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The hole-state random-phase approximation (hRPA) and the particle-state random-phase approximation
(pRPA) for systems like odd A nuclei are discussed. These hRPA and pRPA are formulated based on the
Hartree-Fock ground state. An extension of hRPA and pRPA based on a correlated ground state is given using
time-dependent density-matrix theory. Applications to the single-particle states around 16O are presented. It is
shown that inclusion of ground-state correlation affects appreciably the results of hRPA and pRPA. The question
of the coupling of the center-of-mass motion of the core to the particle (hole) is also discussed.
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I. INTRODUCTION

The one-particle states and one-hole states are basic exci-
tation modes of a nucleus and other many-body systems. The
experimental data on the properties of the single-particle states
have been accumulated using nuclear reactions such as one-
nucleon transfer and pickup and knock-out reactions [1], and
it was found that there is a substantial depletion of the spectral
strength of the single-particle states. Theoretical studies have
shown that the strong short-range and tensor components of
the nucleon-nucleon interaction are responsible for a part of
the depletion [2] and a substantial part of the fragmentation
of the single-particle strength is due to the coupling to low-
lying collective modes [3,4]. The standard approach to study
the single-particle properties may be the Green’s function
method. Various theoretical approaches have been proposed
to implement the coupling to low-lying collective modes into
the self-energy of the Green’s function: the particle-phonon
coupling model [3,5–7], the Tamm-Dancoff approximation
(TDA) [8], and the more recent Faddeev random-phase approx-
imation (FRPA) [9]. In the present paper we give a formulation
of the hole-state RPA (hRPA) using the equation of motion
approach (EoM) [10], which has often been used to derive
the standard RPA, and discuss some aspects of hRPA such as
the relation to the particle-state RPA (pRPA), which have not
been clarified so far in the literature [8,11]. We also present an
extension of odd A RPA (oRPA) based on a correlated ground
state obtained from the time-dependent density-matrix theory
(TDDM) [12–14]. The influence of the center-of-mass (c.m.)
motion of the even core on the odd system is also discussed.
The paper is organized as follows: the formulation of hRPA and
its extension is given in Sec. II, some properties of the extended
RPA are also discussed in Sec. II, the results obtained for the
single-particle states around 16O are presented in Sec. III, and
Sec. IV is devoted to a discussion and the conclusion.

II. FORMULATION

Let us consider a nucleus consisting of A nucleons and
assume that the total Hamiltonian H consists of the kinetic

energy term and a two-body interaction. Let us assume that |0〉
is the ground state of the A nucleon system with A even and
with energy E0 and |μ〉 an exact eigenstate of the Hamiltonian
for the A − 1 system with an eigenvalue Eμ (H |μ〉 = Eμ|μ〉).

A. Equations of motion for transition amplitudes

In direct reaction theories such as the the distorted wave
impulse approximation and the distorted wave Born approxi-
mation the differential cross section for one nucleon transfer
reactions is related to the spectral function Sαα′ (ω),

Sαα′ (ω) =
∑

μ

〈0|a+
α′ |μ〉〈μ|aα|0〉δ(ω + Eμ − E0), (1)

where aα and a+
α are the annihilation and creation operators of

a nucleon in a single-particle state α, respectively. We consider
the equations of motion for the transition amplitudes xμ

α and
X

μ
αβ:γ from the A nucleon system to the A − 1 nucleon system.

These amplitudes are defined by

xμ
α = 〈0|a+

α |μ〉, (2)

X
μ
αβ:γ = 〈0| : a+

α a+
β aγ : |μ〉, (3)

where :: implies

: a+
α a+

β aγ := a+
α a+

β aγ − (nγβa+
α − nγαa+

β ). (4)

Here, nαα′ is the occupation matrix given by

nαα′ = 〈0|a+
α′aα|0〉. (5)

From the EoM relation,

〈0|[H, a+
α ] = 〈0|a+

α (E0 − H ), (6)

we obtain the equation for xμ
α ,

〈0|[H, a+
α ]|μ〉 = ωμ〈0|a+

α |μ〉 = ωμxμ
α , (7)

where ωμ = E0 − Eμ. The commutator on the left-hand side
of the above equation includes terms with a+

α a+
β aγ . Therefore,

xμ
α couples to X

μ
αβ:γ . In a way analogous to that used in deriving
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Eq. (7), we obtain the equation for X
μ
αβ:γ ,

〈0|[H, : a+
α a+

β aγ :]|μ〉 = ωμ〈0| : a+
α a+

β aγ : |μ〉
= ωμX

μ
αβ:γ . (8)

On the left-hand side of the above equation there appear expec-
tation values of the terms consisting of three creation operators
and two annihilation operators such as 〈0|a+

λ1
a+

λ2
a+

λ3
aλ4aλ5 |μ〉,

which implies the coupling to a higher-level amplitude
〈0| : a+

α a+
β a+

γ aβ ′aα′ : |μ〉. To close the chain of the coupled
equations, we factorize these terms using xμ

α and X
μ
αβ:γ as

〈0|a+
λ1

a+
λ2

a+
λ3

aλ4aλ5 |μ〉 ≈ AS
(
nλ4λ3X

μ
λ1λ2:λ5

+ Cλ5λ4λ2λ3x
μ
λ1

)
,

(9)

where the correlation matrix Cαβα′β ′ is defined by Cαβα′β ′ =
〈0| : a+

α′a
+
β ′aβaα : |0〉 and AS() means that the terms in the

parentheses are properly antisymmetrized [12]. The obtained
coupled equations are written as

(εα − ωμ)xμ
α +

∑
λ1λ2λ3

〈λ1λ2|v|αλ3〉Xμ
λ1λ2:λ3

= 0, (10)

(εα + εβ − εγ − ωμ)Xμ
αβ:γ +

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉A

×
[(

δλ3α

((
δλ4β − nλ4β

)
nγλ2 − Cγλ4λ2β

)
+ δλ3β

(
nλ4αnγλ2 + Cγλ4λ2α

)
+ δλ2γ

(
nλ3αnλ4β + 1

2
Cλ3λ4αβ

))
x

μ
λ1

+ δλ3αnγλ1X
μ
λ2β:λ4

+ δλ3βnγλ2X
μ
λ1α:λ4

− δλ1γ

(
nλ4αX

μ
βλ2:λ3

+ nλ3βX
μ
αλ2:λ4

)
+ 1

2

(
δλ3αδλ4β − δλ3αnλ4β + δλ3βnλ4α

)
X

μ
λ1λ2:γ

]
= 0, (11)

where the subscript A means that the corresponding matrix is
antisymmetrized and the single-particle states are chosen as
the eigenstates of the matrix,

〈α|t |α′〉 +
∑
λλ′

〈αλ|v|α′λ′〉Anλ′λ. (12)

Here t is the kinetic energy operator. Equations (10) and (11)
are written in matrix form:(

a c

b d

)(
xμ

Xμ

)
= ωμ

(
xμ

Xμ

)
. (13)

The matrix elements of the above equation are given in
Appendix A. The normalization of the amplitudes is given
by

(x̃μ∗X̃μ∗)

(
xμ′

Xμ′

)
= δμμ′, (14)

where x̃
μ∗
αα′ and X̃

μ∗
αβα′β ′ are the left eigenvector of Eq. (13).

The occupation matrix and the correlation matrix, which enter
Eq. (13) and which describe the ground-state correlations in the
A nucleon system, can be determined in the framework of the
time-dependent density matrix (TDDM) theory: the TDDM

equations [12,14] consist of the coupled equations of motion
for nαα′ and Cαβα′β ′ ,

ih̄ṅαα′ = 〈0|[a+
α′aα,H ]0〉, (15)

ih̄Ċαβα′β ′ = 〈0|[: a+
α′a

+
β ′aβaα :,H ]|0〉. (16)

The right-hand side of Eq. (16) contains the expectation
values of three-body operators, which are approximated by
the products of nαα′ and Cαβα′β ′ to close the coupled chain
of the equations of motion. The ground state in TDDM is
given as a stationary solution of the TDDM equations which
satisfies ṅαα′ = 0 and Ċαβα′β ′ = 0. The stationary solution can
be obtained using the gradient method [15]. This method will
be used in our numerical application given later.

In the Hartree-Fock approximation (HF), nαα′ = δαα′ for
hole states and nαα′ = 0 for particle states, and Cαβα′β ′ = 0.
Keeping in Eq. (13) only the amplitudes x

μ
h and X

μ
hh′:p, where

subscripts h and p are used to refer to occupied and unoccupied
single-particle states, respectively, corresponds to the TDA
equation of odd particle systems [16]. However, even within
the HF ground state, Eq. (13) can have all components of
X

μ
αβ:γ ; X

μ
hh′:p, X

μ
pp′:h, X

μ
hh′:h′′ , X

μ
pp′:p′′ , X

μ
hp:p′ , and X

μ
hp:h′ . Such

equations have been proposed for the first time in Ref. [11] and
they have been applied in Ref. [8]. This very much extended
configuration space actually leads to some difficulties which
have been discussed in Ref. [8]. We will take up this discussion
again below.

In the following we discuss the relation of xμ
α with nαα .

Using Eq. (10) for x
μ
α′ and (x̃μ

α )∗, we can eliminate ωμ obtaining
an equation for

∑
μ x

μ
α′ (x̃μ

α )∗,

(εα − εα′ )
∑

μ

x
μ
α′
(
x̃μ

α

)∗ +
∑

λ1λ2λ3

[
〈αλ3|v|λ1λ2〉

∑
μ

x
μ
α′
(X̃ μ

λ1λ2:λ3

)∗

− 〈λ1λ2|v|α′λ3〉
∑

μ

X
μ
λ1λ2:λ3

(
x̃μ

α

)∗
]

= 0, (17)

where X̃ μ is the transition amplitude given by X̃ μ = N22X̃
μ

[17]. On the other hand the stationary condition ṅαα′ = 0 for
Eq. (15) gives [15]

(εα − εα′)nαα′ +
∑

λ1λ2λ3

[〈αλ3|v|λ1λ2〉Cλ1λ2α′λ3

−〈λ1λ2|v|α′λ3〉Cαλ3λ1λ2

] = 0. (18)

Equations (17) and (18) suggest that
∑

μ x
μ
α′ (x̃μ

α )∗ and∑
μ X

μ
α′β ′:β(x̃μ

α )∗ correspond to nαα′ and Cαβα′β ′ , respectively,
though the symmetry of Cαβα′β ′ under the exchange of α
and β is lost in

∑
μ X

μ
α′β ′:β(x̃μ

α )∗. We will show below that
nαα = ∑

μ xμ
α (x̃μ

α )∗ approximately holds in the applications to
16O.

The formulation based on Eqs. (7) and (8) is exact for an
A = 2 system, which is given in Appendix B.

B. Equation of motion approach with excitation operator

Equation (13) lacks some effects such as self-energy
contributions in the configuration X

μ
αβ:γ , which should be

included when a correlated ground state is used. To take
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account of such effects, we present another formulation which
is based on EoM [10]. Introducing the excitation operator q+

μ ,

q+
μ =

∑
α

yμ
α aα +

∑
αβγ

Y
μ
αβ:γ : a+

γ aβaα : (19)

and assuming, as usual, q+
μ |0〉 = |μ〉 and qμ|0〉 = 0 (for the

existence of such a relation, see below), we obtain from Eqs. (7)
and (8),(

A C

B D

) (
yμ

Yμ

)
= ωμ

(
N11 N12

N21 N22

)(
yμ

Yμ

)
, (20)

where the matrices are defined as

A(α : α′) = 〈0|{[H, a+
α ], aα′ }|0〉, (21)

B(αβγ : α′) = 〈0|{[H, : a+
α a+

β aγ :], aα′ }|0〉, (22)

C(α : α′β ′γ ′) = 〈0|{[H, a+
α :], : a+

γ ′aβ ′aα′ }|0〉, (23)

D(αβγ : α′β ′γ ′) = 〈0|{[H, : a+
α a+

β aγ :], : a+
γ ′aβ ′aα′ :}|0〉,

(24)

N11(α : α′) = 〈0|{a+
α , aα′ }|0〉 = δαα′ , (25)

N12(α : α′β ′γ ) = 〈0|{a+
α , : a+

γ ′aβ ′aα′ :}|0〉 = 0, (26)

N21(αβγ : α′) = 〈0|{: a+
α a+

β aγ :, aα′ }|0〉 = 0, (27)

N22(αβγ : α′β ′γ ′) = 〈0|{: a+
α a+

β aγ , : a+
γ ′aβ ′aα′ :}|0〉. (28)

Here {} implies the anticommutator, {A,B} = AB + BA. The
norm matrix N22 is given in Appendix A. The matrix elements
in Eq. (20) can be expressed using those in Eq. (13) such as

A = a × N11, (29)

B = b × N11, (30)

C = c × N22. (31)

The matrix D consists of the two types of terms, one expressed
by D1 = d × N22 and the other given by D2, which originates
from the terms with : a+

λ5
a+

λ4
a+

λ3
aλ2aλ1 : in [H, : a+

α a+
β aγ :]:

[H, : a+
α a+

β aγ :]

=
∑
α′

c(αβγ : λ)a+
α′ +

∑
α′β ′γ ′

d(αβγ : α′β ′γ ′) : a+
α′a

+
β ′aγ ′ :

+
∑

λ1λ2λ3λ4λ5

e(αβγ : λ1λ2λ3λ4λ5) : a+
λ1

a+
λ2

a+
λ3

aλ5aλ4 : .

(32)

Using

N32(λ1λ2λ3λ4λ5 : αβγ )

= 〈0|{ : a+
λ1

a+
λ2

a+
λ3

aλ5aλ4 :, : a+
γ aβaα :

}|0〉, (33)

D2 can be expressed as e × N32. These terms include, for
example,

−1

2
δαα′δββ ′

∑
λ1λ2λ3

〈λ1λ2|v|γ ′λ3〉ACγλ3λ1λ2 ,

which is a self-energy contribution to the state γ . The self-
energy contributions are schematically shown in Fig. 1.

FIG. 1. (a) Self-energy contribution to a particle state and (b) to
a hole state. The ellipses denote Cαβα′β ′ and the dots the residual
interaction.

The normalization of the amplitudes is given by

(yμ∗Yμ∗)

(
N11 N12

N21 N22

)(
yμ′

Yμ′

)
= δμμ′ . (34)

The closure relation is written as∑
μ

(
yμ

Yμ

)
(yμ∗Yμ∗)

(
N11 N12

N21 N22

)
= I, (35)

where I is the unit matrix. We refer to the formulation Eq. (20)
as the extended odd-RPA (EoRPA).

In the following we discuss the relation between Eqs. (13)
and (20). The transition amplitudes xμ

α and X
μ
αβ:γ are given by

yμ
α and Y

μ
αβ:γ as(

xμ

Xμ

)
=

(
N11 N12

N21 N22

)(
yμ

Yμ

)
. (36)

Inserting this expression into Eq. (13), we obtain(
A C

B D1

) (
yμ

Yμ

)
= ωμ

(
N11 N12

N21 N22

)(
yμ

Yμ

)
. (37)

The difference between Eqs. (20) and (37) and thus between
Eqs. (20) and (13) resides in the matrix D. Some effects of the
ground-state correlations such as the self-energy contributions
are missing in Eq. (37) and thus in Eq. (13) as mentioned above.
The importance of these missing terms will be discussed below
in the application section.

1. Symmetry properties

First we show that the Hamiltonian matrix of Eq. (20) is
Hermitian. We use the operator identity,

〈0|{[H, Â], B̂}|0〉 + 〈0|{[H, B̂], Â}|0〉 = 〈0|[H, {Â, B̂}]|0〉.
(38)

In Eq. (20), in the matrix A, the operators Â and B̂ are
identified with a+

α and aα′ , respectively. Because {Â, B̂} is
unity, the right-hand side of Eq. (38) vanishes, which means
〈0|{[H, Â], B̂}|0〉 = −〈0|{[H, B̂], Â}|0〉 and

A(α : α′)∗ = −〈0|{[H, aα], a+
α′ }|0〉,

= 〈0|{[H, a+
α′ ], aα}|0〉 = A(α′ : α). (39)

In the case of the matrix B in Eq. (20) Â is : a+
α a+

β aγ :

and B̂ is aα′ , and {Â, B̂} is reduced to a one-body operator.
Due to the ground-state condition Eq. (15) the right-hand
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side of Eq. (38) vanishes, which means 〈0|{[H, Â], B̂}|0〉 =
−〈0|{[H, B̂], Â}|0〉 and

B(αβγ : α′)∗ = −〈0|{[H, : a+
γ aβaα :], a+

α′ }|0〉,
= 〈0|{[H, a+

α′ ], : a+
γ aβaα :}|0〉

= C(α′ : αβγ ). (40)

Similarly, for the matrix D in Eq. (20) Â is : a+
α a+

β aγ : and

B̂ is : a+
γ ′aβ ′aα′ , and {Â, B̂} is reduced to at most a two-

body operator. Due to the ground-state conditions Eqs. (15)
and (16) the right-hand side of Eq. (38) vanishes, which
implies

D(αβγ : α′β ′γ ′)∗ = D(α′β ′γ ′ : αβγ ). (41)

Therefore, the Hamiltonian matrix in Eq. (20) is Hermitian. In
the applications, shown below, we do not take all the matrix
elements of nαα′ and Cαβα′β ′ , which causes a violation of the
Hermiticity of Eq. (20), though it will turn out to be small.

Next we discuss the relation between the formulations for
a hole state and a particle state. We can obtain a formulation
for a particle state using the excitation operator,

q+
μ =

∑
α

zμ
αa+

α +
∑
αβγ

Z
μ
αβ:γ : a+

α a+
β aγ : . (42)

Because this operator is the conjugate of the hole-state
excitation operator Eq. (19), it is easily shown that the
formulation for a particle state is given as(

A C

B D

)t (
zμ

Zμ

)
= ωμ

(
N11 N12

N21 N22

)t (
zμ

Zμ

)
, (43)

where the superscript t means the transposition of the
corresponding matrix and ωμ is defined by ωμ = Eμ − E0.
Equation (43) implies that (zμ, Zμ) is the left-hand eigenvector
of Eq. (20). Thus Eq. (20) gives simultaneously the particle
states and the hole states. This is completely analogous to
pp(hh)RPA (see Ref. [16]).

2. Hartree-Fock approximation for the ground state

If we make the usual approximation to take for the ground
state |0〉 the HF one, N22 in Eq. (28) becomes

N22(αβγ : α′β ′γ ′)
= (δαα′δββ ′ − δαβ ′δβα′)δγ ′γ

× (
n0

γ γ + n0
ααn0

ββ − n0
γ γ n0

αα − n0
γ γ n0

ββ

)
, (44)

where n0
αα is equal to 1 or 0. In HF, N22 is nonvanishing

only for Y
μ
pp′:h and Y

μ
hh′:p. These amplitudes Y

μ
pp′:h and Y

μ
hh′:p

correspond to the backward amplitudes of y
μ
h and y

μ
p ,

respectively. Hereafter we refer to this formulation consisting
of the four amplitudes, y

μ
h , y

μ
p , Y

μ
pp′:h, and Y

μ
hh′:p as odd

RPA (oRPA). For completeness, we give the full expression
of oRPA,

(εα − ωμ)yμ
α +

∑
pp′h

〈pp′|v|αh〉Ỹ μ
pp′:h +

∑
hh′p

〈hh′|v|αp〉Ỹ μ
hh′:p

= 0, (45)

FIG. 2. (a) Mass operator for a particle state described by Y
μ

pp′ :h
and (b) for a hole state described by Y

μ

hh′ :p. The circles mean the
propagators given by Y

μ

pp′ :h (a) and Y
μ

hh′ :p (b), and the dots the residual
interaction.

(εp + εp′ − εh − ωμ)Ỹ μ
pp′:h +

∑
α

〈αh|v|pp′〉Ayμ
α

+
∑
p1p2

〈p1p2|v|pp′〉Ỹ μ
p1p2:h +

∑
p1h1

[〈hp1|v|ph1〉AỸ
μ
p1p′:h1

+〈hp1|v|p′h1〉AỸ
μ
pp1:h1

] = 0, (46)

(εh + εh′ − εp − ωμ)Ỹ μ
hh′:p +

∑
α

〈αp|v|hh′〉Ayμ
α

−
∑
h1h2

〈h1h2|v|hh′〉Ỹ μ
h1h2:p −

∑
p1h1

[〈ph1|v|hp1〉AỸ
μ
h1h′:p1

+〈ph1|v|h′p1〉AỸ
μ
hh1:p1

] = 0, (47)

where yμ
α denotes y

μ
h and y

μ
p , and Ỹ

μ
αβ:γ means Y

μ
αβ:γ − Y

μ
βα:γ .

The mass operators of the one-body Green’s function derived
from oRPA are schematically shown in Figs. 2 and 3 (see
Appendix C). Becausee oRPA describes the hole states and
particle states simultaneously, the single-particle strength can
be spread over both positive and negative energy regions. We
consider that the strength below the Fermi energy εF of the core
nucleus belongs to the states in the A − 1 system, while that
above εF to the states in the A + 1 system. The TDA hole-state
equation is obtained by keeping only y

μ
h and Y

μ
hh′:p: Because the

coupling of y
μ
h to Y

μ
hh′:p is included in addition to the coupling to

the backward amplitude Y
μ
pp′:h, our oRPA actually corresponds

to some sort of second RPA for even nucleon systems. One
may think that in addition the amplitudes Y

μ
hp:h′ and Y

μ
pp′:p′′

should be included in oRPA because they, respectively, express
the backward propagations of the particle-hole pair and the
hole-hole pair in Y

μ
hh′:p. However, these amplitudes cannot be

included because the norm of these amplitudes is not defined
in HF (the matrix elements N22 for Y

μ
hp:h′ and Y

μ
pp′:p′′ vanish

in HF). As mentioned above, the formulation Eq. (13) allows
us to implement all the X

μ
αβ:γ amplitudes including X

μ
hp:h′ and

FIG. 3. (a) Mass operator for a particle state described by Y
μ

hh′ :p
and (b) for a hole state described by Y

μ

pp′ :h. The circles mean the
propagators given by Y

μ

hh′ :p (a) and Y
μ

pp′ :h (b), and the dots the residual
interaction.
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X
μ
pp′:p′′ because there is no restriction of the norm matrix. [If

Eq. (37) is used instead of Eq. (13), X
μ
hp:h′ and X

μ
pp′:p′′ are

projected out, however.] The inclusion of all the amplitudes
of X

μ
αβ:γ can give quite unphysical results because the sum of

some unperturbed energies corresponding to X
μ
αβ:γ fall near

εF , which makes it difficult to distinguish the hole states from
the particle states (see also Ref. [8]). For these reasons we
mainly present the results in EoRPA calculated using only the
four amplitudes corresponding to y

μ
h , y

μ
p , Y

μ
pp′:h, and Y

μ
hh′:p in

oRPA, although the matrix elements of N22 are nonvanishing
for all configurations due to the ground-state correlations and,
therefore, all other Y

μ
αβ:γ could be included, in principle. We

investigate the effect of inclusion of those other amplitudes in
EoRPA in some limited cases.

3. The RPA ground-state wave function

The choice of the subspace spanned by the aforementioned
four amplitudes y

μ
h , yμ

p , Yμ
pp′:h, Yμ

hh′:p may be given a different ra-
tionale. We consider the following two quasiparticle operators
which consist only of the forward and backward amplitudes,

q+
α =

∑
p

yα
p a+

p − 1

2

∑
hh′p

Yα
hh′:pa

+
h a+

h′ ap, (48)

q+
ρ =

∑
h

y
ρ
h ah − 1

2

∑
pp′h

Y
ρ
pp′:ha

+
h apap′ , (49)

and neglect the coupling of yα
p to Yα

pp′:h and that of y
ρ
h to Y

ρ
hh′:p.

This oRPA scheme actually corresponds to the standard RPA
for even nucleon systems. This can, for example, be seen in
the following way. It can easily be shown that the operators qα

and qρ kill the following RPA vacuum, i.e., q|Z〉 = 0 with

|Z〉 = e
1
4

∑
zpp′hh′a+

p aha
+
p′ ah′ |HF〉, (50)

under the conditions,

∑
p

yα∗
p zpp′hh′ = Yα∗

hh′:p′ , (51)

∑
h

y
ρ∗
h zpp′hh′ = Y

ρ∗
pp′:h′ , (52)

where |HF〉 is the HF ground state of an even A system.
These two quasiparticles [one for the particle addition (α)

and one for the particle removal (ρ)] span, as seen, exactly the
space of the four amplitudes discussed in Sec. II B2. However,
the single equation for the four amplitudes is now split into
two independent 2 × 2 equations corresponding to the two
operators introduced in Eqs. (48) and (49), respectively. Using
in these equations the HF ground state as in Sec. II B2, we
see that we have one type of “forward” going amplitudes and
one type of “backward going” amplitudes in analogy with
what we know from standard ph-RPA for even systems with
corresponding amplitudes X and Y . As a matter of fact, it
recently was shown [18] that also for the standard ph-RPA a
generalized operator can be found which annihilates the state

Eq. (50). It is given by the following form:

Qν =
∑

ph

[
Xν∗

pha+
h ap − Y ν∗

ph a+
p ah

] + 1

2

∑
php1p2

ην
p1p2pha

+
p2

ap1a
+
p ah

− 1

2

∑
phh1h2

ην
h1h2pha

+
h1

ah2a
+
p ah. (53)

This destruction operator kills the vacuum Eq. (50), i.e.,
Q|Z〉 = 0, under the conditions,

zphp′h′ =
∑

ν

(X−1)νphY
ν
p′h′ , (54)

ην
p1p2ph = 1

2

∑
h1

Xν
p1h1

zpp2hh1 , (55)

ην
h1h2ph = 1

2

∑
p1

Xν
p1h1

zpp1hh2 . (56)

We see that there are additional terms to the standard ph-
RPA operator which contain specific two-body terms. The
corresponding terms in Q+

ν can schematically be obtained in
augmenting the addition operator Eq. (48) by a destructor ah

and the removal operator Eq. (49) by a creator a+
p . The η terms

are also small-amplitude (backward-going) terms which can be
added to the standard RPA, evaluated with the HF state. They
improve the results of the standard RPA [19]. We, therefore,
see that complete consistency between the RPA in even and
odd systems can be achieved.

It may be instructive to cast the above amplitude equations
into Green’s function language, which is given in Appendix C.

4. Spurious modes

First we discuss an RPA-like formulation that can bring
the c.m. motion of an odd system at zero excitation energy.
We consider for an A + 1 system the ground state |�0〉 and
an excited state |�μ〉 with excitation energy ωμ. Using the
equation of motion,

〈�0|[a+
α′aα,H ]|�μ〉 = ωμ〈�0|a+

α′aα|�μ〉
= ωμx

μ
αα′ , (57)

and assuming |�0〉 = a+
p |HF〉, we obtain the following

equation:

ωμx
μ
αα′ = (εα − εα′)xμ

αα′

− (
n0

αα − n0
α′α′

) ∑
λλ′

〈αλ′|v|α′λ〉Ax
μ
λλ′

+
∑
λλ′

[
δαp〈pλ′|v|α′λ〉A − δα′p〈αλ′|v|pλ〉A

]
x

μ
λλ′

+
∑

λ

[〈αp|v|λp〉Ax
μ
λα′ − 〈λp|v|α′p〉Ax

μ
αλ

]
. (58)

The first two lines of the above equation have the same form
as the standard RPA for an even A system, and the third and
fourth terms are due to the additional nucleon in a particle state
p. For the total momentum operator,

P =
∑
αα′

〈α′| − ih̄∇|α〉a+
α′aα, (59)

044316-5



MITSURU TOHYAMA AND PETER SCHUCK PHYSICAL REVIEW C 87, 044316 (2013)

which satisfies [P,H ] = 0, we evaluate ωμ〈�0|P |�μ〉 as

ωμ〈�0|P |�μ〉 =
∑
αα′

〈α′| − ih̄∇|α〉ωμx
μ
αα′ . (60)

Using the right-hand side of Eq. (58) and the translational in-
variance of the interaction [20], we can show ωμ〈�0|P |�μ〉 =
0, which implies ωμ = 0. Thus the excitation energy of the c.m.
motion of an odd system given by Eq. (58) is zero from the
ground state |�0〉 and εp from |HF〉. To obtain this conclusion,
however, we need to include all components of x

μ
αα′ because

of the last two terms on the right-hand side of Eq. (58).
Now we discuss the c.m. of a core nucleus in odd A nuclei

whose treatment is of particular relevance. In the standard
particle vibration coupling model [3,5] the spurious mode is
simply discarded, first, for the translational mode, on physical
grounds but also because the RPA amplitudes of a zero mode
cannot be normalized. On the other hand, e.g., in the case of
rotations, it would be very important to find a way to include
the rotational mode, because it is a physical state. To learn
something about the coupling of single-particle motion and
recoil of the core nucleus, we first show that ωμ〈μ|Paα|0〉 =
εα〈μ|aα|0〉 holds in the mean-field approximation. Using the
complex conjugate of Eq. (8), we evaluate ωμ〈μ|Paα|0〉 such
that

ωμ〈μ|Paα|0〉 = 〈μ|[Paα,H ]|0〉
= 〈μ|[P,H ]aα|0〉 + 〈μ|P[aα,H ]|0〉
= 〈μ|P[aα,H ]|0〉, (61)

where we use [P,H ] = 0. If we use the mean-field approx-
imation for [aα,H ], that is, [aα,H ] = εαaα , then we obtain
ωμ〈μ|Paα|0〉 = εα〈μ|aα|0〉, which means that the strength
|〈μ|Paα|0〉|2 is concentrated at the state with ωμ = εα . In
the general case the mean-field approximation is not valid as
Eq. (10) indicates. In the realistic applications of our oRPA or
EoRPA approaches shown below, we will, therefore, see that a
large portion of the strength is distributed to an energy region
lower than εα , which can be interpreted as a recoil effect of the
core nucleus.

In the past, the question of the spurious modes appeared
essentially in the particle-vibration coupling model [5] which
is derived from the Green’s function method factorizing in the
mass operator the 2p-1h (2h-1p) propagator into an ph-RPA
propagator and a HF single-particle propagator. In the spectral
representation of the RPA propagator the spurious mode is
then discarded because of the zero energy mode and the
ensuing diverging amplitudes. On the other hand, if one
could solve the 2p-1h (2h-1p) propagator in the mass operator
exactly (e.g., in a model) or with a consistent higher order
theory, surely no problem with a spurious motion of the
core nucleus would be present. From our analysis above, it
appears that the mass operator should be calculated with 2h-1p
(2p-1h) TDA amplitudes. It could very well be that this
approach gives more realistic results than the particle vibration
coupling model where the spurious mode is discarded. That is
what our derivation seems to indicate.

In any case, e.g., in the case of rotations, it would be
necessary to include this mode, because it is physical. One
could push the argument even further and assume that, because,

e.g., the rotation is very collective, the factorization of the
2h-1p (2p-1h) TDA into a ph-TDA + plus a hole (particle) is
a good approximation (the neglected terms coming only from
exchange). Because of its strong collectivity, eventually all
the other couplings to intrinsic ph modes could be neglected.
Actually analogous questions would arise in cold fermionic
atom systems where one could ask the question what happens
to an odd fermion which is coupled to the so-called Kohn mode,
i.e., a coherent c.m. motion of the underlying even system, in
the external harmonic container. Because the mass of the core
can be very large, e.g., with a million atoms, the factorization
can become quite valid and also the ph-TDA for the Kohn
mode will become very collective. It could be interesting
to investigate this question in more detail theoretically and
experimentally because the treatment of Goldstone modes in
single-particle mass operators is, to the best of our knowledge,
an unsolved problem.

III. APPLICATIONS TO 16O

A. Calculational details

In this paper, we make a first schematic application of our
theory to proton hole states in 15N and proton particle states
in 17F. We do not consider the corresponding neutron states
because there are less experimental data. We consider the 1s1/2,
1p3/2, 1p1/2, 1d5/2, 2s1/2, 1d3/2, 2p3/2, 2p1/2, 1f7/2, and 1f5/2

states for both protons and neutrons. The continuum states
are discretized by confining the single-particle wave functions
in a sphere of radius 12 fm. We use a simplified residual
interaction which consists only of the t0 and t3 terms of the
Skyrme III force. Its strength is reduced by 20% to put the
spurious c.m. motion of 16O at approximately zero energy
in the standard RPA. For the ground-state calculation of 16O
in TDDM, we only use the bound single-particle states, the
1s1/2, 1p3/2, 1p1/2, 1d5/2, and 2s1/2 states, and consider only
the two-particle–two-hole-type correlations in Cαβα′β ′ . We also
neglect the off-diagonal elements of nαα′ between the 1s1/2

and 2s1/2 states. The y
μ
p amplitudes for the proton 2s1/2, 2p1/2,

and 2p1/2 states are neglected because their contributions are
negligible.

B. Ground state

The occupation probabilities calculated in TDDM are
shown in Table I. The largest deviation from the HF values
(n0

αα = 1 or 0) is about 10%, which means that the ground

TABLE I. Single-particle energies εα and occupation probabilities
nαα calculated in TDDM. The single-particle energies in HF are given
in parentheses.

Orbit εα (MeV) nαα

Proton Neutron Proton Neutron

1s1/2 −32.5 (−32.1) −36.2 (−35.9) 0.98 0.98
1p3/2 −18.3 (−18.2) −21.8 (−21.8) 0.93 0.93
1p1/2 −12.3 (−12.0) −15.8 (−15.6) 0.91 0.91
1d5/2 −3.8 (−3.8) −7.1 (−7.2) 0.08 0.08
2s1/2 1.2 (1.5) −1.5 (−1.2) 0.02 0.02
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FIG. 4. Spectral function of the proton 1p1/2 state in 15N calcu-
lated in EoRPA (solid line). The dotted line shows the result in TDA.
The distributions are smoothed with an artificial width 
 = 0.5 MeV.
The strength distribution in the positive energy region is due to the
coupling to the backward amplitude Y

μ

pp′ :h and indicates the states
in 17F. The small strength distributions in the positive and negative
energy regions are shown in the insets.

state of 16O is a strongly correlated state. A recent shell-
model calculation by Utsuno and Chiba [21] also gives a
similar result for the ground state of 16O. The correlation
energy Ec in the ground state, which is defined by Ec =∑

αβα′β ′ 〈αβ|v|α′β ′〉Cα′β ′αβ/2, is −19.6 MeV. A large portion
of the correlation energy is compensated by the increase in
the mean-field energy due to the fractional occupation of the
single-particle states. The resulting energy gain due to the
ground-state correlations, which is given by the total energy
difference between HF and TDDM, is with 5.2 MeV relatively
small. Such kind of scenario is similar to the one well known
from BCS theory [16].

C. Spectral functions

In Figs. 4 and 5 the spectral functions of the proton 1p1/2

and 1p3/2 hole states in 15N calculated in EoRPA [Eq. (20)]
(solid line) are shown, respectively, and compared with the
results in TDA (dotted line). Because the results in oRPA

FIG. 5. Same as Fig. 4 but for the proton 1p3/2 state.

are similar to the EoRPA results, they are not shown. As
already mentioned, in the EoRPA calculations we consider
only the same Y

μ
αβ:γ amplitudes as those used in oRPA. To

facilitate a comparison of various calculations, we smooth the
distributions using an artificial width 
 = 0.5 MeV. As shown
in Table I the HF energies of the proton 1p1/2 and 1p3/2 states
are −12.0 MeV and −18.2 MeV, respectively. In TDA the
main peak is shifted upwards from the HF position due to
the coupling to the configurations Y

μ
hh′:p whose unperturbed

energies are distributed below −40 MeV. In EoRPA (and
oRPA) the main peak is slightly shifted downwards from
the HF position due to the coupling to both Y

μ
hh′:p and the

backward amplitudes Y
μ
pp′:h whose unperturbed energies are

located above 0 MeV (see Figs. 4 and 5). The strength
distribution in the positive energy region corresponds to the
states in 17F. The strengths of the main peak of the proton
1p1/2 state calculated in EoRPA, oRPA, and TDA are 0.88,
0.82, and 0.95, respectively. When the forward amplitude Y

μ
hh′:p

is neglected in oRPA, the main peak is further shifted down
to −14.9 MeV and has strength 0.89. This indicates that the
coupling to the backward amplitudes Y

μ
pp′:h plays an important

role in depleting the single-particle strength. The effects of
the ground-state correlations included in EoRPA play a role
in slightly reducing the correlations in oRPA due to fractional
occupation of the single-particle states. The sum of the strength
of the proton 1p1/2 state distributed in the negative energy
region is 0.91 in EoRPA, which corresponds to nαα = 0.91 in
TDDM, (see Table I). Thus the relation nαα = ∑

μ |〈μ|aα|0〉|2
holds to a good approximation. The single-particle strengths of
the main peak of the proton 1p3/2 state calculated in EoRPA,
RPA, and TDA are 0.88, 0.82, and 0.93, respectively. The
sum of the occupation probabilities of the proton 1p3/2 state
distributed in the negative energy region is 0.93 in EoRPA,
which corresponds to nαα = 0.93 in TDDM. Summing the
whole spectral weights in negative and positive energy regions
gives, of course, the sum rule value of one.

The results for the proton 1s1/2 state are shown in Fig. 6.
The HF energy of the proton 1s1/2 hole state is −32.1 MeV.
The strength is fragmented due to the coupling to the config-
urations Y

μ
hh′:p: The unperturbed energy of the configuration

(1p1/2)−1(1p3/2)−11d5/2 is about −26 MeV. Because the

FIG. 6. Same as Fig. 4 but for the proton 1s1/2 state.
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FIG. 7. Same as Fig. 4 but for the proton 1d5/2 state in 17F. The
dot-dashed line shows the result in oRPA. The strength distribution
below −15 MeV is due to the coupling to the backward amplitude
Y

μ

hh′ :p and shows the states in 15N.

backward configurations Y
μ
pp′:h are energetically well sepa-

rated, there is no significant difference between the TDA and
oRPA results. Therefore, the oRPA result is not shown in Fig. 6.
Comparing with the results obtained from Eq. (37), we found
that the D2 term in the matrix D, which is given by e × N32

and describes the self-energy contributions to the one-particle–
two-hole configurations, play a role in shifting the strength to
lower energy region. The summed occupation probability of
the proton 1s1/2 state distributed in the negative energy region
is 0.98 in EoRPA, which corresponds to nαα = 0.98 in TDDM.

The spectral function of the proton 1d5/2 state in 17F is
shown in Fig. 7. The HF energy of the 1d5/2 state is −3.8 MeV.
The main peak is shifted downwards from the HF position in
TDA due to the coupling to Y

μ
pp′:h, while, on the contrary, it

is shifted upward in oRPA due to the additional coupling to
the backward amplitudes Y

μ
hh′:p. The ground-state correlations

included in EoRPA play a role in slightly reducing correlations
in oRPA. The states located below the single-particle energy
of the proton 1p1/2 state correspond to the states in 15N.
The summed occupation probability of the proton 1d5/2 state
distributed below the proton 1p1/2 state is 0.06 in EoRPA,
while the corresponding value for nαα in TDDM is 0.08.

D. Comparison with experiment

The spectroscopic factors [defined by (2j + 1)×transition
strength] calculated in EoRPA for the proton 1p1/2 and 1p3/2

states are compared with experiment [22] (red bars) in Fig. 8.
The main peak of the proton 1p1/2 state is considered as the
ground state of 15N and the hole-state energy is measured
from this threshold in the following. The results in EoRPA are
reasonable though they overestimate the experimental data and
cannot reproduce the strength distribution around −10 MeV.
This is a common feature of TDA- and RPA-type calculations
[8,9]. Studies on the effect of short-range correlations have
predicted a strength reduction of about 10% in 16O [23–25].
The spectroscopic factors for the proton 1s1/2 and 2s1/2 states
calculated in oRPA is compared with experiment [22] (red
bars) in Fig. 9. The EoRPA results are also compared with

FIG. 8. (Color online) Spectroscopic factors for the proton 1p1/2

and 1p3/2 states calculated in EoRPA are compared with experiment
[22] (red bars).

experiment (red bars) in Fig. 10. Because the inclusion of
ground-state correlations causes a downward shift of the
strength, the agreement with the data becomes somewhat
worse in EoRPA. The strong fragmentation below −15 MeV
cannot be reproduced in these oRPA and EoRPA calculations.
Probably higher configurations are needed. The spectroscopic
factors for the proton 1d5/2 and 1d3/2 states calculated in oRPA
are compared with experiment [22] (red bars) in Fig. 11. The
EoRPA results are also compared with experiment in Fig. 12.
Due to a downward shift of the strength, the agreement with
the data is worsened in EoRPA. We point out that there is a
similar situation in the first 3− state in 16O. The effects of
the ground-state correlations can be included into the standard
RPA using nαα′ and Cαβα′β ′ as in SCRPA [26]. The first 3− state
of 16O calculated in this modified RPA scheme comes about
5 MeV higher than the result in the standard RPA. This is the
same situation as the EoRPA results shown above. We found
that inclusion of the coupling of the particle-hole amplitude to
higher two-particle–two-hole amplitudes brings down the first
3− state to the right position [27]. Therefore, more elaborate

FIG. 9. (Color online) Spectroscopic factors for the proton 1s1/2

and 2s1/2 states calculated in oRPA are compared with experiment
[22] (red bars).
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FIG. 10. (Color online) Same as Fig. 9 but for EoRPA.

calculations using a larger number of the Y
μ
αβ:γ amplitudes

and also the higher amplitudes Y
μ
αβγ :λλ′ could shift the strength

upward and bring a better agreement with the data. Globally,
one may say that the agreement of spectroscopic factors with
experiment is only marginally satisfactory indicating the need
for inclusion of higher configurations.

E. Effects of other amplitudes

We investigate the effects of inclusion of the amplitude
Y

μ
hp:h′ in EoRPA, which describes backward scattering of

a particle-hole pair in Y
μ
hh′:p. We use for Y

μ
hp:h′ the same

truncated single-particle space as that used in the ground-state
calculation because it is important to include the self-energy
contribution to all single-particle states in Y

μ
hp:h′ . To reduce the

dimension size, we neglect the amplitude Y
μ
pp′:h. The obtained

result for the proton 1p1/2 state is shown in Fig. 13 and
compared with the result (red bars) of the calculation based
on Eq. (13) where the ground state is assumed to be the
HF ground state and only the amplitudes X

μ
hp:h′ and X

μ
hh′:p

are included. As shown in Fig. 13, the inclusion of X
μ
hp:h′

FIG. 11. (Color online) Spectroscopic factors for the proton 1d5/2

and 1d3/2 states calculated in oRPA are compared with experiment
[22] (red bars).

FIG. 12. (Color online) Same as Fig. 11 but for EoRPA.

gives quite unphysical results: The main peak is fragmented
and some states have negative strength. The reason for the
fragmentation of the main peak is that unperturbed energies of
some X

μ
hp:h′ fall near the energy of the proton 1p1/2 state.

For example, the unperturbed energy of the configuration
(1s1/2)−12s1/2(1p3/2)−1 that couples to the proton 1p1/2 state
is −12.4 MeV, which is close to the energy of this state
(εα = −12.0 MeV). These unphysical properties are not seen
in the EoRPA result. We consider that this is due both to
the self-energy insertion to the configurations Y

μ
hp:h′ and to

their small normalization N22. The energy of the configuration
Y

μ
hp:h′ is significantly shifted by the amount determined by

the self-energy and the normalization. This shift probably
plays a role in reducing the coupling to the single-hole state.
We performed a similar EoRPA calculation for the proton
1s1/2 state (see Fig. 14) and the obtained result (solid line) is
compared with the EoRPA result without Y

μ
hp:h′ (dotted line).

The coupling to Y
μ
hp:h′ plays a role in shifting some strength

upward, which improves the agreement with the experiment.
However, we found that the inclusion of other amplitudes such

FIG. 13. (Color online) Strength distribution of the proton 1p1/2

state calculated in EoRPA including the amplitude Y
μ

hp:h′ . The red bars
show the result of the calculation based on Eq. (13) where only the
amplitudes X

μ

hp:h′ and X
μ

hh′ :p are included under the assumption of the
HF ground state. Small strengths in the low-energy region are shown
in the inset.
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FIG. 14. Strength distribution of the proton 1s1/2 state calculated
in EoRPA with (solid line) and without (dotted line) Y

μ

hp:h′ .

as Y
μ
hh′:h′′ and Y

μ
hp:p′ brings unphysical fragmentation of the

strength of the 1p1/2 state as seen in Fig. 13. Therefore, it
requires further investigation whether the amplitudes of Y

μ
αβ:γ

with small normalizations should be included or not in EoRPA.

F. Center-of-mass motion of 16O

Finally we discuss the coupling of a hole state to the c.m.
motion of the core nucleus 16O using oRPA. The strength
distribution of |〈μ|Pzaα|0〉|2 among the states which couple
to the proton 1s1/2 state is shown in Fig. 15, where the proton
1p1/2 and 1p3/2 states are taken for α. The upper part of Fig. 15
shows the strength of the proton 1s1/2 state (the same as Fig. 9)
and the lower part −|〈μ|Pzaα|0〉|2 for α = 1p1/2 (red bars) and
1p3/2 (green bars). The strength |〈μ|Pzaα|0〉|2 for α = 1p1/2

is concentrated in a single state and the coupling of the proton
1s1/2 state to this state is negligible. Therefore, this state may be
interpreted as a spurious mode consisting of a pure c.m. motion
of 16O and the proton 1p1/2 state, though it is located about
7 MeV below the single-particle energy of the proton 1p1/2

state (−12.0 MeV). This energy shift from the single-particle

FIG. 15. (Color online) Strength distribution of |〈μ|Pzaα|0〉|2 in
the states which couple to the proton 1s1/2 state. The upper part shows
the strength of the proton 1s1/2 state and the lower part −|〈μ|Pzaα|0〉|2
(in arbitrary units) for α = the proton 1p1/2 state (red bars) and
the proton 1p3/2 state (green bars). The strength |〈μ|Pzaα|0〉|2 for
α = 1p3/2 is fragmented due to the coupling to the configurations
which have the particle-hole pairs with angular momentum L = 2h̄.

energy is related to the fact that the TDA calculation for the
c.m. motion of 16O gives the excitation energy of 7.7 MeV. This
fact may look perturbing, because we know that the spurious
mode of the core comes at zero energy in the standard RPA.
As already mentioned above, it is not guaranteed in an odd
system that the c.m. motion of the core comes at zero energy,
and the coupling of the spurious mode to the physical spectrum
is very week, so that the position of the spurious mode is not so
perturbing. We also performed a TDA calculation for the c.m.
motion of 208Pb using the single-particle states and the residual
interaction which put the spurious mode at zero energy in RPA
and found that it comes at 4.7 MeV. This suggests that the c.m.
of very heavy systems could come close to zero excitation
energy even in TDA. The strength |〈μ|Pzaα|0〉|2 for α = 1p3/2

is somewhat fragmented. Because the dominant components
of the c.m. motion of the core consists of the transitions
from the 1p3/2 to 1d5/2 states, the large fragmentation of
|〈μ|Pzaα|0〉|2 for α = 1p3/2 is explained by the coupling to
the configurations with different coupling schemes of angular
momenta: In the case of α = 1p3/2, Y

μ
αh:p consisting of the

particle-hole pairs (1p3/2)−11d5/2 with angular momentum
L = 1h̄ can couple not only to Y

μ
αh:p which has the same

particle-hole pairs with L = 2h̄ but also to Y
μ
αh:p consisting

of the particle-hole pairs (1p1/2)−11d5/2 with L = 2h̄. In the
case of α = 1p1/2 the particle-hole pairs (1p3/2)−11d5/2 in
Y

μ
αh:p can have only L = 1h̄ and does not couple to nearby

configurations. The exchange effect may also play a role
in weakening the coherence of the c.m. motion of 16O for
α = 1p3/2: We tried an oRPA calculation for α = 1p3/2 where
all exchange terms are neglected and observed the appearance
of such a coherent state as that observed for α = 1p1/2. Thus,
in the case of the proton 1s1/2 state and α = 1p3/2 the c.m.
motion of the core nucleus is embedded in the physical
states of the A − 1 nucleus and cannot be neglected. The
distributions of |〈μ|Pzaα|0〉|2 among the states which couple to
the proton 1p1/2 and 1p3/2 states are shown in Figs. 16 and 17,
respectively, where α is the proton 1s1/2 state. In the case of the
proton 1p1/2 state the strength |〈μ|Pzaα|0〉|2 is concentrated
in a single state and the coupling of the proton 1p1/2 state to

FIG. 16. (Color online) Strength distribution of |〈μ|Pzaα|0〉|2 in
the states which couple to the proton 1p1/2 state. The upper part
shows the strength of the proton 1p1/2 state and the lower part
−|〈μ|Pzaα|0〉|2 (in arbitrary units) for α = the proton 1s1/2 state
(red bars).
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FIG. 17. (Color online) Same as Fig. 16 but for the proton 1p3/2

state.

this state is negligible. As in the case of the proton 1s1/2 state
this state may be interpreted as a spurious mode consisting
of the c.m. motion of 16O and the proton 1s1/2 state, though
it is located about 5 MeV below the single-particle energy
of the proton 1s1/2 state (−32.1 MeV). The fragmentation of
|〈μ|Pzaα|0〉|2 for the proton 1p3/2 state is larger than that for
the proton 1p1/2 state. This is explained by the coupling to the
configurations with different angular momentum couplings: In
the case of the 1p3/2 state the particle-hole pairs (1p3/2)−11d5/2

in Y
μ
αh:p can carry angular momentum L = 1h̄ and 2h̄, whereas

the pairs cannot have L = 2h̄ in the case of the 1p1/2 state.

IV. SUMMARY

In this paper, we took up the old subject of the RPA approach
to odd particle systems. Those equations based on the usual
equation of motion method (EoM) encountered in the past
some difficulties [8]. This gave raise to the so-called Faddeev-
RPA (FRPA) approach [9]. However, whenever the RPA breaks
down, so does FRPA. We located some of the difficulties of
the old odd particle RPA (oRPA) and proposed some cure,
limiting the configuration space to the normalizable subspace.
We showed that p-RPA and h-RPA equations give identical
results which is very similar to the property of pp(hh)RPA for
even system [16]. We also discussed the influence of the c.m.
motion of the core on the odd particle (p or h). No difficulty
with a breakdown seems to arise. It turns out that the recoil
of the core influences the spectrum. This aspect may be most
important for rotational states in deformed nuclei where the
so-called spurious modes are, in fact, physical states. We also
showed how to include ground-state correlations explicitly
in EoRPA, similar to what is done in TDDM, on top of
the oRPA equations. We made a first schematic application,
using a simplified Skyrme force, to the hole and particle states
around 16O. We compared Tamm Dancoff, oRPA, and EoRPA
solutions. It was shown that in some cases all three approaches
give very similar results but that in others the influence of
extra RPA correlations was significant. The comparison with
experiment is sufficiently encouraging to develop this kind
of RPA approach further. In fact, the spirit of oRPA is quite
close to second RPA. We encountered problems for the odd
systems, e.g., that the spectrum becomes too much shifted
downwards. Such open problems may be a subject for the

future. In addition, the connection between a common RPA
vacuum in the even and odd systems, as proposed recently [18],
may be an interesting further line of research.

APPENDIX A: MATRIX ELEMENTS

The matrix elements of Eq. (13) are given below:

a(α : α′) = εαδαα′ , (A1)

b(αβγ : α′) =
∑

λ

〈α′λ|v|αβ〉Anγλ

−
∑
λλ′

[
〈α′λ′|v|αλ〉A(nλβnγλ′ + Cγλλ′β)

+〈α′λ′|v|λβ〉A(nλαnγλ′ + Cγλλ′α)

− 〈α′γ |v|λλ′〉A
(

nλαnλ′β + 1

2
Cλλ′αβ

)]
,

(A2)

c(α : α′β ′γ ′) = 〈α′β ′|v|αγ ′〉, (A3)

d(αβγ : α′β ′γ ′)

= (εα + εβ − εγ )δαα′δββ ′δγ γ ′ + 1

2
〈α′β ′|v|αβ〉Aδγγ ′

+
∑

λ

[
〈λα′|v|αγ ′〉Anγλδββ ′ − 〈λα′|v|βγ ′〉Anγλδαβ ′

+ 〈γβ ′|v|λγ ′〉Anλαδβα′ − 〈γβ ′|v|λγ ′〉Anλβδαα′

− 1

2
δγ γ ′(〈α′β ′|v|αλ〉Anλβ + 〈α′β ′|v|λβ〉Anλα)

]
.

(A4)

The norm matrix N22 is given as

N22(αβγ : α′β ′γ ′)
= (δαα′δββ ′ − δαβ ′δβα′ )nγ ′γ

+ δγ γ ′ (nαα′nββ ′ − nαβ ′nβα′ + Cαβα′β ′)

− δαα′ (nγ ′γ nββ ′ + Cγ ′βγβ ′ ) − δββ ′(nγ ′γ nαα′ + Cγ ′αγα′ )

+ δαβ ′ (nγ ′γ nβα′ + Cγ ′βγα′ ) + δβα′ (nγ ′γ nαβ ′ + Cγ ′αγβ ′ ).

(A5)

APPENDIX B: THE A = 2 CASE

We show that our formulation is exact for an A = 2 system.
In the case of an A = 2 system, TDDM gives the coupled
equations of motion for nαα′ and the two-body density matrix
ραβα′β ′ , which are defined as

nαα′ (t) = 〈�(t)|a+
α′aα|�(t)〉, (B1)

ραβα′β ′ (t) = 〈�(t)|a+
α′a

+
β ′aβaα|�(t)〉, (B2)

where |�(t)〉 is the time-dependent total wave function
|�(t)〉 = exp[−iH t]|�(t = 0)〉. The equations in TDDM are
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written as [28]

ih̄ṅαα′ =
∑

λ

(〈α|t |λ〉nλα′ − 〈λ|t |α′〉nαλ)

+
∑

λ1λ2λ3

[〈αλ1|v|λ2λ3〉ρλ2λ3α′λ1

− ραλ1λ2λ3〈λ2λ3|v|α′λ1〉], (B3)

ih̄ρ̇αβα′β ′ =
∑

λ

(〈α|t |λ〉ρλβα′β ′ + 〈β|t |λ〉ραλα′β ′

− 〈λ|t |α′〉ραβλβ ′ − 〈λ|t |β ′〉ραβα′λ)

+
∑
λ1λ2

[〈αβ|v|λ1λ2〉ρλ1λ2α′β ′

− 〈λ1λ2|v|α′β ′〉ραβλ1λ2 ]. (B4)

Here the single-particle states are arbitrary. Because there
are no higher-level reduced density matrices in an A = 2
system, these two equations are exact. When the two-body
density matrix in Eq. (B3) is approximated by antisymmetrized
products of the occupation matrices, Eq. (B3) is equivalent to
the equation in the time-dependent HF theory. The ground
state is given as a stationary solution of these equations.

The equation for the transition amplitude xμ
α is∑

λ

(〈λ|t |α〉 − δαλωμ)xμ
λ +

∑
λ1λ2λ3

〈λ1λ2|v|αλ3〉X̃μ
λ1λ2:λ3

= 0, (B5)

where X̃
μ
αβ:γ = 〈0|a+

α a+
β aγ |μ〉. The equation for X̃

μ
αβ:γ is given

as∑
λ

(
(〈λ|t |α〉 − δαλωμ)X̃μ

λβ:γ + 〈λ|t |β〉X̃μ
αλ:γ −〈γ |t |λ〉X̃μ

αβ:λ

)
+

∑
λ1λ2

〈λ1λ2|v|αβ〉X̃μ
λ1λ2:γ = 0. (B6)

Because there are no higher-level transition amplitudes in
an A = 2 system, these two equations are also exact. From
Eq. (B5) we obtain

1

2

∑
μαα′

(〈α′|t |α〉 + δαα′ωμ)xμ
α′
(
xμ

α

)∗

=
∑
αα′

〈α′|t |α〉nαα′ + 1

2

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉ρλ3λ4λ1λ2

= 〈0|H |0〉, (B7)

where nαα′ and ραβα′β ′ are exactly given by

nαα′ =
∑

μ

x
μ
α′
(
xμ

α

)∗
, (B8)

ραβα′β ′ =
∑

μ

X̃
μ
α′β ′:β

(
xμ

α

)∗
. (B9)

Equation (B7) corresponds to the relation between the
total ground-state energy and the single-particle Green’s
function [29].

APPENDIX C: GREEN’S FUNCTION DESCRIPTION

The equations for the amplitudes in Eqs. (48) and (49) are
cast into Green’s function language. For this we write down a
Dyson equation,

Gω
kk′ = G0

kδkk′ + G0
k

∑
k1

Mω
kk1

Gω
k1k′ , (C1)

where

G0
k = 1 − n

(0)
k

ω − εk + iη
+ n

(0)
k

ω − εk − iη
(C2)

is the free or HF Green’s function with the occupation numbers
n

(0)
k equal to 0 or 1. The mass operator is given by

Mkk′ =
∑

αhh′p1p2p
′
1p

′
2

〈kh|v|p1p2〉
Y

ρ
p1p2:hY

ρ∗
p′

1p
′
2:h′

ω − �N+1
ρ + iη

×〈p′
1p

′
2|v|h′k′〉

+
∑

ρpp′h1h2h′
1h′

2

〈kp|v|h1h2〉
Yα

h1h2:pY α∗
h′

1h′
2:p′

ω − �N−1
α − iη

×〈h′
1h′

2|v|p′k′〉, (C3)

where Yα,ρ and �α,ρ are the TDA 2p-1h and 2h-1p amplitudes
and eigenvalues, respectively, obtained from the corresponding
TDA equations [16]. In the case where we strictly work
with oRPA corresponding to the ground state Eq. (50), the
coupled system of particle and hole propagation in the above
Dyson equation decouples into two separate Dyson equations,
one for the particles [with the α part of the mass operator
corresponding to Fig. 3(a)] and one for the holes [with the ρ
part of the mass operator corresponding to Fig. 3(b)]. It may
certainly be appealing to work with an approach which is based
on a ground-state wave function.

Going beyond the use of an HF ground state, we can
do as in this work considering EoRPA as described above.
However, there is also the possibility to mix even and odd
RPA’s. For example it has turned out that self-consistent RPA
(SCRPA) based on the vacuum Eq. (50) gives very good
results [18]. For instance, it also solves the two-particle case
exactly. One thus could use SCRPA to calculate the correlation
functions appearing in an extended oRPA. To use the ansätze
Eqs. (48) and (49) directly seems difficult because they
correspond to a nonlinear transformation among the fermion
operators.
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