential of Ref. [7] evolved by the SRG to four different resolutions
(specified by λ). To eliminate the UV contamination we only keep
points for which h̄� > 40. The dashed and dot-dashed lines are
predictions from Eqs. (42) and (44). The horizontal dotted line is
the deuteron binding energy.
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between high-momentum and low-momentum potential ma-
trix elements, thereby lowering the effective UV cutoff. Thus
these potentials are useful tools to assess the role of UV
corrections.

We first consider results with N and h̄� chosen to ensure
small UV corrections, as in all prior figures. All the quantities
on the right-hand side of formula Eq. (44) are invariant under
SRG evolution. Therefore, if it is an accurate representation
of the IR energy corrections from truncating the HO basis,
then the E(L2) vs L2 points for different SRG λ should lie
on the same curve. Figure 19 shows that this is the case, and
the curve is the same as for the unevolved potential in Fig. 18.
(Only selected points are plotted for readability.)

Finally, in Fig. 20 we relax the condition that the UV
corrections are small compared to IR corrections. In particular,
we fix N at 8 and 12 and scan through the full range of h̄�.
We observe that with increasing L2, each of the curves with
a given λ eventually deviates from the universal curve, first
with λ = 3.0 fm−1 and then later with decreasing λ or with
higher N . We can understand this in terms of the behavior
of the induced UV cutoff. For fixed N , Eq. (7) tells us that
increasing L2 means increasing b (or decreasing h̄�). But
at fixed N , �UV ∝ 1/b, so the UV cutoff will be decreasing
and the corresponding UV energy correction increasing. Thus
the curves at fixed λ correspond to the curves seen in
conventional plots of energy versus h̄� (e.g., see Ref. [8]).
The softer potentials (lower λ) will have lower intrinsic UV
cutoffs and therefore they are only affected for larger L2.
The minima for each λ are when IR and UV corrections are
roughly equal.

6 8 10 12 14
L

2
 [fm]

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

D
eu

te
ro

n 
en

er
gy

 [
M

eV
]

N = 8 (a) (b)

6 8 10 12 14
L

2
 [fm]

N = 12

λ = 3.0 fm
−1

λ = 2.6 fm
−1

λ = 2.0 fm
−1

λ = 1.6 fm
−1

FIG. 20. (Color online) The same SRG-evolved potentials as in
Fig. 19 are used to generate energies, but with N fixed at (a) 8 and
(b) 12 and no restriction on h̄�. Thus UV corrections are not neg-
ligible everywhere. The dashed and dot-dashed lines are predictions
from Eqs. (42) and (44). The horizontal dotted line is the deuteron
binding energy.

V. SUMMARY AND OUTLOOK

In this paper, we revisited the infrared (IR) correction
formula derived in Ref. [2] for a truncated harmonic oscillator
(HO) basis expansion, using the simplified case of a two-
particle system as a controlled theoretical laboratory. We used
simple model potentials and the deuteron calculated with
realistic potentials to extend and improve the IR formula. We
demonstrated analytically that the spectrum of the squared
momentum operator p2 in a finite oscillator basis is identical
to the one in a spherical box with a hard wall. The minimum
eigenvalue of p2 is (πh̄/L2)2, and this identifies L2 as the box
radius. While these results have been obtained in finite but
large oscillator spaces, they also hold in practical applications
in much smaller spaces. We showed how errors parametrized
in terms of an effective hard-wall radius L from different N
and h̄� combinations all lie on the same curve, but only if
the UV error is sufficiently small and, for smaller N , only if
L is defined as L2 [see Eq. (7)]. The determination of L2 as
the box radius also allows us to extract phase shifts from the
positive-energy solutions in the oscillator basis.

The fall-off with L2 of the IR correction to bound-state
energies is found to be an exponential independent of the
potential or whether a ground or excited states (or whether we
are in one or three dimensions). This conclusion is validated by
the derivation and testing of explicit formulas for the energy
corrections that depend only on on measurable bound-state
properties: the energy and residue of the bound-state pole
of the S matrix (or the binding momentum and asymptotic
normalization constant).

4 6 8 10 12 14
L

2
 [fm]

−8.0

−7.0

−6.0

−5.0

T
ri

to
n 

en
er

gy
 [

M
eV

]

λ = 2.2 fm
−1

λ = 2.0 fm
−1

λ = 1.8 fm
−1

λ = 1.5 fm
−1

FIG. 21. (Color online) Triton energy versus L2 (here calculated
with the deuteron-neutron reduced mass) for the two- and three-
nucleon potential in Ref. [27] unitarily evolved by the SRG to
four different resolutions (specified by λ) with the same binding
energy [27,28]. Only larger h̄� points are plotted to minimize the UV
contamination. The horizontal dotted line is the exact triton binding
energy for this interaction.
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Tests on larger nuclei have validated the exponential form
Eq. (1) with the decay parameter k∞ in the more general case
associated with the lowest breakup threshold. Preliminary tests
show that L2 is also the preferred definition of L. An example
is shown in Fig. 21, where triton energies for a two- plus
three-nucleon potential evolved to four different SRG λ (see
Refs. [27,28]) lie on the same curve when L2 is used. A naive
fit to Eq. (42) to the triton assuming a break-up into deuteron
plus neutron yields a binding momentum k∞ ≈ 91 MeV
(kexpt

∞ = 88.13 MeV) and ANC γ∞ ≈ 3 fm−1/2. The ANC is
not in agreement with data and previous computations where
γ∞ ≈ 2 fm−1/2 was reported [29,30], and suggests that a
more sophisticated analysis is necessary for the three-body
problem (see also Refs. [31–33]). While we expect from
general considerations that the parameters of universal curves
such as in Fig. 21 are determined by asymptotic (and therefore
measurable) quantities, it remains to be investigated whether
simple formulas are possible (and whether ANC’s might be
approximately extracted from fits).

In most of our investigations here we used our ability to
calculate with very large h̄� and N for two-particle systems to
ensure that the effective UV cutoff was large enough to make
the UV corrections negligible compared to the IR corrections.
However, in realistic calculations we will not (always) have
this luxury. The effects of nonnegligible UV corrections were
shown in Fig. 20. By working on the other side of the minimum

we can isolate the UV systematics. Analogous studies to those
here but on the UV side show that �UV is an appropriate
variable for the energy correction, but the behavior is not
universal in the same sense we have identified here. For
example, considering different model potentials, ground state
vs excited state, and three dimensions vs one dimension,
we find there are different functional dependencies (see also
Ref. [20]). While some systematic behavior has been identified
for SRG-evolved potentials [2], further work is needed to go
beyond the basic form used to make fits. Work in this direction
is in progress.

ACKNOWLEDGMENTS

We thank R. Briceño, A. Bulgac, Z. Davoudi, K. Hebeler,
H. Hergert, R. Perry, and K. Wendt for useful discussions,
K. Wendt for generating deuteron eigenvalues with SRG-
evolved potentials for a very wide range of h̄� and N , and
E. Jurgenson for triton results. This work was supported in
part by the National Science Foundation under Grant No.
PHY–1002478 and the Department of Energy under Grants
No. DE-FG02-96ER40963 (University of Tennessee), No.
DE-AC05-00OR22725 (Oak Ridge National Laboratory), and
No. DE-SC0008499/DE-SC0008533 (SciDAC-3 NUCLEI
project), and by the Swedish Research Council.

[1] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck,
P. Maris, and J. P. Vary, Phys. Rev. C 86, 054002 (2012).

[2] R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C 86,
031301 (2012).
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