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Giant dipole resonance width as a probe for nuclear deformation at finite excitation
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The first systematic study of the correlation between the experimental giant dipole resonance (GDR) width and
the average deformation 〈β〉 of the nucleus at finite excitation is presented for the mass region A ∼ 59 to 208.
We show that the width of the GDR (�) and the quadrupole deformation of the nucleus do not follow a linear
relation, as predicted earlier, owing to the GDR-induced quadrupole moment, and the correlation also depends
on the mass of the nuclei. The different empirical values of 〈β〉 extracted from the experimental GDR width
match exceptionally well with the thermal shape fluctuation model. As a result, this universal correlation between
〈β〉 and � provides a direct experimental probe to determine the nuclear deformation at finite temperature and
angular momentum over the entire mass region.
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I. INTRODUCTION

The atomic nucleus is a complex many-body quantum
system which displays an unbelievably rich and intriguing
variety of phenomena. While there are many excitations that
are quite irregular and even considered to be the manifestation
of chaotic motion, the nuclei, on the other hand, also show
collective behavior that reflects the dynamical properties of
the nuclear system. Giant resonances, the collective mode of
excitation, are of particular interest because they currently
provide the most reliable information about the bulk behavior
of the nuclear many-body system. A typical example of this
vibrational mode is isovector giant dipole resonance (GDR), in
which the neutrons and protons oscillate out of phase against
each other [1,2]. Interestingly, this is the only giant resonance
experimentally studied extensively at finite temperature (T)
and angular momentum (J). Consequently, it has become an
indispensable tool in nuclear structure physics.

The GDR decay from excited nuclei occurs on a time
scale that is sufficiently short and thus probes the conditions
prevailing at that time [2]. The centroid energy of the resonance
is inversely proportional to the nuclear radius and provides an
idea about the nuclear size. Moreover, the centroid energy is
strongly correlated with the nuclear symmetry energy, which is
a fundamental quantity important for studying the structure of
a neutron star [3]. On the other hand, the width of the resonance
corresponds to the damping of this collective vibration owing
to the viscosity of the neutron and proton fluids [4]. Recently,
the precise experimental systematics of the GDR widths in
hot nuclei have been applied to calculate the ratio of the
shear viscosity η to the entropy volume density s [5]. It was
concluded that the ratio η/s in medium and heavy nuclei
decreases with increasing temperature, to reach the value (1.3–
4) × h̄/(4πkB) at T = 5 MeV, indicating that nucleons inside
a hot nucleus at T = 5 MeV have nearly the same ratio η/s as
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does quark gluon plasma. Microscopically, the total width of
the GDR consists of the Landau width, the spreading width,
and the escape width [1]. In medium and heavy nuclei, the
Landau and the escape widths account for only a small fraction
and the major contribution of the large resonance width comes
from the spreading width [6,7]. Recently, an empirical formula
has been derived for the spreading width with only one free
parameter by separating the deformation-induced widening
from the spreading effect [8]. It is now well known that the
GDR strength function splits in the case of a deformed nucleus
and the deformation can be estimated from the ratio of the two
resonance energies [1]. However, for small deformations, the
separation is not appreciable and the two resonance energies
cannot be identified individually. As a result, the overall width
of the GDR increases. Thus, the apparent GDR width (�)
can provide us a direct experimental probe to measure the
deformation of the atomic nuclei at a high temperature and
angular momentum. However, this interesting aspect of the
apparent GDR width has not been explored so far.

Several studies of the GDR γ decay in hot nuclei have
shown that while the GDR centroid energy remains more
or less constant with the excitation energy, the apparent
width of the resonance increases with both temperature and
angular momentum [1]. The J dependence of the GDR
width is described very successfully within the thermal shape
fluctuation model (TSFM) [9–11]. As the rotational frequency
becomes higher, the nucleus undergoes an oblate flattening
owing to centrifugal effects. The equilibrium deformation
(βeq) increases rapidly with J, and as a consequence, the total
GDR strength function undergoes splitting, which increases
the overall width of the resonance. The model has also been
applied successfully to explain the Jacobi shape transition
in atomic nuclei [12,13]. However, it should be mentioned
that even though the equilibrium deformation of a nucleus
increases with J, an increase in the GDR width is not evident
experimentally until the equilibrium deformation increases
sufficiently to affect the thermal average [14]. In particular,
as long as βeq is less than the variance �β = [〈β2〉 − 〈β〉2]1/2,
the increase in GDR width is not significant. Thus, the
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competition between βeq and �β gives rise to the critical
angular momentum, observed in all the experiments, below
which the GDR width remains nearly constant at its ground-
state values. In the case of T dependence, it is observed that
the experimental GDR widths remain more or less constant
until T ∼ 1 MeV and increase with T thereafter. The increase
in the GDR width above T = 1.5 MeV can be explained
reasonably well within the TSFM. The model proposes that
the nucleus does not posses a single well-defined shape but
rather explores a broad ensemble of mostly quadrupole shapes
because of thermal fluctuation around an equilibrium shape.
Thus, in adiabatic assumption, i.e., when the shape fluctuations
are slow compared to the frequency shift, the observed GDR
width results from a weighted average over all frequencies
associated with the possible shapes [9,15]. This gives rise
to T-driven broadening of the width. However, the model
fails to explain the experimental data below T = 1.5 MeV
in different mass regions [16–20]. Recently, it has been shown
that the GDR vibration itself produces a quadrupole moment
causing the nuclear shape to fluctuate even at T = 0 MeV
[20–22]. Therefore, when the giant dipole vibration, having
its own intrinsic fluctuation, is used as a probe to view the
thermal shape fluctuations, it is unlikely to feel the thermal
fluctuations that are smaller than its own intrinsic fluctuation.
The discrepancy between the experimental data and the TSFM
predictions at low T is attributed to the competition between
the GDR-induced fluctuation (βGDR) and the variance of the
deformation �β owing to thermal fluctuations. This gives
rise to a critical temperature (Tc) in the increase in GDR
width. A new phenomenological model has been proposed
by invoking this idea and is called the critical temperature
included fluctuation model (CTFM) [20]. The model gives an
excellent description of the GDR width for both T and J over
the entire mass range.

In this paper, we present a systematic study of a universal
correlation between the GDR width and the average deforma-
tion of the nuclei. We show that the relationship between the
GDR width and 〈β〉 is nonlinear because of the GDR-induced
quadrupole moment. We also find good agreement between
〈β〉 extracted from the experimental GDR width and the TSFM
calculation for both T and J in the mass region A ∼ 59 to 208.

II. THE FORMALISM AND THE UNIVERSAL
CORRELATION

It is very interesting to note that the increase in the GDR
width with both J and T can be explained by the spreading
owing to the shift in the centroid energy of the GDR modes
for each deformation. Moreover, simple scaling functions
depending only on J, T, and A represent the experimental data
on the GDR width remarkably well. Hence, in principle, there
should exist a correlation between the width of the GDR and
the average deformation 〈β〉 of the nucleus at finite T and J. The
mass dependence of the mean value of β and the FWHM of
the GDR width was studied by Mattiuzzi et al. [23] and hinted
at a correlation between 〈β〉 and GDR width. It was shown
that the oblate flattening owing to the angular momentum
would be small for heavier nuclei and thus the FWHM should
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FIG. 1. (Color online) Average nuclear deformation vs GDR
width for 63Cu (filled circles), 120Sn (filled squares), and 208Pb
(filled triangles) for T � 3.5 MeV and J = 15h̄. (a) The average
deformation and the GDR width do not follow a linear relationship,
as predicted earlier, when the actual T dependence of the GDR width
is considered. (b) A linear correlation is obtained when 〈β〉 − βGDR

is plotted as a function of ((� − �0)/E0)D(A). The solid line is the
proposed correlation represented by Eq. (1).

exhibit less dependence on the angular momentum. A few
years later, it was shown within the TSFM [24] that 〈β〉 is
directly correlated with the quantity (�(J, T ,A) − �0)/E0,
where �0 and E0 represent the width and centroid energy of
the GDR for a spherical nucleus, respectively. However, the
comparison was made only for the Sn nucleus and the ansatz
failed [24] to represent the temperature dependence of 〈β〉
deduced from experimental data with the TSFM calculation.

We remark here that the TSFM does not represent the proper
T dependence of the GDR width, as it does not take into account
the fluctuations introduced by the GDR motion [20]. Hence,
the linear relationship, proposed earlier, failed to explain the T
dependence of 〈β〉 derived from the experimental GDR width
with the TSFM calculation [24]. In Fig. 1(a), we plot 〈β〉
as a function of (� − �0)/E0 for 63Cu, 120Sn, and 208Pb, as
systematic data exist in this mass region over a wide range of
T. In this case, the GDR width was derived from the CTFM,
which represents the precise T dependence of the GDR width,
while 〈β〉 was calculated under the TSFM framework using
the Boltzmann probability e−F (β,γ )/T with the volume element
β4 sin(3γ )dβdγ described in Ref. [13]. It is clearly shown in
Fig. 1(a) that different nuclei have different slopes as well
as different intercepts when the actual T dependence of the
GDR width is taken into account. We remark here that the
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width of the GDR and 〈β〉 of the nucleus cannot be directly
compared, as GDR vibration itself produces a fluctuation
and cannot probe variations that are smaller than its own
intrinsic fluctuation [20]. In fact, 〈β〉 should be correlated with
the width of the GDR along with the deformation induced
by GDR motion (βGDR). Interestingly, a linear correlation is
indeed obtained when 〈β〉 − βGDR is plotted as a function of
((� − �0)/E0)D(A), where D(A) has a small mass dependence
[Fig. 1(b)]. We propose the correlation between the average
deformation of the nucleus and the width of the GDR as

βexp = 0.18 + βGDR + 0.7

(
�(J, T ,A) − �0

E0

)D(A)

, (1)

where
βGDR = 0.04 + 4.13/A,

D(A) = 2 − 0.0036A.
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FIG. 2. (Color online) Average deformation as a function of T
for 63Cu, 120Sn, and 208Pb. (a) Filled circles are data from Ref. [20],
while open circles are from Refs. [11,25] for 63Cu. (b) 120Sn data
(open circles from [27], open squares from [26], triangles from [11])
are shown along with 119Sb data (filled circles from [16]). (c) 208Pb
data (open circles from [27]) along with 201Tl data (filled circles from
[20]). Solid lines correspond to TSFM calculations, while dashed
lines represent the average deformations estimated using the GDR
width from CTFM. The dotted line in (c) is the average deformation
calculated for 208Pb including the shell effect.

III. RESULTS AND DISCUSSIONS

It is interesting to note that the power coefficient D(A)
decreases with an increase in mass, as found previously for
both Tc and βGDR [20]. In order to verify the correlation,
the experimental data for 63Cu [11,20,25], 119Sb [16], 120Sn
[11,26,27], 201Tl [20], and 208Pb [27] were used to extract
the empirical deformation using Eq. (1). The values of 〈β〉
extracted from the experimental data are directly compared
with the TSFM calculation (solid line) in Fig. 2. As can be
seen, in all three mass regions, there is an excellent match
between the experimental data and the TSFM calculation. The
empirical deformations as a function of angular momenta for
the nuclei 59Cu [28], 110Sn [29], 113Sb [30], 152Gd [31], and
176W [32] are also compared with the TSFM calculations in

0 5 10 15 20 25 30 35
<

β >
0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

<
β >

0.2

0.3

0.4

0.5

0.6

J ( )

0 10 20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

152Gd

T = 1.8 MeV

176W

T = 1.4 MeV

59Cu

T = 1.8 MeV

T = 1.9 MeV

110Sn

113Sb

<
β >

<
β >

(a)

(d)

(c)

(b)

FIG. 3. (Color online) Average deformation as a function of J.
(a) Filled circles represent the empirical deformation for 59Cu. (b)
Filled circles correspond to 113Sb data, while open squares represent
110Sn data. (c) Filled circles represent data for 152Gd. (d) Filled circles
represent data for 176W. Solid lines in (a)–(d) correspond to TSFM
calculations, while dashed lines represent the average deformations
estimated using the GDR width from the CTFM.
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Fig. 3. Interestingly, in this case too the experimental data
and TSFM calculations are in good agreement over the entire
mass range. The average deformations estimated using the
GDR widths predicted by the phenomenological CTFM have
also been compared with the experimental data and found to
match reasonably well (dashed lines in Figs. 2 and 3). For
all the nuclei, the centroid energy of the GDR was calculated
using the systematic EGDR = 31.2A−1/3 + 20.6A−1/6 [1]. For
calculation of the width of the spherical nucleus we used
the relation �0 = 0.05E1.6

GDR, which was derived recently
by disentangling the effects of the spreading width and
deformation-induced widening [8].

We mention here that the experimental GDR width can only
be applied above the critical temperature (Tc = 0.7 + 37.5/A)
to measure the nuclear deformation at finite excitation energy.
Below Tc, the GDR vibration does not view the thermal
fluctuations, as they are smaller than its own intrinsic GDR
fluctuation [20]. Consequently, the experimental data and
TSFM are not in good agreement below Tc (Fig. 2). It is
shown in Ref. [20] that shell effects indeed play an important
role at low temperature with A ∼ 200, as they increase the
critical temperature from 0.5 to ∼0.9 MeV. The value of 〈β〉
for 208Pb was also calculated including shell effects (dotted
line in Fig. 2) and compared with the experimental data.
It can be seen that the experimental data and the TSFM
match very well above 0.9 MeV, as shell effects have already
decreased by a factor of 10. Hence, the shell effects are directly
included in the definition of the critical temperature. In general,
Eq. (1) can be applied above Tc as well as below the Jacobi

transition point (Jc ∼ 1.2A5/6 [24]), as γmin displays an abrupt
change from γ = π/3 to γ = 0 and may not follow the simple
correlation. Nevertheless, the empirical data and TSFM match
exceptionally well above Tc over the entire mass region for
all values of T and J. The GDR width, therefore, provides us
a direct experimental probe to assess the nuclear deformation
at finite temperature and angular momentum. Moreover, this
novel idea of a universal correlation should provide new
insights into the modification of the TSFM at low temperature
by calculating the effective deformation probed by the GDR
motion at finite excitation energy; i.e., the quadrupole moment
induced by the GDR motion should be included in the TSFM.

IV. SUMMARY AND CONCLUSION

In summary, we have presented a systematic study of the
correlation between the width of the GDR and the quadrupole
deformation of the nucleus at finite excitation. We have
shown, by comparing 〈β〉 calculated within the TSFM and
the GDR width � estimated through the CTFM, that the
correlation between 〈β〉 and � is nonlinear owing to the
GDR-induced quadrupole moment. The different experimental
data, extracted using the proposed correlation, are in good
agreement with the TSFM calculation over the entire mass
range. Consequently, the apparent GDR width can be used as
a direct experimental probe to measure the nuclear deformation
as a function of T and J, where the different GDR resonance
energies owing to deformation cannot be separated.
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