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We describe electromagnetic and α-decay transitions to low-lying excited states in even-even nuclei within
the coherent state model (CSM). We reproduced the energies and B(E2) values for ground state bands in 40
daughter nuclei with known α-branching ratios to 2+ states. To this purpose we used two parameters, namely the
deformation parameter and the strength of the harmonic CSM Hamiltonian. The Hamiltonian describing the α-
emission process is given by two terms. The first term describes the dynamics of the daughter nucleus. The second
α-daughter component contains the monopole potential, estimated within the double folding procedure with M3Y
interaction plus a repulsive core simulating Pauli principle and a quadrupole-quadrupole (QQ) interaction. The
decaying states are identified with the lowest narrow outgoing resonances in this potential. The α-branching
ratios to 2+ states were reproduced by using the QQ strength depending linearly on the deformation parameter,
as predicted by CSM. The theoretical intensities to 4+ and 6+ states are in a reasonable agreement with available
experimental data. We found out that the QQ coupling strength is by one order of magnitude larger in the region
above 208Pb, where the α clustering is known to be stronger, in comparison to other nuclei. This formalism is
able to simultaneously describe electromagnetic and α decays to excited states in spherical, transitional, and well
deformed nuclei.
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I. INTRODUCTION

It is already a well established fact that relative values of
α-decay half-lives can be satisfactorily described within the
Gamow penetration picture of a preformed α particle through
the Coulomb barrier [1]. In order to describe absolute half
lives it is also necessary to consider the α-particle formation
probability within the R-matrix theory [2–4].

For transitions between ground states the α-particle forma-
tion amplitude is a coherent superposition of many single-
particle configurations, including states in continuum and
therefore the decay width is not sensitive to the nuclear
structure details [5,6]. The situation becomes different for
transitions to excited states, because only those single-particle
states that are around the Fermi surfaces are involved.
Therefore decay widths to excited states are very sensitive to
the structure of the wave function in the daughter nucleus. The
importance of this kind of α-decay spectroscopy was recently
evidenced in Ref. [7].

In order to separate the exponential dependence of the decay
width upon the Q-value one extracts the barrier penetration by
introducing the so-called hindrance factors (HF) [8], defined
by the ratio between preformation probabilities of two nuclear
states. The first attempts to estimate HFs in vibrational nuclei
within the quasiparticle random-phase approximation (QRPA)
were performed in Refs. [9,10]. Later on, in Ref. [11] an
explanation was given for the connection between the HF
of the first excited 0+ state and the neutron number for
Pb isotopes in terms of pairing vibration. More recently,
a systematic analysis of α transitions to 0+ and 2+ states
in Pb and Po isotopes was performed within the deformed
density-dependent cluster model, by supposing a Boltzman

distribution for the preformation factor [12]. The α-decay
spectroscopy was used to investigate the 0+ and 2+ excited
states in the Pb [13–15] and U region [16]. We analyzed some
of the experimental results concerning the fine structure of 2+
states by using the QRPA formalism in Refs. [17–19].

Let us mention that the first computations of the α-
decay widths in rotational nuclei within the coupled channels
approach were performed in Ref. [20]. In Ref. [21] HFs were
estimated in rotational nuclei by using the Fröman approach
[22] for the barrier penetration and a simple phenomenological
ansatz for the preformation factor. The α-core potential was
estimated by using double folding procedure in Refs. [23–25].

In several papers [26,27] we analyzed within the coupled
channels formalism a more complex process, namely the
double fine structure of emitted fragments in the cold fission
of 252Cf. The fissioning state was identified with a resonance
in the interfragment potential, estimated by the double folding
procedure. For the external part of the potential we used the
two-body M3Y plus Coulomb interaction, while the energy
was adjusted to reproduce the experimental Q value by using
an internal repulsive core. We found out that the yields to
excited states in both fragments are very sensitive to nuclear
structure details such as the mean-field deformation and
density diffusivity. Unfortunately there are only few available
experimental data to be analyzed in this field [28].

On the other hand, there are many high-precision data
concerning α-decay fine structure to excited states in even-even
nuclei, see, e.g., [29,30]. They were analyzed within the
coupled channel formalism in Refs. [31,32], by using
the same double folding potential plus a repulsion simulating
the Pauli principle, as for the cold fission. Later on a series
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of papers were devoted to the coupled channel analysis of the
α-decay fine structure [33,34], by using the double folding
potential together with the Wildermuth rule to simulate the
Pauli principle [35].

The aim of this paper is to give a unified description
of α transitions to excited states in vibrational, transitional,
and well-deformed nuclei, by using a common formalism
provided by the coherent state model [36,37]. We will use
the deformation parameter given by the energy level analysis
to connect standard nuclear structure data to the α-decay
spectroscopy.

The paper is organized according to the following plan. In
Sec. II we shortly remind the main theoretical ingredients
and in Sec. III we perform an analysis of energy levels,
electromagnetic transitions and α-decay widths to excited
states in even-even nuclei. In the last section we draw
conclusions.

II. THEORETICAL BACKGROUND

In this section we summarize the main theoretical details
necessary to compute energy levels and electromagnetic
transition probabilities. We also give the necessary details to
analize the α-decay fine structure of even-even emitters by
using the coupled channels formalism.

A. Short description of the coherent state model

A coherent superposition of boson operators describing
surface vibrations of a deformed nucleus was discussed in
Refs. [38,39], but a complete approach describing ground, β,
and γ bands was proposed in Refs. [36,37] as the coherent
state model (CSM) and it was extensively developed in
Refs. [40,41]. Since then it was successfully used to describe
low-lying, as well as high spin states in nuclei. A recent review
on this matter can be found in Ref. [42]. Here, we will shortly
remind the main ingredients to describe the ground band states
in even-even nuclei.

The wave function describing the intrinsic ground state is
given by the following coherent superposition of quadrupole
boson operators b2μ with μ = 0

|ψg〉 = ed(b†20−b20)|0〉, (2.1)

in terms of a deformation parameter, proportional to the static
quadrupole deformation [40]

d = κβ2. (2.2)

The coherent state (2.1) can be understood as a Taylor
expansion of a deformed wave function, depending on surface
coordinates α2μ, by using the boson representation of the
derivative ∂

∂α2μ
→ κ(b̃†2μ − b2μ).

Physical states, defining the ground band, can be obtained
by projecting out the angular momentum

ϕ
(g)
J = N (g)

J P J
M0ψg, (2.3)

where the projection operator is defined in a standard way

P J
MK =

√
2J + 1

8π2

∫
dωDJ

MK (ω)R̂(ω). (2.4)

The key ingredient is the norm of the wave function, which
can be estimated by using the following relations [41]

N (g)
J = (2J + 1)

[
I

(0)
J (d)

]−1/2
ed2/2

(2.5)

I
(0)
J (d) =

∫ 1

0
PJ (x)ed2P2(x)dx,

where PJ (x) is the Legendre polynomial. The norm can
be found by a direct numerical integration, or by using
a representation in terms of the degenerate hypergeometric
function [41]. The expectation value of the number of bosons
operator on the wave functions (2.3) is given by〈

ϕ
(g)
J

∣∣N̂ ∣∣ϕ(g)
J

〉 = 〈
ϕ

(g)
J

∣∣ ∑
μ

b
†
2μb2μ

∣∣ϕ(g)
J

〉 = d2IJ (d), (2.6)

where we introduced the following universal function depend-
ing on deformation

IJ (d) ≡ I
(1)
J (d)

I
(0)
J (d)

, I
(1)
J (d) = dI

(0)
J (x)

dx
, x = d2. (2.7)

Notice that the ground band energy spectrum

EJ (d) = 〈
ϕ

(g)
J

∣∣N̂ ∣∣ϕ(g)
J

〉 − 〈
ϕ

(g)
0

∣∣N̂ ∣∣ϕ(g)
0

〉
= d2[IJ (d) − I0(d)], (2.8)

has a harmonic behavior for small values of the deformation
parameter d, while at large values, d > 3, it has a rotational
shape [41]. By using the quadrupole transition operator

T2μ = q0Q2μ
(2.9)

Q2μ = b
†
2μ + b̃2μ + aq[(b†2 ⊗ b

†
2)2μ + (b2 ⊗ b2)2μ],

where q0 is the charge parameter, aq the anharmonic strength
and b̃2μ = b2−μ(−)μ, the B(E2) value for electromagnetic
transitions connecting ground band states is given by [41]

B(E2 : J ′ → J )

=
[

1

Ĵ ′
〈
ϕ

(g)
J

∣∣|T2

∣∣|ϕ(g)
J ′

〉]2

=
[
q(d)〈J ′0; 20|J0〉d

(
Ĵ ′N (g)

J ′

ĴN (g)
J

+ ĴN (g)
J

Ĵ ′N (g)
J ′

)]2

, (2.10)

where we introduced the effective charge

q(d) = q0

(
1 −

√
2

7
aqd

)
. (2.11)

Here Ĵ = √
2J + 1 and by bracket we denoted the standard

Clebsch-Gordan coefficient. The reduced matrix element is
defined by the usual convention

〈JM|Tλμ|J ′M ′〉 = 1

Ĵ
〈J ′M ′; λμ|JM〉〈J ||Tλ||J ′〉.

(2.12)
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B. Coupled channels approach

We generalize here the theoretical framework introduced
in Ref. [31] by considering that the daughter wave function is
described by CSM. Let us consider an α-decay process

P → D(J ) + α, (2.13)

where J denotes the spin of the excited state in the even-even
axially deformed daughter nucleus. Thus, the wave function of
the α-daughter system has the total spin of the initial ground
state (i.e., zero)

�(b2, R) =
∑

J

fJ (R)

R
ZJ (b2,
)

(2.14)
ZJ (b2,
) ≡ [

ϕ
(g)
J ⊗ YJ (
)

]
0.

Here, ϕ
(g)
J is the Jth eigenstate (2.3) of the CSM Hamiltonian

HD(b2) in terms of the quadrupole boson b2 describing the
dynamics of the daughter nucleus and R ≡ (R,
) denotes the
distance between the centers of two fragments. We describe
the α-daughter dynamics by using the stationary Schrödinger
equation, i.e.,

H�(b2, R) = E�(b2, R). (2.15)

The Hamiltonian describing the α-decay is written as follows

H = − h̄2

2μ
∇2

R + HD(b2) + V (b2, R), (2.16)

where μ is the reduced mass of the dinuclear system. We
estimate the interaction between nuclei as a sum of two terms

V (b2, R) = V0(R) + V2(b2, R), (2.17)

The monopole part of the interaction is given by the same
ansatz as in Ref. [31], i.e.,

V0(R) = vaV 0(R), R > Rm

= c(R − Rmin)2 − v0, R � Rm, (2.18)

where V 0 is the nuclear plus Coulomb interaction, estimated
by using the double folding procedure within the M3Y
particle-particle interaction with Reid softcore parametrization
[43–45]. Here va = 1 corresponds to a “pure” α-cluster model.
By considering va < 1 one assumes an α-cluster probability
less than unity, necessary to reproduce the experimental
half-life. The second line is the repulsive core simulating
the Pauli effect (because the α-particle can exist only on the
surface) and fixing the energy of the first resonant state to the
experimental Q value.

We applied the same procedure as in Ref. [31] to determine
the matching radius Rm and the coordinate Rmin, corresponding
to the minimal value, by using the equality between the external
attractive and internal repulsion, together with their derivatives
[see Eqs. (32) of this reference]. Thus, the above interaction
is continuous and it depends upon only one independent
parameter, due to the fact that the repulsive strength c is inverse
proportional with respect to the potential depth v0 [31].

The λ = 2 term is given by the quadrupole-quadrupole
(QQ) interaction

V2(b2, R) = −C0(R − Rmin)
dV0(R)

dR

× 2̂[Q2 ⊗ Y2(
)]0. (2.19)

By using the orthonormality of angular functions entering the
superposition (2.14) one obtains in a standard way the coupled
system of differential equations for radial components [46]

d2fJ (R)

dρ2
J

=
∑
J ′

AJJ ′ (R)fJ ′ (R), (2.20)

where the coupling matrix is given by

AJJ ′ (R) =
[
J (J + 1)

ρ2
J

+ V0(R)

E − EJ

− 1

]
δJJ ′

+ 1

E − EJ

〈ZJ |V2(b2, R)|ZJ ′ 〉, (2.21)

in terms of the reduced radius

ρJ = κJ R, κJ =
√

2μ(E − EJ )

h̄2 . (2.22)

The matrix element of the particle-core coupling entering
Eq. (2.21) was derived in Ref. [36] and it is proportional to
the reduced matrix element defining electromagnetic transition
(2.10), but with a different anharmonic parameter

〈ZJ |V2(b2, R|ZJ ′ 〉 = −C0(R − Rmin)
dV0(R)

dR

1

2̂Ĵ Ĵ ′

× 〈
ϕ

(g)
J

∣∣|Q2|
∣∣ϕ(g)

J ′
〉〈YJ ||Y2||YJ ′ 〉

= −C(d) (R − Rmin)
dV0(R)

dR

d√
4π

Ĵ

Ĵ ′

× 〈J0; 20|J ′0〉2

(
Ĵ ′N (g)

J ′

ĴN (g)
J

+ ĴN (g)
J

Ĵ ′N (g)
J ′

)
,

(2.23)

where we defined the effective α-daughter coupling strength

C(d) = C0

(
1 −

√
2

7
aαd

)
. (2.24)

C. Decay widths

All measured decay widths are by many orders of mag-
nitude smaller than the corresponding Q values. Therefore
the stationarity is a very good approach and an α-decaying
state can be identified with a narrow resonant solution of the
system (2.20), containing only outgoing components. Let us
first define the internal and external fundamental solutions
satisfying the following boundary conditions, respectively

RJI (R)
R→R0−→ δJI εJ ,

H(+)
JI (R) ≡ GJI (R) + iFJI (R)

R→∞−→ δJIH
(+)
J (κJ R)

≡ δJI [GJ (κJ R) + iFJ (κJ R)] . (2.25)
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Here, R0 is a radius inside the internal repulsive potential
and εJ are arbitrary small numbers. The index J labels the
component and I solution, GJ (κJ R), FJ (κJ R) are the irregular
and regular spherical Coulomb wave functions, respectively,
depending on the momentum κJ in the channel J .

Each component of the solution is built as a superposition
of N independent fundamental solutions. We impose the
matching conditions at some radius R1 inside the barrier

fJ (R1) =
∑

I

RJI (R1)MI =
∑

I

H(+)
JI (R1)NI

(2.26)
dfJ (R1)

dR
=

∑
I

dRJI (R1)

dR
MI =

∑
I

dH(+)
JI (R1)

dR
NI ,

where NI are called scattering amplitudes. The conditions
(2.26) give the following secular equation∣∣∣∣∣

R(R1) H(+)(R1)
dR(R1)

dR
dH(+)(R1)

dR

∣∣∣∣∣ ≈
∣∣∣∣∣R(R1) G(R1)

dR(R1)
dR

dG(R1)
dR

∣∣∣∣∣ = 0. (2.27)

The first condition is fulfilled for complex energies, determin-
ing the resonant states. They practically coincide with the real
scattering resonant states, due to the fact that the imaginary
parts of energies are much smaller than the corresponding real
parts, corresponding to vanishing regular Coulomb functions
FJ inside the barrier. The roots of the equation (2.27) do not
depend upon the matching radius R1, because both internal
and external solutions satisfy the same Schrödinger equation.
The unknown coefficients MI,NI are determined from the
normalization of the wave function in the internal region

∑
J

∫ R2

R0

|fJ (R)|2dR = 1, (2.28)

where R2 is the external turning point. All known half-lives in
α emission are much larger that the characteristic nuclear time
Tmin ≈ 10−6s � TN ≈ 10−22s. Thus, any α-decaying state
practically behaves like a bound state, having an exponential
decrease versus radius inside the barrier.

From the continuity equation one obtains the total decay
width as a sum of partial widths

� =
∑

J

�J =
∑

J

h̄vJ lim
R→∞

|fJ (R)|2

=
∑

J

h̄vJ |NJ |2, (2.29)

where vJ is the center of mass velocity at infinity in the channel
J , i.e.,

vJ = h̄κJ

μ
. (2.30)

III. NUMERICAL APPLICATION

We will analyze the α-decay widths to ground band states
in even-even nuclei. To this purpose we should first determine
the deformation parameter d. We use the simplest ansatz of

the CSM Hamiltonian, given by the harmonic term [42]

HD(b2) = A1N̂ = A1

∑
μ

b
†
2μb2μ, (3.1)

depending upon the strength parameter A1 and the deformation
d. Notice that in Ref. [42] it was used a second strength pa-
rameter multiplying angular momentum squared. This ansatz
gives slightly better results especially for small deformations,
but our analysis has shown that the systematics concerning
A1 and the α-daughter interaction strengths becomes more
scattered. Moreover, one parameter description of the CSM
Hamiltonian allows us to derive an universal relation for the
energy ratio

EJ+2

EJ

= IJ+2(d) − I0(d)

IJ (d) − I0(d)
, (3.2)

in terms of the function (2.7), depending only on the deforma-
tion parameter d.

We determined the optimal values of these parameters for
each nucleus by using the fitting procedure for the energies
of J = 2+, 4+, 6+, 8+ ground band states. In our calculations
we used the nuclei given in Table I, where we selected all
emitters with known experimental values for α-transitions to
the first excited 2+ state. In the sixth column of the Table I
we give the results for the CSM deformation parameter d
and in the seventh column the strength parameter A1. These
values are close to the results of Ref. [42]. In Fig. 1(a) we
plotted the deformation parameter d as a function of the
standard quadrupole deformation parameter β2 of Ref. [47].
This dependence can be fitted by two straight lines, cor-
responding to N > 126 (filled circles) and N < 126 (open
circles), thus proving that the relation (2.2) is valid for
given regions. It is interesting to point out on the fact that
the deformation parameter d is strongly correlated to the
Casten parameter P = NpNn/(Np + Nn) [48], where Nτ is
the number of valence nucleons above the closest spherical
shell. This behavior can be seen in Fig. 1(b).

In Ref. [7] it is shown that a parameter of the variable
moment of inertia (VMI) model [49] that is related to the
stiffness (rigidity) of the nucleus, is well correlated with the
parameter P of Casten. Within the VMI model, the energy of
the yrast states is described as a function of the angular velocity

E = 1
2ω2

(
J0 + 3

2ω2J1
)
. (3.3)

Here, J0 is almost equal to the moment of inertia derived
from the energy of the 2+

1 state state, while the inverse of
J1 is twice the value of a stiffness parameter measuring the
rigidity of the nucleus. In Fig. 2 we plotted the quantity
1000/J1 (rigidity parameter) as a function of the deformation
parameter d for the region N > 126. Here, one clearly sees
two regions of linear correlation, corresponding to small and
large deformations, separated by d = 2. An interesting feature
is that the rigidity parameter increases not only at large, but
also at small deformations.

It turns out that the strength parameter A1 is not independent
from d. Their dependence has a parabolic correlation for
N > 126 (filled circles), as can be seen from Fig. 3.
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TABLE I. Deformation parameters β2 and d , the parameter of the CSM Hamiltonian A1, the α-core coupling parameter C, experimental
and predicted intensities of α transitions IJ to J = 2+, 4+, 6+ states.

n Z N A β2 d A1 C I
exp
2+ I

exp
4+ I

pred
4+ I

exp
6+ I

pred
6+

(keV)

1 76 96 172 0.190 2.085 572.757 0.043 2.585 - 8.844 - 7.616
2 76 98 174 0.226 2.262 492.509 0.131 1.270 - 4.863 - 8.679
3 78 98 176 0.171 1.803 408.928 0.027 3.268 - 6.450 - 5.443
4 78 100 178 0.254 2.290 502.074 0.044 2.138 - 6.211 - 7.295
5 78 102 180 0.265 2.435 556.229 0.028 2.394 - 5.567 - 5.015
6 84 112 196 0.136 1.551 537.982 0.027 4.222 - 8.851 - 8.063
7 84 114 198 0.122 0.930 565.044 0.116 4.000 - 9.419 - 14.120
8 84 132 216 0.020 0.877 414.220 0.359 2.959 - 6.698 - 11.166
9 84 134 218 0.039 0.900 441.822 0.511 3.108 - 7.170 - 12.191
10 86 130 216 0.008 0.906 405.170 0.371 1.996 - 4.974 - 9.300
11 86 132 218 0.040 1.532 385.309 0.377 1.510 - 4.389 - 8.449
12 86 134 220 0.111 1.835 398.646 0.410 1.270 - 4.146 - 8.374
13 86 136 222 0.137 2.047 410.960 0.397 1.233 - 4.335 - 9.001
14 88 130 218 0.020 1.388 405.293 0.338 1.510 - 4.231 - 8.043
15 88 132 220 0.103 1.959 344.753 0.406 0.619 - 2.678 - 5.806
16 88 134 222 0.130 2.353 376.272 0.258 0.519 - 2.725 - 6.194
17 88 136 224 0.164 2.616 402.858 0.280 0.426 - 2.607 - 6.132
18 90 132 222 0.111 2.018 391.376 0.256 0.753 - 3.141 - 6.664
19 90 134 224 0.164 2.519 416.728 0.275 0.383 - 2.426 - 5.751
20 90 136 226 0.173 2.895 464.030 0.237 0.324 2.249 2.339 5.984 6.069
21 90 138 228 0.182 3.068 448.686 0.192 0.334 2.356 2.419 6.126 5.606
22 90 140 230 0.198 3.499 555.671 0.148 0.400 2.553 2.623 - 6.301
23 90 142 232 0.207 3.608 555.049 0.123 0.455 2.453 2.786 - 6.190
24 90 144 234 0.215 3.767 615.270 0.095 0.577 3.006 3.162 - 6.091
25 92 138 230 0.199 3.508 543.762 0.126 0.327 2.230 2.350 - 5.187
26 92 140 232 0.207 3.727 576.660 0.109 0.355 2.585 2.465 4.539 5.037
27 92 142 234 0.215 3.787 547.554 0.096 0.389 2.830 2.489 4.374 5.314
28 92 144 236 0.215 3.987 640.331 0.090 0.429 2.932 2.680 4.829 5.086
29 92 146 238 0.215 3.990 636.205 0.073 0.539 2.898 2.959 4.775 6.100
30 94 142 236 0.215 4.012 640.608 0.082 0.390 3.135 2.452 3.705 4.529
31 94 144 238 0.215 4.248 718.871 0.065 0.471 3.325 2.740 4.378 4.560
32 94 146 240 0.223 4.138 659.043 0.087 0.510 3.541 2.735 4.339 4.095
33 94 148 242 0.224 4.196 706.800 0.050 0.664 3.313 3.267 - 4.658
34 94 150 244 0.224 3.864 614.529 0.059 0.657 3.032 3.205 - 5.045
35 96 146 242 0.224 4.500 770.881 0.046 0.585 2.723 2.999 3.695 3.663
36 96 148 244 0.234 4.331 731.418 0.044 0.653 2.309 3.037 - 3.869
37 96 150 246 0.234 4.397 752.888 0.038 0.748 2.450 3.238 3.927 3.806
38 96 152 248 0.235 4.260 710.991 0.040 0.729 2.545 3.249 4.624 4.534
39 98 150 248 0.235 3.889 558.267 0.040 0.748 1.938 3.296 3.563 4.381
40 98 152 250 0.245 4.184 678.191 0.035 0.777 2.016 3.406 4.110 3.912

Concerning the other region with N < 126 (open circlers) the
data are clustered around a common value A1 ≈ 0.55 MeV.

In order to check the quality of this approach we plotted the
relation (3.2) by solid lines for J = 2 in Fig. 4(a) and J = 4 in
Fig. 4(b). It is nicely fulfilled by all experimental data, with a
higher accuracy for N > 126 (filled circles) than for N < 126
(open circles). This proves the predicting power of the CSM
concerning the energies of the ground band from vibrational to
well-deformed nuclei. In Ref. [42] the analysis was extended
to β and γ bands, but unfortunately the amount of α-decay
data is very limited for them.

We used the values of the deformation parameter d to esti-
mate the effective charge by using the values B(E2 : 2 → 0)

given by Eq. (2.10). The values are given in Fig. 5 by filled
circles for for N > 126 and by open circles for N < 126. They
follow the linear dependence predicted by Eq. (2.11), given by
the solid lines

q(d) = 0.261d + 3.651, σ = 0.249, N > 126

0.281d + 5.214, σ = 0.332, N < 126. (3.4)

The slope of the linear dependence determines the anharmonic-
ity parameter aq . One sees that it has relative small values,
i.e.,

aq = −0.134, N > 126

= −0.101, N < 126. (3.5)
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FIG. 1. (a) Deformation parameter d versus the quadrupole
deformation β2 [47]. (b) Deformation parameter d versus Casten
parameter P = NpNn/(Np + Nn).

The main purpose of this paper is to use the CSM
deformation parameter d, in order to determine the α-decay
fine structure, defined by the logarithm of the ratio between
decay widths to ground and J+ states, respectively

IJ ≡ log10
�0

�J

, (3.6)

where partial widths are given by Eq. (2.29). We call this quan-
tity the intensity of the α decay to the J th state. We considered
the value va = 1 multiplying the monopole interaction (2.18),
corresponding to a preformed cluster, because the above ratio
(3.6) practically does not depend on this value, as it was shown
in Ref. [31]. In the same reference it was also evidenced a
strong correlation between c and v0 in Eq. (2.19). Thus, in
our calculations we fixed the value of the repulsive strength
c = 50 MeV, as in Ref. [32], and changed the only remaining
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FIG. 2. Rigidity parameter 1000/J1, where J1 is defined by
Eq. (3.3), versus the deformation parameter d for the region N > 126.
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FIG. 3. Hamiltonian parameter A1 versus the deformation param-
eter d .

free parameter v0 in order to reproduce the Q value for each α
decay.

By changing the effective α-daughter coupling strength
C(d), we reproduced the available experimental quadrupole
intensities I2, given by the eighth column of the Table I. In
Fig. 6(a) we plotted the values of this strength as a function
of the deformation d. They can be fitted by two linear
dependencies

C = −0.121d + 0.566, N > 126

= −0.026d + 0.110, N < 126, (3.7)

with an error σ = 0.040. Thus, we indeed obtained the linear
dependence of the α-daughter QQ coupling strength with a
negative slope, predicted by Eq. (2.24). Notice that for the
region N < 126 the values belong a narrow interval of small
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FIG. 4. (a) Theoretical ratio E4/E2 versus the deformation
parameter d (solid line). By filled circles are given experimental
values for the region N > 126 and by open circles for N < 126.
(b) Same as in (a) but for the ratio E6/E4.
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FIG. 5. Effective charge (2.11) versus the deformation parameter
d . By filled circles are plotted the values for N > 126 and by open
circles for N < 126. By solid lines are given the corresponding linear
fits.

values C ∈ [0.05, 0.1]. As in the case of energy levels, the
error diminishes for larger deformations. This dependence
proves the fact that in α decay the anharmonic effects are
much stronger with respect to electromagnetic transitions and
similar for the two regions, i.e.,

aα = 0.402, N > 126

= 0.448, N < 126. (3.8)

It turns out that the QQ strength can also be related to
the mass number A. In Fig. 6(b) we give the dependence of
this strength versus A. It can be nicely approximated by two
dependencies as follows

C = 0.00040(A − 248)2 + 0.033, N > 126

= 0.00063(A − 170) + 0.052, N < 126, (3.9)
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FIG. 6. (a) α-daughter QQ coupling strength C defined by
Eq. (2.24) versus the deformation parameter d . (b) Same as in (a), but
for the mass number A.
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FIG. 7. (a) α-daughter QQ coupling strength C defined by
Eq. (2.24) versus the α-particle probability (3.10). (b) Same as in (a),
but versus N − Nmagic, where Nmagic = 126 for N > 126, Nmagic = 82
for N < 126.

with the same error σ = 0.040. The α-daughter QQ coupling
is stronger for nuclei above 208Pb, where C ≈ 0.5, i.e., in the
region where the α clustering is larger [50]. It decreases by
one order of magnitude around the mass region A = 240. By
crossing the shell closure to the region N < 126 one notices
a jump of one order of magnitude, up to the value C ≈ 0.05.
Let us mention that for N > 126 this behavior is similar to the
dependence of the reduced width squared (called α-particle
probability) for transitions connecting ground states with
J = 0, defined as follows

γ 2
J = �J

2PJ

, (3.10)

where PJ is the Coulomb penetrability computed at the
touching radius [50]. Indeed, it turns out that the α-daughter
coupling strength is proportional to the α-particle probability,
but with different slopes for N > 126 (dark circles) and
N < 126 (open symbols), as it can be seen from Fig. 7(a).
In spite of this different behavior, the dependence versus the
number of neutrons above the closed shell Nmagic is common
for both regions, as can be seen in Fig. 7(b).

We used these values of the α-daughter strength C(d)
reproducing I2 values in order to predict the intensities I4

and I6. They are given in Table I and plotted in Fig. 8 by
dark symbols versus the index n. These values reproduce
the available experimental data, plotted by open circles,
with a reasonable accuracy. This proves that this relatively
simple model is able to simultaneously describe all available
experimental α-decay intensities to excited states within a
range of four orders of magnitude.

In order to extract the influence of the Coulomb barrier one
defines the logarithm of the hindrance factors (HF) as follows

log10 HFJ ≡ log10
γ 2

0

γ 2
J

= log10 IJ − log10
P0

PJ

, (3.11)
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FIG. 8. (a) Predicted intensity I4, by using the coupling strength
C(d) reproducing the corresponding value I2, versus the index n in
the first column of Table I. (b) Same as in (a), but for I6.

where we used the standard representation (3.10). In Fig. 9
we plotted log10 HFJ versus the index n for J = 2 (a) and
J = 4 (b). One notices the close resemblance with the values
IJ given in Fig. 8. They are shifted by a factor given by the
penetrability ratio in Eq. (3.11).

Let us analyze more carefully the region n = 35–40, where
the predicted I4 intensities overestimate the experimental
values. In Fig. 10(a) we plotted experimental I4 values versus
the deformation parameter d. We used filled symbols for
n = 25–29 (Z = 92), n = 30–34 (Z = 94) and open symbols
for n = 35–38 (Z = 96), n = 39–40 (Z = 98). One clearly
sees two regions corresponding to filled and open symbols,
respectively. They are described by two parallel regression
lines. This fact is confirmed by a similar plot in Fig. 10(b), but
versus the rigidity parameter 1000/J1, which is proportional to
d, as seen in Fig. 2. The I2 intensities have a different pattern.
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FIG. 9. Same as in Fig. 8, but for log10 HFJ defined by Eq. (3.11).
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FIG. 10. (a) Experimental intensity I4 as a function of the
deformation parameter d for Z = 92, 94 (filled symbols) and
Z = 96, 98 (open symbols). (b) Same as in (a), but versus the the
rigidity parameter 1000/J1, where J1 is defined by Eq. (3.3). (c)
Same as in (a), but for I2. (d) Same as in (b), but for I2.

The two regions still remain separated for the corresponding
I2 values, as can be seen in Fig. 10(c) for the dependence
versus d, but the data belong to the same regression line.
This qualitative difference between I2 and I4 intensities as
functions of the deformation parameter d explains why the
I4 values cannot be fully predicted by using I2 values with a
common parametrization. Anyway, this is a nice confirmation
of the connection between electromagnetic and α-transition
properties induced by the deformation parameter.

IV. CONCLUSION

We analyzed in this paper the available experimental
α-decay widths to excited states by using the CSM formalism.
In this way we described in an unified way vibrational, tran-
sitional, and well-deformed nuclei. We considered all nuclei
(40) where α-decay width to the first 2+ state is experimentally
known. We have shown that the simplest harmonic CSM
Hamiltonian is able to describe all available energy level
ratios in terms of the deformation parameter d, proportional to
the standard quadrupole parameter β2. We also evidenced the
proportionality between the CSM deformation and VMI rigid-
ity parameters. We then described the α-decay fine structure
within the coupled channel formalism by using monopole plus
quadrupole terms. The attractive part was described within
the double folding procedure with M3Y interaction. The Pauli
principle was simulated by a repulsive potential depending on
one independent parameter. The first narrow resonant state in
the resulting pocketlike potential was identified with an α-
decaying state. Its eigenvalue was fixed to the experimental Q
value, by using the depth of the monopole repulsive potential.

It turns out that the reduced matrix describing B(E2)
values enters the structure of the matrix coupling the α-decay
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channels. We reproduced the α intensity to the 2+ state by
using the QQ strength parameter. Its linear dependence on the
deformation parameter confirms the CSM prediction. The QQ
interaction strength has a jump of one order of magnitude
by crossing the magic neutron number N = 126. In the
region above to 208Pb, i.e., for nuclei with largest α-clustering
components, it has the strongest value and diminishes again
by one order of magnitude for A = 240. By using these values
we were able to reproduce experimental intensities to 4+ and
6+ states with a reasonable accuracy and we made theoretical
predictions for the other α emitters. A comparison between I4

and I2 intensities revealed their different behavior versus the
deformation parameter d.
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[9] A. Săndulescu and O. Dumitrescu, Phys. Lett. 19, 404 (1965);

Phys. Lett. B 24, 212 (1967).
[10] M. I. Cristu, O. Dumitrescu, N. I. Pyatov, and A. Săndulescu,
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