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Time-dependent Monte Carlo calculations of recoil-in-vacuum g-factor data for 122,126,130,132Te
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A method for extracting nuclear g factors from the attenuation coefficients Gk (k = 2,4) of γ -ray angular
distributions or particle-γ angular correlations measured with the recoil-in-vacuum (RIV) technique is presented.
The method uses time-dependent Monte Carlo simulations for Gk as a function of the g factor for a given nuclear
lifetime. It is based on atomic-structure calculations from first principles using the GRASP2K code by Jönsson et al.
[Comput. Phys. Commun. 177, 597 (2007)]. The simulations are compared with results of RIV measurements
for the first excited states (2+

1 ) in 122,126,130,132Te. The choice of the electronic configurations and the effect of the
charge-state distributions on Gk are discussed. New 2+

1 g-factor values are obtained. These are compared with
nuclear-model calculations.
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I. INTRODUCTION

The recoil-in-vacuum (RIV) technique [1] utilizing the
magnetic hyperfine interaction between the nucleus and its
orbital electrons was first introduced in the 1970s to measure
g factors of excited nuclear states with picosecond lifetimes.
At that time RIV studies focused on light elements [2–4] and
a few medium-mass nuclei [5] had been studied as well. The
technique is quite straightforward. It is based on the measured
attenuation of the γ -ray angular distribution (AD) or particle-γ
angular correlation (AC) due to the magnetic hyperfine
interaction. Typically, in a Coulomb-excitation experiment the
AC attenuation is determined from a thin-target measurement
(perturbation due to recoiling of the γ -ray emitter in vacuum)
and a measurement with a thin target backed by a thick
nonmagnetic layer (no perturbation) by dividing the respective
AC coefficients. The corresponding attenuation coefficients
are denoted Gk (k = 2, 4). The fact that the technique was
seldom used in the past was probably due to the complexity
of the electronic configurations of the recoiling ions and the
associated difficulty in calibrating the magnetic hyperfine
interaction. In 2005, Stone et al. [6] reported the first result of
a RIV analysis of a radioactive-ion beam experiment and the
g factor of the first excited state, 2+

1 , of 132Te was determined.
The experimental success and the recent progress in atomic
theory (see below) indicate that the RIV technique has been
revived, and is a promising method to measure g factors. This
is of particular interest for studies of exotic nuclei, which can
be accessed now by projectile Coulomb excitation.

For g-factor measurements of short-lived states, the tran-
sient field (TF) technique [7] has been widely used. It has the
advantage of being able to measure both the magnitude and
sign of the g factor. However, this technique requires using
a thick target with a ferromagnetic layer as backing and an
external magnetic field. For projectile g-factor measurements,
this condition causes a problem: the thick target may induce
a large radioactive background. On the other hand, with a
thin target as used for a RIV experiment the background is
comparatively small. Moreover, the AD or AC attenuation

in RIV experiments can be measured by utilizing all the
detectors in a near 4π detector array, whereas the optimal
precession sensitivity for the TF technique is achieved only
for detectors in the plane perpendicular to the direction of the
external magnetic field [6]. Thus, the RIV technique has the
potential of performing g-factor measurements with higher
statistical accuracy than the TF technique does. However, the
RIV technique is insensitive to the sign of the g factor and
relies on systematics and/or a measurement of the sign by the
TF method.

Since the pioneering measurement of Stone et al. [6],
many efforts have been made to calibrate and model the RIV
hyperfine interaction. The interaction was usually described
by the strength of the hyperfine magnetic field at the nucleus
where the field was approximated with an empirical model.
This seemed to be the best procedure, since the relation
between the electronic configurations and the field is com-
plicated. Specifically, a static model was used where Gk

was calculated under the assumption that the electronic-state
lifetimes are much longer than the nuclear lifetime. In 2007,
Stuchbery and Stone [8] reexamined the calibration of the
RIV interaction for previously published RIV data on Te
ions [6] and reevaluated the g factor for the 2+

1 state of 132Te.
They introduced a modified static model, using an average
electronic-state lifetime and a time range for the multistep
decay to the ground state as free parameters, that improved the
fit to the data (cf. Sec. II B).

A recent experimental development, using a recoil-distance
device (plunger), is the measurement of differential attenuation
coefficients Gk(d), where d represents the target-to-stopper
distance [9]. This indicates once more the increasing interest
in the RIV technique.

With the availability of an advanced atomic theory for
many-electron ions [10], it is possible to calculate the hyperfine
interaction from first principles rather than relying on an
estimated hyperfine-field strength. The paper by Stone et al.
[11] may be viewed as a pioneering contribution in this
sense. The calculations of Gk in Ref. [11] have been made
with the original static model based on the assumption of
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long-lived electronic states. However, as shown in Ref. [12],
many relevant atomic states have lifetimes comparable to or
shorter than the nuclear lifetime. In Ref. [11], it is pointed out
that transitions between the electronic states may be important
in Gk calculations as the hyperfine interaction may change
when the highly excited, short-lived electronic states decay
within a time period comparable with the nuclear lifetime.
Also, it is suggested in Ref. [8] that the RIV data for certain
Te isotopes can be fitted better with the modified static
model if in the Gk calculations several atomic transitions
were allowed on a time scale compatible with the nuclear
lifetime.

We have taken an approach different from the static model.
Here the contributions from a large number of electronic states
are taken into account according to their lifetimes and partial
widths. The approach is still in the spirit of Ref. [11] in that
the hyperfine interaction is calculated from first principles.
The approach is applied to the data from the projectile
Coulomb-excitation studies of 122,126,130,132Te, for which Gk

values are reported in Ref. [8]. In these cases, the present
approach is validated and new values for the g factors are
obtained.

The set of stable and neutron-rich Te isotopes is attractive
from both theoretical and experimental points of view. First,
these isotopes are located near the doubly-magic 132Sn, a
region important for the development of nuclear theory, and
the measured g factors help to test various theoretical models.
Second, the RIV data for 122,126,130,132Te represent a prototype
g-factor measurement for new studies with other radioactive-
ion beams, where the data could be analyzed with the present
approach.

II. RIV TECHNIQUE

A. The principle

The basics of the RIV technique are described in Refs. [1,6]
and are briefly summarized hereafter. The excited nucleus, as
obtained from, e.g., Coulomb excitation, recoils with a few
percent of the speed of light (β ∼ 0.03 to 0.1) where the
atom is ionized. The hyperfine interaction couples the atomic
spin, J, to the nuclear spin, I, making them precess about
the resultant vector F = I + J. Thus the initial alignment
of the nuclear spin, formed by Coulomb excitation, will
be reduced. The Gk coefficients introduced in Sec. I are
measured as the ratios A

(a)
k /A

(u)
k , the attenuated AC coefficients

divided by the unattenuated ones. The Gk coefficients are
functions of the mean lifetime of the nuclear state, τ , and
the precession frequency, ωFF

′ , which is proportional to the
g factor and where F and F ′ represent initial and final
couplings.

Following Goldring’s presentation [1], the time-dependent
attenuation coefficients Gk(t) for a given pair of quantum
numbers I and J can be expressed as

Gk(t) = 1 − 2 ×
∑
F>F

′

(2F + 1)(2F ′ + 1)

(2J + 1)

{
F F ′ k

I I J

}2

× [1 − cos(ωFF
′ t)], (1)

where ωFF ′ is related to the hyperfine interaction constant A
and the g factor via the expressions

ωFF
′ = A

h̄
· [F (F + 1) − F ′(F ′ + 1)]/2, (2)

A = g
Bμ

N

J
, (3)

where μN and B denote the nuclear magneton and the magnetic
hyperfine field at the nucleus, respectively.

The time-integral attenuation coefficients Gk(∞) that refer
to the static model are obtained by the integration

Gk(∞) = 1

τ

∫ ∞

0
e−t/τGk(t) dt (4)

and are given in Ref. [6] as

Gk (∞) =
∑
FF

′

(2F + 1)(2F ′ + 1)

(2J + 1)

{
F F ′ k

I I J

}2

× 1

(ωFF
′ τ )2 + 1

. (5)

The various implementations of the static model and the
present approach differ in the evaluation of ωFF

′ . In the
approach of Ref. [8] the expression for A according to Eq. (3)
is used and the field B is treated as a parameter. In the
approach taken in Ref. [11] for the static model, and in the
time-dependent approach of the present work, the hyperfine
constant A of Eq. (2) is evaluated, according to Ref. [10], as

A = g · Aint, Aint= 〈�J J‖T (1)‖�J J 〉
[J (J + 1)(2J + 1)]1/2

, (6)

where
〈
�J J

∥∥T (1)
∥∥ �J J

〉
is the reduced matrix element for the

magnetic-dipole operator in the atomic-wave-function space.
This space is defined by J and a set of quantum numbers, �J ,
which represent the electron configuration for a given J . T (1)

represents the magnetic-dipole tensor operator, the explicit
expression of which is given by Eq. (8.50) in Ref. [10].

In the static model, the electron configuration is assumed
not to change during the nuclear lifetime. Since ωFF

′ is
proportional to the g factor and the coefficients Gk(∞) are
explicit functions of ωFF

′ τ according to Eq. (5), the Gk (∞)
factors can be expressed as functions of the product gτ . This
is done in the literature where the static model is used.

B. Uses of the static model

In the experiments of Ref. [6], Gk coefficients were
extracted for the 2+

1 states of the “calibration” isotopes
122,126,130Te. They were then fitted with the static model.
The J -state distribution and the magnitude of the hyperfine
interaction were adjusted such that the Gk(gτ ) functions fit
the Gk values for 122,126,130Te. From these functions and the
Gk values for 132Te the gτ value for the 2+

1 state of 132Te
was determined. With the known lifetime for this state [13],
a g factor of 0.35(5) was obtained, where the positive sign
was based on systematics. Recently, a revised g-factor value
of 0.46(5) has been reported, as a consequence of a correction
of the nuclear lifetime [14].
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As mentioned in Sec. I, the results for the Te isotopes
[6] were reexamined in Ref. [8]. Gaussian shapes were
assumed for both the J -state and B-field distributions, and
the corresponding centroids and widths were discussed. To
improve the fits to the data, atomic fluctuations were allowed
in the modified static model. Here the parameters τE and τA

were introduced, with τE determining how often the ensemble
of the many-electron ions tries to make a transition and
τA determining whether the atom is allowed to make the
transition. The fact that the RIV data for the Te isotopes
with longer nuclear lifetimes can be fitted better with the
modified static model indicates that the atomic transitions
during the nuclear lifetime may play an important role in the
calculations of the coefficients Gk . This seems especially true
for the nuclear states with longer lifetimes, where the Gk may
approach the so-called hard-core value (see Sec. I of Ref. [1]).

It should be reemphasized that in the static model all
relevant electronic lifetimes are assumed to be much longer
than τ . This is not always true; many electronic states may
have lifetimes comparable to or shorter than τ . Some of the
short-lived electronic states may contribute strongly to the
hyperfine interaction.

In Ref. [11], in order to determine the coefficients Gk , the
hyperfine interaction is calculated with the advanced atomic-
structure package, GRASP2K, by Jönsson et al. [15]. This
package uses multiconfiguration Dirac-Hartree-Fock theory
[10] for many-electron ions to calculate atomic-level wave
functions, level energies, and transition probabilities among
other quantities. The results show great promise in that such
calculations could provide parameter-free, a priori analyses of
RIV experiments. Notably, the authors in Ref. [11] question the
assumption that the hyperfine interaction is “static” during the
nuclear lifetime; they state that the original model sometimes
gives poor agreement with experiment and that allowing for
decay improves the agreement.

C. Time-dependent Monte Carlo simulations for
the RIV g factors

Following Ref. [11], we are using GRASP2K to calculate
the properties of the excited atomic states. We have devised a
procedure where Monte Carlo simulations based on the time-
dependent attenuation formula of Eq. (1) are carried out. To
estimate the Gk contribution from each atomic state to the
average Gk more precisely than previous approaches did, we
take into account transitions between atomic states and their
associated state lifetimes. That is, level energies, parameters
Aint [according to Eq. (6)], and transition probabilities of the
states are calculated.

The procedure to determine the average value of Gk

includes five steps: (1) The distribution of the charge states,
wQ, in the recoiling ion with nuclear charge Z is calculated
with the code CHARGE [16]. (2) For each charge state Q of
the stripped ion, the appropriate atomic states are chosen
by specifying a reference electronic configuration and the
number of excitations. The reference configuration represents
the lowest energy manifold of atomic states determined in the
j–j coupling scheme with Z–Q electrons. The number of
excitations, nE , has to be specified, which is equivalent to the

number of electrons to be excited. For example, if nE = n,
it means that electronic configurations with nonelectron ex-
citation (ground-state configuration), one-electron excitation,
and up to n-electron excitation are included in the atomic-
structure calculation. The corresponding level energies and
Aint parameters are calculated. (3) The transition probabilities
and subsequently the lifetimes, τai

, for all atomic states are
calculated. The lifetime of an atomic state is the inverse of the
sum of the transition probabilities from this level to all lower
lying levels [10]. (4) A Monte Carlo simulation is performed in
order to get Gk,Q(τ, g) as a function of the g factor for a given
value τ , and for each charge state. (5) The final attenuation
coefficient Gk(τ, g) is computed as a weighted average over
all the charge states Gk,Q(τ, g).

In step (3), only E1 transitions are allowed; M1 and
higher multipole transitions are considered as too slow and
are omitted. Here a PYTHON code is used to calculate the
lifetimes and store these in a database, together with the
transition probabilities between every pair of atomic states
of opposite parity. Notably, the Monte Carlo simulation in
step (4) is performed with another PYTHON code.

The time sequence on which the simulation of an event is
based is illustrated in Fig. 1. The corresponding expressions for
choosing the appropriate hyperfine interaction for each event
are presented below. The sequence of steps in the simulation
of an event is the following: (A) A nuclear survival time, tn,
is chosen randomly, weighted according to the decay function
e−tn/τ . (B) To start an event, an atomic state dubbed the “first”
state is randomly chosen from a list of states which were
generated in step (2) above. The list of atomic states for a
given charge state may include up to 4000 entries. These
originate from a significantly smaller number of electronic
configurations. The weight given to a state with spin J is
taken as (2J + 1). (C) Depending on the mean lifetime τa1

of the “first” atomic state, a value for its survival time, ta1 ,
that is weighted according to the exponential decay e−ta1 /τa1

is chosen randomly. The hyperfine-interaction time, tint1 , is
determined by the smaller of the two times tn and ta1 . The
hyperfine interaction parameter for this state is denoted Aint1 ,
and the corresponding time-dependent attenuation coefficient,
Gk(tint1 ), is calculated from Eq. (1). (D) The following decision
is made. If the chosen interaction time is found to be longer

Nuclear survival
time t n

Atomic survival
time t ai

Hyperfine int.
time tinti

t n

ta1 ta2 tai
t alast

tintlast

tait a1 ta2

Hyperfine int.
parameter Ainti

AintiAint1 Aint2 A intlast

···=

··· ···

···

··· ···

FIG. 1. The concept for the Monte Carlo simulations in the
present work. The time sequences for successive atomic transitions
are indicated. The last transition has a time ta,last that exceeds the
nuclear time tn and that terminates the event. The equations for the
calculations are given in the text.
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TABLE I. Conditions and parameters for the RIV experiments according to Ref. [6], G2 and G4 values according to Ref. [8], and
nuclear-lifetime values according to Ref. [17].

Isotope Ebeam Target Thickness β Erecoil E2+ τ2+ G2 G4

(MeV) (mg/cm2) Rec. ion (MeV) (keV) (ps)

122Te 366 12C 0.956 0.060 205.45 564.1 10.8(1) 0.358(19) 0.217(11)
126Te 378 12C 0.956 0.061 216.63 663.3 6.5(2) 0.506(20) 0.370(12)
130Te 390 12C 0.956 0.061 227.83 839.5 3.3(1) 0.628(19) 0.506(12)
132Te 396 12C 1.130a 0.060 220.45a 973.9 2.16(20)a 0.701(26) 0.532(17)

aCorrected value due to revision in Ref. [14].

than tn (tn < ta1 ), then the nuclear state has decayed before
the atomic state and the simulation of the event is finished.
Otherwise, a “second” atomic state will be chosen randomly
from the possible states below the “first” state, based on the
decay probability to the possible atomic states below. (E) The
two previous steps, (C) and (D), are repeated as many times as
necessary, with the parameters Ainti and tinti of the ith atomic
state, until the “last” atomic state is reached. Note that tinti is
equal to the survival time tai

, if tai
�= talast . The condition

talast > tn −
last−1∑
i=1

tai
(7)

determines the interaction time for the last state with talast , and
the interaction time becomes

tintlast = tn −
last−1∑
i=1

tai . (8)

The coefficient for an event, Gs
k(τ, g), where s denotes the

number of the event in the simulation, is the product of
coefficients Gk(tinti ),

Gs
k(τ, g) =

last∏
i=1

Gk(tinti ). (9)

The coefficient Gk,Q(τ, g) for each charge state is the average
of the Gs

k(τ, g) values of all events m in the simulation,

Gk,Q(τ, g) =
∑m

s=1 Gs
k(τ, g)

m
. (10)

The final Gk(τ, g) values are calculated as weighted averages
over all charge states, i.e.,

Gk(τ, g) =
Q=Qmax∑
Q=Qmin

wQGk,Q(τ, g), with
Q=Qmax∑
Q=Qmin

wQ = 1.

III. TESTS AND RESULTS

A. Tests of the simulation procedure

The RIV experiment for 122Te [6] is chosen for testing
the simulation procedure. Compared to other Te isotopes,
the previous measurements for 122Te gave consistent g-factor
values for the 2+

1 state. The Gk values for the 2+
1 state of

122Te are closer to the corresponding hard-core values than
those of the other Te isotopes; this is due to the longer 122Te
nuclear lifetime. The experimental details and measured Gk

coefficients for four Te isotopes (122,126,130,132Te) are listed in
Table I. The β values reported in the table have been used
to calculate the charge-state distributions for the RIV nuclei
using CHARGE [16]. These distributions are listed in Table II.
Since the β values for these systems vary only between 0.060
and 0.061 the charge distributions are very similar and peak
near Q = 31. The Gk,Q values [cf. Eq. (10)] are calculated,
as a function of the g factor, as averages over a large number
of events. Typically m = 50000 events per charge state are
sufficient. The inset of Fig. 2 shows a sample charge-state
distribution calculated with β = 0.06 for the 122Te ions (Table
II). The main part of Fig. 2 shows the G2(g) and G4(g)
functions for a number of the most probable charge states
and for the average of all charge states for the 122Te ions.
The data points, determined by the g-factor and the Gk values
from Ref. [8], are also shown in the figure. The effect different
charge-state distributions have on the RIV g factors will be
discussed in Sec. III C.

At this point, a test of the choice of electronic configurations
used in the simulation is in order. Here the crucial input
parameter is nE , used in step (2) of the simulation procedure.
Calculations have been performed for configurations with
nE = 1, 2, and 3 in the valence shell. The calculations are
compared to the data of Ref. [8]. The comparison is shown
in Fig. 3, using, like in the previous figure, a Gk versus
g-factor representation for both the simulation curves and the
experimental data.

TABLE II. Charge-state distributions (in percent) for ions of 122,126,130,132Te used in the simulations aimed at determining g factors. The β

value used in each case is listed in Table I.

Q

Isotope 25+ 26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+

122Te 0.21 0.82 2.55 6.24 11.91 17.68 20.33 18.03 12.28 6.39 2.53 0.76
126Te 0.16 0.66 2.13 5.44 10.84 16.82 20.23 18.78 13.39 7.29 3.02 0.95
130Te 0.13 0.53 1.80 4.76 9.86 15.94 19.99 19.36 14.40 8.18 3.53 1.15
132Te 0.23 0.89 2.74 6.58 12.35 18.00 20.33 17.70 11.84 6.05 2.35 0.69
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FIG. 2. (Color online) The Gk vs g-factor curves for the 2+
1 state

of 122Te, averaged over all charge states (thick black lines), and
the contributions from individual charge states (thin dashed lines).
The data points are from Ref. [8]. The inset shows the charge-state
distribution calculated for an ion velocity β = 0.06 (see text).

The Gk(g) curves for nE = 2 (black) are in agreement
with the data points, while the nE = 1 and 3 curves are
substantially below these points. For the Te isotopes (β =
0.06), the observation can be explained as follows, For
the nE = 1 case, the simulation includes a large fraction
of the electronic states and correspondingly large hyperfine
interaction, and the calculated Gk coefficients are smaller
than they should be. For the nE = 2 case, the simulation
includes now more electronic states than before and due to
the transitions between these states the contributions from all
electronic states are properly evaluated. For the nE = 3 case,
the simulation again includes a large fraction of electronic
states with a larger hyperfine interaction, and the calculated
Gk coefficients become smaller again. These remarks come
from a close examination of the distributions of the hyperfine
interactions for different nE values. Further investigations
are needed to identify the physics that determines the choice
of electronic configurations. Presumably, this choice varies
among different regions of the periodic table. For the remaining
discussion, only configurations with nE = 2 will be considered
when extracting g factors for Te isotopes.

B. Simulations for previously measured g factors
for 122,126,130,132Te

Since the hyperfine interaction is essentially independent of
the isotope mass, the same electronic configurations (nE = 2)
are used in simulations for the four Te isotopes. The Gk curves

0.0 0.2 0.4 0.6 0.8 1.0
g factor

0.0

0.2

0.4

0.6

0.8

1.0

G
k

G2 1e
G4 1e
G2 2e
G4 2e
G2 3e
G4 3e
(G2, g)
(G4, g)

122Te,  2+

FIG. 3. (Color online) Comparisons of RIV data for 122Te [8]
with Gk vs g-factor curves simulated with the number of electron
excitations, nE = 1, 2, and 3.

for the 2+
1 states of the various Te isotopes are calculated by

changing only the value of τ (cf. Table I). Columns two to nine
of Table III list the previously reported g factors; the remaining
column gives the present results.

The simulated Gk versus g-factor curves are plotted in
Fig. 4. These are compared with all the g factors from previous
measurements [8,18–24]. For 122Te, the present simulations
agree with all previously reported values within the error bars.
For 126Te, however, the previous results are either too small or
too large. For 130Te, the simulations agree with the previous
reported g factors of Refs. [21–23]. For 132Te, the simulations
agree with the g factors of Refs. [19,20]. By using the G2

and G4 values from Ref. [8], the present simulations allow the
extraction of new g factors for the 2+

1 states in 122,126,130,132Te.
The final results were obtained as weighted averages of the g
factors from G2 and G4 (cf. Table III).

C. Comparisons of various charge-state calculations

The available prescriptions for calculating the charge-state
distributions vary somewhat. For comparisons with the charge-
state distributions used in this paper, two other types of calcu-
lations have been considered, using the Schiwietz and Grande
formula [25] (denoted as SG calculations) and the Nikolaev
and Dmitriev formula [26] (denoted as ND calculations).
These are used hereafter to get charge-state distributions for
122,126,130,132Te, respectively. The ND calculations result in
almost the same distributions as those in Sec. III A, while the
distributions obtained with SG calculations are one unit lower.
In Fig. 5 the Gk curves calculated for 122Te with β = 0.06 are
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TABLE III. The g factors for the first 2+ states of Te isotopes from previous work and the present analysis. One of the methods used in the
measurements is the integral perturbed angular correlation (IPAC), the other two methods used have been introduced in the text.

Isotope g [21] g [22] g [24] g [23] g [23] g [19] g [18] g [20] g (this work)a

122Te 0.33(3) 0.28(5) 0.34(2) 0.33(2) 0.36(2) 0.361(46) 0.331+0.024,0.024
−0.026,0.026

126Te 0.19(3) 0.34(3) 0.31(4) 0.338(17) 0.251+0.015,0.023
−0.012,0.019

130Te 0.29(6) 0.33(8) 0.29(5) 0.351(18) 0.280+0.015,0.028
−0.011,0.017

132Te 0.42(6)b 0.46(5)b 0.28(15) 0.359+0.024,0.045
−0.024,0.041

Method TF TF TF TF IPAC RIV TF TF RIV

aThe first entries for the uncertainties include only the errors from the Gk values, while the second ones incorporate also those from lifetimes.
bCorrected values due to change of the nuclear lifetime [14].

shown. The different charge-state distributions are plotted in
the inset. For the four Te isotopes, simulations with SG calcu-
lations will result in about 5% differences in g factors, while
those with ND calculations result in less than 1% differences.
Since both the formula for ND calculations and the arithmetic
in CHARGE are based on using carbon targets, the applicability
of the charge-state calculation in Sec. III A seems justified.

D. Use of the g factor as a function of τ

With the present method a Gk versus g-factor curve is
calculated for a fixed value τ . At some future time the
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FIG. 4. (Color online) Calculated curves of G2 (solid curves) and
G4 (dashed curves) as functions of the g factor for 122,126,130,132Te.
They are compared with previously reported g factors from different
measurements, mainly from the transient field method. The previ-
ously measured g factors are labeled as “Sh81 TF” [21], “Gr85
TF” [22], “Th85 TF” [24], “Du88 IPAC” [23], “Du88 TF” [23], “St07
TF” [18], “St07 RIV” [8], “St05 RIV” [19], and “Be08 TF” [20].
In panels (b), (c), and (d), the family of curves for a certain Gk

represents the average value (black) and the uncertainties in τ (red).
The uncertainties of the Gk curves in panel (a) are very small, because
of the small uncertainty of τ , and thus are not shown in the figure.

nuclear lifetime may be revised, i.e., may have a different
value or different uncertainties. Hence it would be helpful
to have curves calculated for a set of τ values, which allow
recalculation of the g factor. Such curves are provided below.
The static model does not have this problem, since Gk values
are calculated as functions of the quantity gτ . Nevertheless,
when the nuclear-lifetime information changes the results of
the static model are subject to reevaluation as well.

For a set of Gk(g) values from a given experiment the
g factors are calculated for a series of τ values. An example
for the 132Te case is shown in Fig. 6, where the simulations for
G2 and G4 are represented by circles and squares, respectively.
The simulated values were fitted to the empirical function

g(τ ) = akτ
bk , for k = 2, 4. (11)

The values are a2 = 0.7328, b2 = −0.8994 and a4 = 0.7145,
b4 = −0.9068 for the G2 and G4 simulations, respectively.
This simple function, which is nearly a hyperbola with
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FIG. 5. (Color online) Comparisons of Gk vs g-factor curves
obtained for 122Te with different charge-state distributions calculated
with CHARGE (this work) and the SG and ND formulas. The sets of
horizontal solid and dashed lines indicate the reported G2 and G4

values (including errors), respectively [8].
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FIG. 6. (Color online) Interpolated g factor for 132Te for different
values of τ around the present value of 2.16 ps, which is indicated by
the vertical dashed line.

bk = −1, fits the simulations quite well. Note that the g(τ )
curves in Fig. 6 from the G2 and G4 measurements are different
because they cross the simulated Gk(g) lines at different g
values [see Fig. 4(d)]. If the Gk values are remeasured under the
same reaction conditions and are found to deviate somewhat
from those used in the simulations for the g(τ ) functions,
then the Gk(g) curves of Fig. 4(d) can be used to obtain new
g-factor values. If the lifetime is found to be different, then
the g factor can be corrected incrementally via expression (11)
with the ak and bk values given above. If a different reaction
is used to obtain new Gk values, then new simulations have
to be made to provide the appropriate Gk(g) curves. This is
because different β values and/or recoil media, such as the
target material, need to be considered, and these give different
charge-state distributions.

IV. COMPARISON WITH THEORETICAL MODELS

In this section, the g factors obtained from the present
analysis are compared with systematics for g factors of the
same states in the neighboring Te isotopes and with predictions
from various theoretical models. The measured 2+

1 g factors
for a series of Te isotopes are shown in Fig. 7, together with
the g factors for the respective Xe isotones. The low-energy
structure of the Te and Xe isotopes under discussion can be
characterized as vibrational like, as indicated by level-energy
ratios E(4+

1 )/E(2+
1 ) ∼ 2. However, their 2+

1 g factors indicate
a somewhat different trend as a function of N , as suggested by
linear fits to the data in Fig. 7. The trend for the Te isotopes is
consistent with a sort of Z/A behavior; i.e., it is down-sloping
with N . In contrast, the Xe isotopes show an up-sloping trend.

The additional line (dashed-dotted) in Fig. 7(a) represents
such Z/A behavior and has been constructed based on the
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 Stone, compilation
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Neutron Number, N

(b)
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FIG. 7. The g factors for the 2+
1 states in a series of (a) Te and

(b) Xe isotopes. The values obtained from the present RIV analysis
and values determined as weighted averages from the compilation of
Ref. [19] are distinguished by filled and open symbols, respectively.
The dashed lines represent linear fits to the data. The dash-dotted line
in panel (a) is a “scaled” Z/A function (see text). The uncertainty of
the point at N = 80 in panel (b) is smaller than the symbol.

following considerations. Nilsson and Prior [27] showed
that the lowering of the g factor from the hydrodynamical,
collective Z/A value, seen in several mass regions, is due to
a difference in the pairing forces for protons and neutrons.
Greiner introduced a transparent procedure for scaling the
Z/A value accordingly [28]. We have used the expression
in Ref. [28] applicable for vibrational-like nuclei:

g = Z

A

[
1 − 4

3

N

A

(√
Gπ

Gν

− 1

)]
. (12)

Here, the pairing-force parameters with the values Gπ =
25 MeV/A and Gν = 18 MeV/A [27] are used. The resulting
function, shown as a dashed-dotted line, is sufficiently close
to the data, given that its slope is the important feature. A
somewhat lower lying function for g would be obtained with
the set of parameters Gπ = 30 MeV/A, Gν = 20 MeV/A
[29], but the principal observation of a Z/A behavior remains
unchanged.

The trend of the 2+
1 g factors, as a function of N , for the

Xe isotopes has been discussed by Otsuka [30], and later by
Jakob et al. [31], in the framework of the IBM-2 approach
of the interacting boson model. For the Xe isotopes under
discussion, this approach leads to a parabolic dependence from
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TABLE IV. Calculated g factors for the first 2+ states of Te isotopes compared to experimental values obtained from the present analysis.

Isotope BCSa SMIIb QRPAc CD-Bonnd CD-Bonne NPSMf Experimentg

Vlowk Eff. Free gs,eff gs,free (this analysis)

122Te 0.32 0.331+0.024
−0.026

126Te 0.26 0.251+0.023
−0.019

130Te 0.31 0.445 0.341 0.180 0.241 0.188 0.280+0.028
−0.017

132Te 0.40 0.448 0.491 0.35 0.480 0.288 0.337 0.283 0.359+0.045
−0.041

aReference [32].
bReference [31].
cReference [33].
dReference [36].
eReference [34].
fReference [35].
gThe uncertainties include the errors from the Gk values and the lifetimes.

which the rising branch gives an up-sloping g with increasing
N . Even though the present discussion uses the Xe isotopes
only to contrast the behavior of the Te isotopes, it is instructive
to elaborate on the IBM-2 approach for the g factors [30],

g = Nπ

Nπ + Nν

gB
π + Nν

Nπ + Nν

gB
ν , (13)

where the number of proton and neutron bosons, Nπ and
Nν , respectively, are counted from the nearest major shell
closure. The g factors of the proton and neutron bosons to first
approximation are gB

π = 1 and gB
ν = 0, respectively. They are

subject to adjustments that lead then to somewhat smaller
values for both bosons. For example, for the Xe isotopes with
N � 72 the original gB

π value is kept, but gB
ν = −0.1 [30]. In

the Xe region, the term with gB
π is the leading term. Hence, it

seems logical that the Xe isotopes, rather than the Te isotopes,
show an IBM-2-like behavior, as the former have twice the
number of proton bosons (Nπ = 2 versus Nπ = 1).

The 2+
1 g factors for 122,126,130,132Te have also been the

subject of theoretical calculations that are not based on
an algebraic model. These calculations are summarized in
chronological order in Table IV, and they are reviewed
hereafter. Lombard carried out calculations for low-lying
states of even-even nuclei with 90 � A � 150 using the
pairing-plus-quadrupole model with BCS wave functions [32].
The results for the relevant Te isotopes are listed in the
column labeled BCS. The already cited paper by Jakob et al.
also contains shell-model calculations for 130,132Te [31].
These authors use surface-delta interactions to describe the
two-body residual interactions. Their results are listed in
the column labeled SMII. Terasaki et al. [33] used a separable
quadrupole-plus-pairing Hamiltonian and the quasiparticle
random phase approximation to calculate g factors for the
lowest 2+ states near 132Sn. The result for 132Te is shown
in the column labeled QRPA. Brown et al. performed shell
model calculations of g factors for Sn to Xe nuclei, including
130,132Te [34]. The authors used a residual interaction based
on the CD-Bonn nucleon-nucleon interaction. They determine
the single-particle spin and orbital effective g factors by
including both core-polarization and meson-exchange current
effects. Two different g factors are given, one obtained with

an effective and one with a free-nucleon magnetic-moment
operator. These are listed in a group of two columns, labeled
CD-Bonn Eff and CD-Bonn Free. Jia et al. carried out calcu-
lations for low-energy spectra of even-even nuclei, including
130,132Te, with the so-called nucleon-pair approximation of the
shell model [35]. They performed two sets of calculations,
one with the free-nucleon spin g factor, gs , and the other
one with a quenched gs value assuming a reduction factor
of 0.7. Their results are listed in a group of two columns,
labeled NPSM gs,eff and NPSM gs,free, which correspond to
the “quenched” and free-nucleon cases, respectively. A recent
calculation of the 2+

1 g factor for 132Te using the Monte Carlo
shell-model approach is communicated in the literature [20].
In this calculation, gs is assumed to be quenched by 0.7, and a
value g = 0.29 is obtained.

The calculations of Ref. [32] agree overall with the present
experimental results. The overestimation of the 2+

1 g factors for
130,132Te in Ref. [31] has been attributed to the strength of the
proton-neutron interactions, which is adjustable. Neither the
QRPA calculations nor the CD-Bonn-Free and the CD-Bonn-
Eff calculations agree with the present results. However, the
approach of Ref. [36] using the CD-Bonn potential through the
so-called low-momentum Vlowk approach labeled as CD-Bonn
Vlowk agrees with present result for 132Te. The comparison
also shows a preference for the NPSM gs,eff calculations of
Ref. [35].

V. SUMMARY AND CONCLUSIONS

In summary, the present method of calculating attenuation
coefficients Gk of γ -ray angular distributions or particle-γ
angular correlations is a time-dependent simulation where the
nuclear and atomic lifetimes are compared on an event-by-
event basis and many atomic states are sampled by random-
number choices for each event (Monte Carlo simulations).
A crucial input to the simulations is obtained from atomic-
structure calculations with the code GRASP2K. The simulation
results are compared with previously reported g factors
measured with the RIV, TF, and IPAC techniques. Agreement
is found with most of the previously reported g factors of the
2+

1 states of 122,130,132Te. The simulated result for the 2+
1 state

of 126Te does not agree with any of the reported values. On
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the other hand, this particular data point lies systematically
lower in several data sets, including the present one and the
one of Ref. [21]. There is a similar trend between the g factors
for 122,126,130,132Te in the present analysis and the values from
Ref. [18], but the differences for 126,130,132Te are outside the
quoted uncertainties. The g factors obtained from the present
simulations are also compared with theoretical models, and
some level of agreement is found. However, there is room for
improvement in the theoretical calculations.

Unlike the previously used methods to analyze the RIV
measurements, the present simulation method is essentially
parameter free. Once the electronic configurations are chosen,
they do not need to be changed when the nuclear lifetime varies
(or a different nuclear-spin state is considered).

The Te isotopes under discussion have been produced
via inverse-kinematic Coulomb excitation at recoil velocities
of β = 0.06. Future experiments with radioactive-ion beams
similar to the RIV 132Te experiment are conceivable. If

performed near the Coulomb barrier, β values in the range
0.05–0.07 can be obtained, suggesting the use of the present
type of analysis in order to extract RIV g factors.
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