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Nuclear asymmetry energy and isovector stiffness within the effective surface approximation
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The isoscalar and isovector particle densities in the effective surface approximation to the average binding
energy are used to derive analytical expressions of the surface symmetry energy, the neutron skin thickness, and
the isovector stiffness of sharp-edged proton-neutron asymmetric nuclei. For most Skyrme forces the isovector
coefficients of the surface energy and of the stiffness are significantly different from the empirical values derived
in the liquid drop model. Using the analytical isovector surface energy constants in the framework of the
hydrodynamical and the Fermi-liquid droplet models, the mean energies and the sum rules of the isovector giant
dipole resonances are found to be in fair agreement with the experimental data.
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I. INTRODUCTION

A simple and accurate solution of particle-density dis-
tributions was obtained within the nuclear effective surface
(ES) approximation in Refs. [1–3]. It exploits the saturation
properties of nuclear matter in the narrow diffuse-edge region
in finite heavy nuclei. The ES is defined as the location
of points with a maximum density gradient. An orthogonal
coordinate system related locally to the ES is specified by
the distance ξ of a given point from this surface and tangent
coordinates η parallel to the ES (see Fig. 1). Using nuclear
energy density functional theory, the variational condition
derived from minimizing the nuclear energy at some fixed
integrals of motion is simplified in the ξ, η coordinates. In
particular, in the extended Thomas-Fermi (ETF) approach [4],
it can be done for any fixed deformation using the expansion in
a small parameter a/R ∼ A−1/3 � 1 for heavy enough nuclei,
where a is of the order of the diffuse-edge thickness of the
nucleus, R is the mean curvature radius of the ES, and A is the
number of nucleons. The accuracy of the ES approximation
in the ETF approach without spin-orbit (SO) and asymmetry
terms was checked [3] by comparing results with those of the
Hartree-Fock (HF) and ETF theories for some Skyrme forces.
The ES approach [3] was also extended by taking into account
the SO and asymmetry effects [5].

In the present work, solutions for the isoscalar and isovector
particle densities and energies in the ES approximation of the
ETF approach are applied to analytical calculations of the
surface symmetry energy, the neutron skin, and the isovector
stiffness coefficient in the leading order of the parameter
a/R (see also Ref. [6]). Our results are compared with older
investigations [7–10] in the liquid droplet model (LDM) and
with more recent works [11–19]. We suggest also studying the
splitting of the isovector giant dipole resonances into main and
satellite (pygmy) peaks [18,19] as a function of the analytical
isovector surface energy constant of the ES approach within the
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Fermi-liquid droplet (FLD) model [20–22]. The analytical ex-
pressions for the surface symmetry energy constants are tested
by the mean energies of the isovector giant dipole resonances
(IVGDR) within the hydrodynamical (HD) and FLD models.

The manuscript is organized as follows: In Sec. II we give
an outlook of the basic points of the ES approximation within
the density functional theory and the main results for the
isoscalar and isovector particle densities. Section III is devoted
to analytical derivations of the symmetry energy in terms of
the surface energy coefficient, the neutron skin thickness, and
the isovector stiffness. The discussions of the results are given
in Sec. IV and summarized in Sec. V. Some details of our
calculations are presented in Appendices A–C.

II. ENERGY AND PARTICLE DENSITIES

We start with the nuclear energy as a functional of the
isoscalar and the isovector densities ρ± = ρn ± ρp:

E =
∫

dr E (ρ+, ρ−) , (1)

in the local density approach [4,23–27] with the energy density
E (ρ+, ρ−),

E (ρ+, ρ−)

≈ −bV ρ+ + JI 2ρ+ + ρ+ [ε+(ρ+) − ε−(ρ+, ρ−)]

+ (C+ + D+ρ+) (∇ρ+)2 + (C− + D−ρ+) (∇ρ−)2 , (2)

where I = (N − Z)/A is the asymmetry parameter, N =∫
dr ρn(r) and Z = ∫

dr ρp(r) are the neutron and proton
numbers, and A = N + Z. As usual, the energy density E
in Eq. (2) contains the volume part given by the first two
terms of Eq. (2) and the surface part including the density
gradients [1,3]. The particle separation energy bV ≈ 16 MeV
and the symmetry energy constant of the nuclear matter
J ≈ 30 MeV specify the volume terms in Eq. (2). Equation (2)
can be applied in a semiclassical approximation for realistic
Skyrme forces [23–27], in particular by neglecting higher h̄
corrections in the ETF kinetic energy [2–4] and Coulomb
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FIG. 1. The ES and local ξ, η coordinates. The ES in the
cylindrical y, z coordinates with symmetry axis z and diffuseness
parameter a are shown schematically by the thick solid and dashed
curves (after Ref. [5]).

terms. Up to small Coulomb exchange terms they all can be
easily taken into account (see Refs. [1,3,5]). The constants
C± and D± are defined by the parameters of the Skyrme
forces [23,24]. The isoscalar part of the surface energy density,
which does not depend explicitly on the density gradient terms,
is determined by the function ε+(ρ+) [3,5], which satisfies
the saturation condition ε+(ρ) = 0, (dε+(ρ+)/dρ+)ρ+=ρ = 0,
where ρ = 3/4πr3

0 ≈ 0.16 fm−3 is the density of the infinite
nuclear matter and r0 = R/A1/3 is the radius constant. Here
we use a quadratic approximation, ε+ = K(ρ+ − ρ)2/(18ρ2),
where K is the incompressibility modulus of symmetric
nuclear matter, mainly K ≈ 220–260 MeV (see Table I).
The isovector component can be simply evaluated as ε− =
J (I 2 − ρ2

−/ρ2
+) [5]. The isoscalar SO gradient terms in Eq. (2)

are defined with a constant: D+ = −9mW 2
0 /16h̄2, where

W0 ≈ 100–130 MeV fm5 and m is the nucleon mass [4,23–26].
Minimizing the energy E under the constraints of the

fixed particle number A = ∫
dr ρ+(r) and neutron excess

N − Z = ∫
dr ρ−(r) (also others, such as deformation [1,3]),

one arrives at the Lagrange equations with the corresponding
multipliers, λ+ and λ− being the isoscalar and isovector

chemical potentials, respectively (see Appendices A and B).
Our approach can be applied for any deformation parameter
of the nuclear surface if its diffuseness with respect to the
curvature radius a/R is small. The analytical solutions will
be obtained approximately up to the order of A2/3 in the
binding energy. To satisfy the condition of particle number
conservation with the required accuracy, we account for
relatively small surface corrections (∝a/R ∼ A−1/3 at the first
order) to the leading terms in the Lagrange multipliers [2,3,5]
(Appendices B and C).

For the isoscalar particle density, w = ρ+/ρ, one has up
to leading terms in the parameter a/R the usual first-order
differential Lagrange equation with the solution [3,5]

x = −
∫ w

wr

dy

√
1 + βy

yε(y)
, x = ξ

a

(
a =

√
C+ρ K

30 b2
V

)
(3)

below the turning point x(w = 0); w = 0 for x � x(w = 0)
and β = D+ρ/C+ is the dimensionless SO parameter. For
convenience we introduced also the dimensionless parameter
ε = 18ε+/K . For wr = w(x = 0) one has the boundary
condition d2w(x)/dx2 = 0 at the ES (x = 0):

ε(wr ) + wr (1 + βwr ) [dε(w)/dw]w=wr
= 0. (4)

In Eq. (3), a ≈ 0.5–0.6 fm is the diffuseness parameter as
shown in Table I (ξ = r − R for spherical nuclei in spherical
coordinates). The diffuseness of the edge ad is given by

ad =
√

5(ξ 2 − ξ
2
)/3 = a

√
5(x2 − x2)/3,

(5)

xn =
∫ ∞

−∞
xndx(dw/dx),

where bars mean an averaging with the surface density
distribution dw/dx [3]. For all Skyrme forces (Table I) the
parameter a introduced in Eq. (3) measures the diffuseness
of the nuclear edge as the mean-squared fluctuation of ξ due
to the relation ad ≈ a

√
5/3 (see also Refs. [3,15]). As shown

in Ref. [5], the influence of the semiclassical h̄ corrections
(related to the ETF kinetic energy) to w(x) is negligibly
small everywhere, besides the quantum tail outside the nucleus

TABLE I. Basic parameters of the Skyrme forces from Refs. [23,24] and the isoscalar surface energy constants b
(+)
S of Eq. (12); the critical

parameters a [Eq. (3)] and ad [Eq. (5)] for the nuclear diffuseness edge, the isoscalar and isovector constants C± of the energy density [Eq. (2)],
csym [Eq. (6)], and the spin-orbit constant β [see below Eq. (3)]; SLyb denotes SLy230b of Ref. [23].

SkM∗ SkM SIII SGII RATP SkP T6 SkI3 SLyb SLy4 SLy5 SLy6 SLy7

ρ (fm−3) 0.16 0.16 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.16
bV (MeV) 15.8 15.8 15.9 15.6 16.0 15.9 16.0 16.0 16.0 16.0 16.0 16.0 16.0
K (MeV) 217 217 355 215 240 201 236 258 230 230 230 230 230
J (MeV) 30.1 31.0 28.2 26.9 29.3 30.0 30.0 34.8 32.0 32.0 32.1 31.9 31.9
C+ (MeV fm5) 57.6 52.9 49.4 43.9 60.2 60.1 55.1 51.8 59.5 59.5 59.3 54.0 52.7
C− (MeV fm5) −4.79 −4.69 −5.59 −0.94 13.9 −20.2 0 12.6 −22.3 −22.3 −22.8 −15.6 −13.4
a (fm) 0.52 0.50 0.59 0.45 0.55 0.50 0.52 0.53 0.53 0.53 0.53 0.52 0.50
ad (fm) 0.63 0.58 0.73 0.58 0.71 0.71 0.70 0.63 0.68 0.68 0.68 0.61 0.61
csym 3.26 3.21 3.42 6.02 2.00 1.52 ∞ 2.20 1.59 1.59 1.57 1.80 1.93
β −0.64 −0.69 −0.57 −0.54 −0.52 −0.37 −0.45 −0.65 −0.55 −0.55 −0.58 −0.59 −0.65
b+

S (MeV) [23,24] 16.0 16.0 17.0 14.8 17.9 17.9 17.9 16.0 16.7 18.1 18.0 17.4 17.0
b+

S (MeV) 21.2 19.9 14.5 18.7 21.7 24.9 21.3 18.3 21.7 21.7 21.5 21.6 19.6
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FIG. 2. Isovector w− [Eq. (7)] particle density vs x = ξ/a with
and without (β = 0) SO terms for the Skyrme force SLy7 as a typical
example, like in Ref. [5]; the isoscalar w [see Eqs. (3) and (A3)] is
also shown by solid lines.

(x � 1). Therefore, all these corrections were neglected in
Eq. (2). With a good convergence of the expansion of the ε(y)
in powers of 1 − y up to the quadratic term [3,5], ε = (1 − y)2,
one finds the analytical solutions of Eq. (3) in terms of alge-
braic, trigonometric, and logarithmic functions [see Eq. (A3)].
For β = 0 (i.e., without SO terms), it simplifies to the solution
w(x) = tanh2 [(x − x0)/2] for x � x0 = 2 arctanh(1/

√
3) and

zero for x outside the nucleus (x > x0).
For the isovector density, w−(x) = ρ−/(ρI ), after simple

transformations of the isovector Lagrange equation up to the
leading term in a/R in the ES approximation one similarly
finds the equation and boundary condition [see Eq. (A2)].
The analytical solution for w− = w cos[ψ(w)/

√
1 + β] can

be obtained through the expansion (A5) of ψ in powers of

w̃(w) = (1 − w)/csym with csym = a

√
J

ρ |C−| . (6)

Expanding up to the second order in w̃ one finds (Appendix A)

w− = w

(
1 − ψ2(w)

2 (1 + β)

)
, ψ(w) = w̃(w) [1 + c̃w̃(w)] ,

c̃ = βcsym/2 − 1

1 + β
. (7)

In Fig. 2 the SO dependence of the function w−(x) is compared
with that of the density w(x) for the SLy7 force as a typical
example [5]. It might seem from a brief look at Fig. 3 that the
isovector w−(x) [and therefore, the isoscalar w(x)] densities
depend weakly on the most of the Skyrme forces [23,24].
However, as shown in a larger (logarithmic) scale in Fig. 4,
one observes notable differences in the isovector densities
w− derived from different Skyrme forces within the edge
diffuseness. In particular, as shown below, this is important
for the calculations of the neutron skins of nuclei.

We emphasize that the dimensionless densities, w(x)
[Eqs. (3) and (A3) ] and w−(x) [Eq. (7)], shown in Figs. 2–4
were obtained in the leading ES approximation (a/R � 1)
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FIG. 3. Isovector particle densities w−(x) (7) as functions of x

within the quadratic approximation to ε(w) for several Skyrme forces
[23,24]; see also Ref. [5].

as functions of the specific combinations of the Skyrme force
parameters such as β and csym of Eq. (6). Therefore, they are the
universal distributions independent of the specific properties
of the nucleus such as the neutron and proton numbers, and the
deformation and curvature of the nuclear ES; see also Refs.
[1,3,5]. These distributions yield approximately the spacial
coordinate dependence of local densities in the direction that
is normal to the ES with the correct asymptotical behavior
outside of the ES layer for any ES deformation satisfying the
condition a/R � 1 (in particular, for the semi-infinite nuclear
matter); see further discussions below.

III. ISOVECTOR ENERGY AND STIFFNESS

Within the improved ES approximation where also higher
order corrections in the small parameter a/R are taken into
account, we derive equations for the nuclear surface itself (see
Appendix B and Refs. [2,3,5]). For more exact isoscalar and
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FIG. 4. The same as in Fig. 3 for the critical Skyrme interactions
but within a smaller edge diffuseness region in the logarithmic scale.
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isovector particle densities we account for the main terms in
the next order of the parameter a/R in the Lagrange equations
[cf. Eq. (B1) as compared with Eq. (A1)]. Multiplying these
equations by ∂ρ−/∂ξ and integrating them over the ES in
the normal-to-surface direction ξ and using the solutions for
w±(x) up to the leading orders [see Eqs. (3) and (7)], one
arrives at the ES equations in the form of the macroscopic
boundary conditions (B2) [1–3,5,22,28–30]. They ensure
equilibrium through the equivalence of the volume and surface
(capillary) pressure (isoscalar or isovector) variations. As
shown in Appendix B, the latter ones are proportional to the
corresponding surface tension coefficients:

σ± = b
(±)
S /(4πr2

0 ),
(8)

b
(±)
S ≈ 8πr2

0C±
∫ ∞

−∞
dξ

(
1 + D±

C±
ρ+

) (
∂ρ±
∂ξ

)2

.

The nuclear energy E [Eq. (1)] in this improved ES
approximation (Appendix C) is split into volume and surface
(both with the symmetry) terms,

E ≈ −bV A + J (N − Z)2/A + ES. (9)

For the surface energy ES one obtains

ES = E
(+)
S + E

(−)
S (10)

with the following isoscalar ( + ) and isovector (−) surface
components:

E
(±)
S = σ±S = b

(±)
S S/

(
4πr2

0

)
, (11)

where S is the surface area of the ES. The energies E
(±)
S in

Eq. (11) are determined by the isoscalar b
(+)
S and isovector

b
(−)
S surface energy constants of Eq. (8). These constants are

proportional to the corresponding surface tension coefficients
σ± in Eq. (8) through the solutions (3) and (7) for ρ±(ξ )
which can be taken into account in leading order of a/R
(Appendix C). These coefficients σ± are the same as those
found in the expressions for the capillary pressures of the
boundary conditions (B2).

For the energy surface coefficients b
(±)
S one obtains

b
(+)
S = 6C+ρJ+

r0a
, J+ =

∫ 1

0
dw

√
w(1 + βw)ε(w), (12)

b
(−)
S = kSI

2, kS = 6ρ C− J−/(r0a), (13)

J− = − 1

1 + β

∫ 1

0
(1 − w)2 dw

√
w(1 + βw)

ε(w)
(1 + c̃w̃)2 .

(14)

For w̃ and c̃, see Eqs. (6) and (7), respectively. Simple
expressions for the constants b

(±)
S in Eqs. (12) and (13) can

be easily derived in terms of algebraic and trigonometric
functions by calculating explicitly the integrals over w for
the quadratic form of ε(w) [Eqs. (C3) and (C4)]. Note that in
these derivations we neglected curvature terms and, being of
the same order, shell corrections. The isovector energy terms
were obtained within the ES approximation with high accuracy
up to the product of two small quantities, I 2 and (a/R)2.

According to the theory [7–9], one may define the isovector
stiffness Q with respect to the difference Rn − Rp between the
neutron and proton radii as a collective variable,

E(−)
s = −ρr0

3

∮
dS Qτ 2 ≈ −Qτ 2S

4πr2
0

, τ = Rn − Rp

r0
,

(15)

where τ is the neutron skin. Comparing this expression with
Eq. (11) for the isovector surface energy written through the
isovector surface energy constant b

(−)
S [Eq. (13)], one obtains

Q = −b
(−)
S /τ 2 = −kSI

2/τ 2. (16)

Defining the neutron and proton radii Rn,p as the positions
of the maxima of the neutron and proton density gradients,
respectively,(

∂2ρn,p

∂r2

)
r=Rn,p

= 0,

(
∂2ρ+
∂r2

)
r=R

= 0, (17)

we use the expansion in small values of δRn,p = Rn,p − R
near the ES. Thus, in the linear approximation in δRn,p and I
one obtains

τ = −2
aI

r0

∂2w−
∂x2

∣∣∣∣
x=0

(
∂3w

∂x3

∣∣∣∣
x=0

)−1

= 8aI

r0c2
sym

g(wr ), (18)

where

g(w) = w3/2(1 + βw)5/2

(1 + β)(3w + 1 + 4βw)
{w(1 + 2̃cw̃)2

+ 2w̃(1 + c̃w̃)[̃cw − csym(1 + 2̃cw̃)]}, (19)

and wr is the solution of the boundary equation (4). In the
derivations of Eq. (18), we used the approximation ε(w) =
(1 − w)2 and expressions (3) for w(x) and (7) for w−(x)/w.
The neutron and proton particle-density variations in Eq. (17)
conserve the center of mass in the same linear approximation
in δRn,p and I . Inserting Eqs. (13) and (18) into Eq. (16), one
finally arrives at

Q = −ν
J 2

kS

, ν = k2
SI

2

τ 2J 2
= 9J 2

−
16g2(wr )

, (20)

where J− and g(wr ) are given by Eqs. (4), (14), and (19).
In the derivation of Eq. (20) we used also Eq. (3) for the
diffuseness parameter a and Eq. (6) for csym. Note that Q =
−9J 2/4kS has been predicted in Refs. [7,8] and therefore for
ν = 9/4 the first part of Eq. (20), which relates Q with the
volume symmetry energy J and the isovector surface energy
kS constants, is identical to that used in Refs. [7–10,14,15].
However, in our derivations ν deviates from 9/4 and it is
proportional to the functionJ 2

−/g2(wr ). This function depends
significantly on the SO interaction parameter β but not too
much on the specific Skyrme forces. Indeed, the most sensitive
parameter C− cancels in the expression (20) for ν: kS ∝ C−
and τ ∝ 1/c2

sym ∝ C− [see also Eqs. (13) for kS , (6) for csym

and (18) for τ ]. The constant ν at β = 0 can be easy evaluated,

ν ≈ 108

25

[1 − 8/(7csym)]2

1 − 4/(3csym)
, (21)

044304-4



NUCLEAR ASYMMETRY ENERGY AND ISOVECTOR . . . PHYSICAL REVIEW C 87, 044304 (2013)

neglecting small terms ∝1/c2
sym, csym ≈ 2–6, for the Skyrme

parameters of Refs. [23,24] [csym = ∞ for T6 forces; see
Eqs. (4), (6), (14), and (20) (wr = 1/3) and Table I]. Another
difference in Q [Eq. (20)] from that of Refs. [7–10] is the
expression (13) itself for kS . Thus, the isovector stiffness
coefficient Q introduced originally by Myers and Swiatecki
[7,8] is not a parameter of our approach but was found
analytically in the explicit closed form (20) through the
parameters of the Skyrme forces.

Notice that the universal functions w(x) [Eqs. (3) and (A3)]
and w−(x) [Eq. (7)] of the leading order in the ES approxi-
mation can be used [explicitly analytically in the quadratic
approximation for ε(w)] for the calculations of the surface
energy coefficients b

(±)
S [Eq. (8)] and the neutron skin τ

[Eq. (18)]. As shown in Appendices B and C, only these
particle-density distributions w(x) and w−(x) within the
surface layer are needed through their derivatives [the lower
limit of the integration over ξ in Eq. (8) can be approximately
extended to −∞ because of no contributions from the internal
volume region in the evaluation of the main surface terms of the
pressure and energy]. Therefore, the surface symmetry-energy
coefficient kS in Eqs. (13) and (C4), the neutron skin τ
[Eq. (18)], and the isovector stiffness Q [Eq. (20)] can be
approximated analytically in terms of the functions of the
definite critical combinations of the Skyrme parameters such
as β, csym, a, and the parameters of the infinite nuclear
matter (bV , ρ,K). Thus, they are independent of the specific
properties of the nucleus (for instance, the neutron and proton
numbers), and the curvature and deformation of the nuclear
surface in the considered ES approximation.

IV. DISCUSSION OF THE RESULTS

In Table II and also in Fig. 5 we show the isovector energy
coefficient kS [Eq. (13)], the stiffness parameter Q [Eq. (20)],
and the neutron skin τ [Eq. (18)] obtained within the ES
approximation using the quadratic approximation for ε(w) for
several Skyrme forces [23,24] with parameters presented in
Table I. We also show the quantities kS 0, ν0, Q0, and τ0 where
the SO interaction is neglected (β = 0). One can see a fairly
good agreement for the analytical isoscalar energy constant
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FIG. 5. Isovector energy constant kS of Eq. (13) (solid bars) vs the
coefficient C− (dots) of Eq. (2) normalized both by their values kSkM∗

S

and CSkM∗
− for the Skyrme force SkM∗, respectively; ks,0 (dashes)

in the same units kSkM∗
S is given by Eq. (13) without the spin-orbit

interaction (β = 0).

b
(+)
S (12) with that of Refs. [5] and [23,24] (Table I). The

isovector energy coefficient kS is more sensitive to the choice
of the Skyrme forces than the isoscalar one b

(+)
S (Eq. (12)

and Ref. [5]). The modulus of kS is significantly larger for
most of the Lyon Skyrme forces SLy [23] and SkI3 [24]
than for the other ones. For these forces the stiffnesses Q
are correspondingly smaller. The isovector stiffness Q is even
more sensitive to the constants of the Skyrme force than
the constants kS . They are significantly larger for all forces,
especially for SGII, than the well known empirical values
Q ≈ 14–35 MeV [8–10].

Swiatecki and his collaborators [9] found the stiffness
Q ≈ 14–20 MeV by fitting the nuclear isovector giant dipole-
resonance (IVGDR) energies calculated in the simplest version
of the hydrodynamical model to the experimental data. Later,
they suggested larger values Q ≈ 30–35 MeV accounting for
a more detailed study of other phenomena in Refs. [8,10].
In spite of several misprints in the derivations of the IVGDR
energies in Ref. [9] (in particular, in Eq. (7.7) of Ref. [9] for
the displacement of the center-of-mass conservation, the factor

TABLE II. Isovector energy kS and stiffness Q coefficients are shown for several Skyrme forces [23,24]; ν is the constant of Eq. (20); τ/I is
the neutron skin calculated by Eq. (18); quantities kS,0, ν0, Q0, and τ0 are calculated with β = 0; the intervals of monotonic functions DHD(A)
and DFLD(A) for the HD and FLD models in the last two lines are related to A ≈ 50–200 (the last line is taken from Ref. [6]).

SkM∗ SkM SIII SGII RATP SkP T6 SkI3 SLyb SLy4 SLy5 SLy6 SLy7

kS,0 (MeV) −3.26 −3.84 −2.65 −0.71 5.25 −5.36 0 6.93 −7.51 −7.54 −8.14 −7.45 −6.95
kS (MeV) −0.77 −1.90 −0.52 −0.21 1.42 −1.93 0 4.88 −4.24 −4.38 −6.96 −6.72 −6.32
ν0 3.08 3.06 3.14 3.64 2.38 2.17 4.32 2.53 2.12 2.12 2.12 2.22 3.32
ν 0.34 0.46 1.42 17.9 0.45 1.76 4.30 0.56 0.44 0.44 0.59 0.65 0.67
Q0 (MeV) 7744 9487 6255 16879 −371 3815 ∞ −6314 4771 4794 5178 5350 5703
Q (MeV) 398 234 2168 60998 −270 823 ∞ −140 105 104 87 98 109
τ0/I 0.021 0.020 0.021 0.0065 0.038 0.037 0 0.033 0.040 0.40 0.040 0.037 0.035
τ/I 0.044 0.090 0.015 0.0019 0.072 0.048 0 0.187 0.20 0.21 0.28 0.26 0.24
DHD (MeV) 85 86 85 86 82 82 90 89 87 88 105 100 81 84 81 84 79 83 81 85 81 84
DFLD (MeV) 73 82 71 76 79 104 74 77 77 87 70 69 86 88 101 106 80 90 80 90 76 84 80 91 77 89
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NZ/A2 should be in the numerator and not in the denominator
of the irrotational flow moment of inertia; see Ref. [31]), the
final result for the IVGDR energy constant is almost the same
as for the asymptotically large values of Q, 3JA−1/3/Q � 1
(NZ/A2 ≈ 1/4),

D = h̄ω−A1/3 = D∞/
√

1 + 3JA−1/3/Q,
(22)

D∞ =
√

8h̄2J/
(
mr2

0

)
.

These values for D are in good agreement with the well
known experimental value Dexp ≈ 80 MeV for heavy nuclei
(D ≈ D∞ ≈ 88 MeV) within a precision better than or of
the order of 20% (a little worse for the specific SkI3 Skyrme
forces), as shown in Table II; see also Ref. [20] for a more
proper HD approach and Refs. [32–34] for other semiclassical
nuclear models taking all into account the nuclear surface
motion. As shown in Ref. [6], the averaged IVGDR energies
and the energy weighted sum rules (EWSR), obtained with
the semiclassical FLD approach based on the Landau-Vlasov
equation [22] with macroscopic boundary conditions (see
Appendix B), are also basically insensitive to the isovector
surface energy constant kS , and they are similarly in good
agreement with the experimental data. An investigation of the
splitting of the IVGDR within this approach into the main peak
which exhausts mainly the independent-of-model EWSR and
a satellite (with a much smaller contribution to the EWSR),
focusing on a much more sensitive kS dependence of the
pygmy (IVGDR satellite) resonances (see Refs. [18,19]), will
be published elsewhere.

More precise A dependence of the quantity D [Eq. (22)]
for finite values of Q seems to be beyond the accuracy of
these HD calculations because of several other reasons. More
realistic self-consistent HF calculations accounting for the
Coulomb interaction, surface-curvature, and quantum-shell
effects led to larger Q ≈ 30–80 MeV [4,15]. With larger Q (see
Table II) the fundamental parameter of the LDM expansion
in Ref. [7], (9J/4Q)A−1/3, is really small for A � 40, and
therefore results obtained by using this expansion are more
justified.

The most responsible parameter of the Skyrme HF approach
leading to significant differences in the kS and Q values is
the constant C− in the gradient terms of the energy density
[Eq. (2) and Table I]. Indeed, the key quantity in the expression
for Q, Eq. (20), and the isovector surface energy constant kS

[or b
(−)
S , Eq. (13)], is the constant C− because one mainly

has kS ∝ C− (see Fig. 5), and Q ∝ 1/kS ∝ 1/C−. As seen in
Table I and in Fig. 5 the constant C− is very different for the
different Skyrme forces (even in sign). As shown in Fig. 3
and below Eq. (20), other quantities in Eq. (20) are much
less sensitive to most Skyrme interactions. The situation is
very much in contrast to the isoscalar energy density constant
b

(+)
S ∝ C+ [Eq. (12)]. All Skyrme parameters are fitted to the

well known experimental value b
(+)
S = 17–19 MeV becauseC+

is almost constant (Table I). Contrary to this, there are so far
no clear experiments which would determine kS well enough
because the mean energies of the IVGDR (main peaks) do
not depend very much on kS for the different Skyrme forces
(see last two rows of Table II). Perhaps the low-lying isovector

collective states are more sensitive, but there is no careful
systematic study of their kS dependence at the present time.
Another reason for such different kS and Q values might be
traced back to the difficulties in deducing kS directly from
the HF calculations, due to the curvature and quantum effects,
in contrast to b

(+)
S . We also have to go far away from the

nuclear stability line to subtract uniquely the coefficient kS

in the dependence of b
(−)
S ∝ I 2 = (N − Z)2/A2, according to

Eq. (13). For exotic nuclei one has more problems to relate kS to
the experimental data with a good enough precision. Note that
kS is a more fundamental constant than the isovector stiffness
Q due to the direct relation to the tension coefficient σ− of the
isovector capillary pressure. Therefore, it is simpler to analyze
the experimental data for the IVGDR within the macroscopic
HD or FLD models in terms of the constant kS . The quantity
Q involves also the ES approximation for the description of
the nuclear edge through the neutron skin τ [see Eq. (15)].
The precision of this description depends more on the specific
nuclear models [14–17]. On the other hand, the neutron skin
thickness τ is interesting in many aspects for the investigation
of exotic nuclei, in particular, in nuclear astrophysics.

We emphasize that for specific Skyrme forces there exists
an abnormal behavior of the isovector surface constants kS

and Q. It is related to the fundamental constant C− of the
energy density (2). For the parameter set T6 (C− = 0) one
finds kS = 0. Therefore, according to Eq. (20), the value of
Q diverges (ν is almost independent on C−). Notice that the
isovector gradient terms which are important for the consistent
derivations within the ES approach are also not included (C− =
0) in the symmetry energy density in Refs. [11,13]. Moreover,
for RATP [23] and SkI [24] (also for the specific Skyrme forces
BSk6 and BSk8 of Ref. [12]1), the isovector stiffness Q is even
negative as C− > 0 (kS > 0), in contrast to all other Skyrme
forces.

Table II shows also the coefficients ν of Eq. (20) for the
isovector stiffness Q. They are mostly constant [ν0 ≈ 2–4;
see Eq. (21) and Table II] for all Skyrme forces at β = 0.
However, these constants ν are rather sensitive to the SO
interaction, i.e., to the β dependence of both the function
g(wr ) [Eq. (19)] in expression (18) for the neutron skin τ
and to the constant J− [Eq. (14)] in expression (13) for the
isovector energy coefficient kS . As compared to 9/4 suggested
in Ref. [7], they are significantly smaller in magnitude for the
most of the Skyrme forces (besides those of SGII and T6 with
larger values of ν).

V. CONCLUSIONS

Simple expressions for the isovector parts of the particle
densities and energies in the leading ES approximation were
used for the derivation of analytical expressions of the surface
symmetry energy, the neutron skin thickness, and the isovector

1Notice also that for the BSk forces [12] we found an unexpected
behavior of the particle density w−(x) with a negative minimum
near the ES (a proton instead of neutron skin because of ρn < ρp ,
in contrast to any other forces discussed in Ref. [23] with w− being
always positive).
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stiffness coefficients. As shown in Appendix B we have
to include higher order terms in the parameter a/R. These
terms depend on the well known parameters of the Skyrme
forces. Results for the isovector surface energy constant kS ,
the neutron skin thickness τ , and the stiffness Q depend in a
sensitive way on the choice of the parameters for the Skyrme
functional, especially on the parameter C− in the gradient
terms of the density in the surface symmetry energy density
of Eq. (2). The values of the isovector constants kS , τ , and Q
depend also very much on the SO interaction constant β. The
isovector stiffness constants Q are significantly larger than
those found earlier for all desired Skyrme forces. The mean
IVGDR energies and sum rules calculated in the HD [9,20,31]
and FLD [6,22] models for most of the kS values in Table II
are in a fairly good agreement with the experimental data.
For further perspectives, it would be worthwhile to apply
our results to the calculations of the pygmy resonances in
the IVGDR strength within the FLD model [22] and the
isovector low-lying collective states within the periodic orbit
theory [35–37], which are expected to be more sensitive to
the values of kS . Our approach is helpful for further study
of the effects in the surface symmetry energy because it gives
the analytical universal expressions for the constants kS , τ ,
and Q which are independent of the specific properties of the
nucleus. These constants are directly connected with a few crit-
ical parameters of the Skyrme interaction, without using any
fitting.
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APPENDIX A: SOLUTIONS TO THE ISOVECTOR
LAGRANGE EQUATION

The Lagrange equation for the variations of the isovector
particle density ρ− in the energy density (2) up to the leading
terms in a small parameter a/R is given by Ref. [5]

C−
∂2ρ−
∂ξ 2

+ d

dρ−
[ρ+ε−(ρ+, ρ−)] = 0, (A1)

where ε− is defined just below Eq. (2). We neglected here the
higher order terms proportional to the first derivatives of the
particle density ρ− with respect to ξ and the surface correction
to the isovector chemical potential as in Refs. [2,3] for the
isoscalar case. For the dimensionless isovector density w− =
ρ−/(ρI ), after simple transformations one finds the equation
and the boundary condition in the form

dw−
dw

= csym

√
1 + βw

ε(w)

√
1 − w2−

w2
, w−(1) = 1, (A2)

where β is the SO parameter defined below Eq. (3); see also
Eq. (6) for csym. The above equation determines the isovector
density w− as a function of the isoscalar one w(x) [Eq. (3)].
In the quadratic approximation for ε(w) one explicitly finds

x(w) =
√

1 + β ln

[
(1 − w)(1 + (1 + 2β)wr + 2

√
(1 + β)(1 + βwr )wr )

(1 − wr )(1 + (1 + 2β)w + 2
√

(1 + β)(1 + βw)w)

]
+

√
−β[arcsin(1 + 2βw) − arcsin(1 + 2βwr )], x < x(w = 0) (A3)

and w = 0 for x � x(w = 0); wr is the solution of the bound-
ary condition (4). Substituting w− = w cos ψ into Eq. (A2),
and taking the approximation ε = (1 − w)2, one has the
following first-order differential equation for a new function
ψ(w):

w(1 − w)

csym
sin ψ

dψ

dw
=

√
1 + βw sin ψ − 1 − w

csym
cos ψ,

ψ(1) = 0. (A4)

The boundary condition for this equation is related to that of
Eq. (A2) for w−(w). This equation looks more complicated
because of the trigonometric nonlinear terms. However, it
allows us to obtain simple approximate and rather exact ana-
lytical solutions within standard perturbation theory. Indeed,
according to Eqs. (A2) and (3) where we did not express the
x dependence explicitly, we note that w− ∝ w(x) is a sharply
decreasing function of x within a small diffuseness region of

the order of 1 in dimensionless units (Figs. 2–4). Thus, we may
find the approximate solutions to Eq. (A4) (with its boundary
condition) in terms of a power expansion of a new function
ψ̃(w̃), in terms of a new small argument w̃,

ψ̃(w̃) ≡ ψ(w) =
∞∑

n=0

cn w̃n, (A5)

with unknown coefficients cn and w̃ defined in Eq. (6).
Substituting the power series (A5) into Eq. (A4) one expands
first the trigonometric functions into power series of w̃ in
accordance with the boundary condition in Eq. (A4). As
usual, using standard perturbation theory, we obtain the system
of algebraic equations for the coefficients cn [Eq. (A5)] by
equating the coefficients from both sides of Eq. (A4) at the
same powers of w̃. This simple procedure leads to a system of
algebraic recurrence relations which determine the coefficients
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cn as functions of the parameters β and csym of Eq. (A4),

c0 = 0, c1 = 1√
1 + β

,

c2 = c1√
1 + β

(
βcsym

2
√

1 + β
− c1

)
, (A6)

c3 = 1√
1 + β

{
β2c2

symc1

8(1 + β)3/2
+ c2

1

(
csym − 1

2

)
+ 1

6

√
1 + βc3

1 + c2

(
βcsym

2
√

1 + β
− 3c1

)}
,

etc. In particular, up to the second order in w̃, we derive an
analytical solution in an explicitly closed form:

ψ̃(w̃) = w̃ (c1 + c2w̃) , c1 = 1√
1 + β

,

c2 = 1

(1 + β)3/2

(
β

2
csym − 1

)
. (A7)

Thus, using the standard perturbation expansion method of
solving ψ̃(w̃) in terms of the power series of the w̃ (up to w̃2),
one obtains the quadratic expansion of ψ(w) [Eq. (7)] with
c̃ = c2/c1. Notice that one finds a good convergence of the
power expansion of ψ̃(w̃) (A7) in w̃ for w−(x) at the second
order in w̃ because of the large value of csym for all Skyrme
forces presented in Table I [Eq. (6) for csym].

APPENDIX B: THE MACROSCOPIC BOUNDARY
CONDITIONS AND SURFACE TENSION COEFFICIENTS

For the derivation of the expression for the surface tension
coefficients σ±, we first write the system of the Lagrange
equations by using variations of the energy density E(ρ+, ρ−)
with respect to the isoscalar and isovector densities ρ+ and
ρ−. Then, we substitute the solution of the first Lagrange
equation for the variations of the isoscalar density ρ = ρ+ in
the energy density (2) (Refs. [2,3]) into the second Lagrange
equation for the isovector density ρ−. Using the Laplacian
in the variables ξ and η (Appendix A in Ref. [2]) we keep
the major terms in this second equation within the improved
precision in the small parameter a/R. The improved precision
means that we take into account the next terms proportional
to the first derivatives of the particle densities [along with the
second ones of Eq. (A1)] and the small surface corrections
�± to the isoscalar and isovector Lagrange multipliers λ±.
Within this improved precision, one finds the second Lagrange
equation by the variations of the energy density E(ρ+, ρ−),
Eq. (2), with respect to the isovector particle density ρ−:

C−
∂2ρ−
∂ξ 2

+ 2C−H
∂ρ−
∂ξ

− d

dρ−
[ρ+ε−(ρ+, ρ−)] + �− = 0,

(B1)

where H is the mean curvature of the ES (H = 1/R for the
spherical ES). The isovector chemical-potential correction �−
was introduced [5] like the isoscalar one �+, worked out
in detail in Refs. [2,3]. Multiplying Eq. (B1) by ∂ρ−/∂ξ we
integrate in the coordinate ξ normal to the ES from a spatial
point ξin inside the volume (at ξin � −a) to ∞ term by term.

Using also integration by parts, within the ES approximation
this results in the macroscopic boundary conditions (together
with the isoscalar condition from Refs. [2,3,5,22,29,30])

(ρ I �−)ES = P (−)
s ≡ 2σ−H, (ρ �+)ES = P (+)

s ≡ 2σ+H.

(B2)

Here, P (±)
s are the isovector and isoscalar surface-tension

(capillary) pressures and σ± are the corresponding tension
coefficients; see their expressions in Eq. (8). We point out
that the lower limit ξin can be approximately extended to
−∞ as in Eq. (8) for σ±. The integrands contain the square
of the first derivatives, (∂ρ±/∂ξ )2 ∝ (R/a)2, and the integral
over ξ converges exponentially rapidly within the ES layer
|ξ | � a. This leads to the aditional small factor a/R in Eq. (8),
σ± ∝ R/a. Therefore, at this higher order of the improved ES
approximation one may neglect higher order corrections in
the calculation of derivatives of ρ± themselves by using the
analytical universal density distributions w±(x) [Eqs. (3), (A3)
and (7)] within the ES layer, which do not depend on the
specific properties of the nucleus as mentioned in the main
text. (These corrections are small terms proportional to the
first derivative ∂ρ−/∂ξ and �− in Eq. (B1), as for the isoscalar
case considered in Refs. [2,3,29,30]). In these derivations, the
obvious boundary conditions of disappearance of the particle
densities and all their derivatives with respect to ξ outside of
the ES for ξ → ∞ (ξ � a) were taken into account too.

The Lagrange multipliers �± multiplied by ρI and ρ in
the parentheses on the left-hand sides of equations (B2) are
the volume isovector (ρI�−) and isoscalar (ρ�+) pressure
excesses, respectively (see Ref. [5]). These pressures due to
the surface curvature can be derived using the volume solutions
of the Lagrange equations for the particle densities [obtained
by doing variations of the energy density E and neglecting all
the derivatives of the particle densities in Eq. (2)],

ρ− ≈ ρ

[
I

(
1 + 9�+

K

)
+ �−

2J

]
,

(B3)

ρ+ ≈ ρ

[
1 + 9�+

K

(
1 − 81�+)

2K

)
− 18J

2K
I 2

]
.

Inserting �+ and �− from Eq. (B2) into Eq. (B3) one gets

ρ− = ρ I

[
1 + 6b

(+)
S Hr0

K
+ 2b

(−)
S Hr0

6J I 2

]
. (B4)

As seen from Eq. (B4), the isovector density correction to the
volume density ρ− due to a finiteness of the coupled system
of the two Lagrange equations depends on both isoscalar
and isovector surface energy constants b

(±)
S in the first-order

expansion of the small parameter a/R. If we are not too far
from the valley of stability, I is an additional small parameter
and the isovector corrections are small compared with the
isoscalar values [b(−)

S ∝ I 2, �− ∝ I ; see Eqs. (B3), (B4),
and (13)]. Thus, Eq. (B2) has a clear physical meaning as
the macroscopic boundary conditions for equilibrium of the
isovector and isoscalar forces (volume and surface pressures)
acting on the ES [22,28]. Note that the isovector tension
coefficient σ− is much smaller than the isoscalar one σ+ [see
Eq. (8)] as σ− ∝ I 2 due to ρ− ∝ I and I � 1 is small near the
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nuclear stability line. Another reason is the smallness of C− as
compared to C+ for the realistic Skyrme forces [23,24]. From
comparison of Eqs. (B3) and (B4) for ρ− [see also Eq. (8)],
one may also evaluate

�− = 2σ−H

ρ I
≈ 2b

(−)
S

3IA1/3
∼ kSI

a

R
. (B5)

which is consistent with Eq. (B1) (r0H ∼ a/R in these
estimations; see corresponding ones in Refs. [2,3]).

APPENDIX C: DERIVATIONS OF THE SURFACE ENERGY
AND ITS COEFFICIENTS

For calculations of the surface energy components E
(±)
S

of the energy E, Eq. (1), within the same improved ES
approximation as described above in Appendix B, we first
may separate the volume terms related to the first two terms
of Eq. (2) for the energy density E . Other terms of the energy
density E(ρ+, ρ−) in Eq. (2) lead to the surface components
E±

S [Eq. (11)], as they are concentrated near the ES. Integrating
the energy density E [see Eq. (2)] over the spatial coordinates
r in the local coordinate system ξ, η (see Fig. 1) in the ES
approximation, one finds

E
(±)
S = C±

∮
dS

∫ ∞

ξin

dξ [(∇ρ±)2 − ρ+ε±(ρ+, ρ−)] ≈ σ± S,

(C1)

where ξin � −a is as in Appendix B [2,3,5]. The local
coordinates ξ, η were used because the integral over ξ
converges rapidly within the ES layer which is effectively
taken for |ξ | � a. Therefore, again, we may extend formally
ξin to −∞ in the first (internal) integral taken over the ES in the
normal direction ξ in Eq. (C1). Then, the second integration
is performed over the closed surface of the ES. The integrand
over ξ contains terms of the order of (ρ/a)2 ∝ (R/a)2 like
the ones of the leading order in Eq. (B1) [see for instance
the second derivatives in Eq. (A1) which are also ∝(R/a)2].
However, the integration is effectively performed over the edge
region of the order of a that leads to the additional smallness
proportional to a/R as in Appendix B. At this leading order
the η dependence of the internal integrand can be neglected.
Moreover, from the Lagrange equations at this order one can
realize that the terms without the particle density gradients in
Eq. (C1) are equivalent to the gradient terms. Therefore, for
the calculation of the internal integral we may approximately

reduce the integrand over ξ to the only derivatives of the
universal particle densities of the leading order ρ±(ξ ) in ξ (with
the factor 2) using (∇ρ±)2 − ρ+ε± (ρ+, ρ−) ≈ 2(∂ρ±/∂ξ )2

[see Eqs. (3) and (7) for w±(x)]. Taking the integral over ξ
within the infinite integration region (−∞ < ξ < ∞) off the
integral over the ES (dS), we are left with the integral over
the ES itself that is the surface area S. Thus, we arrive finally
at the right-hand side of Eq. (C1) with the surface tension
coefficient σ± [Eq. (8)].

Using now the quadratic approximation ε(w) = (1 − w)2

in Eq. (8) for b
(±)
S = 4πr2

0 σ± (|D−/D+| � 1), one obtains (for
β < 0, see Table I)

b
(±)
S = 6ρ C± J±/(r0a), (C2)

where

J+ =
∫ 1

0
dw

√
w(1 + βw) (1 − w)

= 1

24
(−β)−5/2[J (1)

+
√

−β(1 + β) + J (2)
+ arcsin

√
−β],

J (1)
+ =3 + 4β(1 + β), J (2)

+ = −3 − 6β. (C3)

For the isovector energy constant J− one finds

J− = − 1

1 + β

∫ 1

0
dw

√
w(1 + βw) (1 − w)(1 + c̃w̃)2

= c̃2

1920(1 + β)(−β)9/2
[J (1)

− (csym/̃c)
√

−β(1 + β)

+J (2)
− (csym/̃c) arcsin

√
−β],

J (1)
− (ζ ) = 105 − 4β{95 + 75ζ + β[119 + 10ζ (19 + 6ζ )

+ 8β2(1 + 10ζ (1 + ζ )) + 8ζ (5ζ (3 + 2ζ ) − 6)]},
J (2)

− (ζ ) = 15{7 + 2β[5(3 + 2ζ )

+ 8β(1 + ζ )(3 + ζ + 2β(1 + ζ ))]}. (C4)

These equations determine explicitly the analytical expres-
sions for the isoscalar (b(+)

S ) and isovector (b(−)
S ) energy

constants in terms of the Skyrme force parameters; see Eqs. (7)
for c̃, (6) for csym and w̃. For the limit β → 0 from Eqs. (C3)
and (C4) one has J± → 4/15. With Eqs. (18) and (19)
one arrives also at the explicit analytical expression for the
isovector stiffness Q as a function of C− and β. In the limit
C− → 0 one obtains kS → 0 and Q → ∞ because of the finite
limit of the argument csym/̃c → (1 + β)/β of the function J−
in Eq. (C4) [see also Eqs. (7) for c̃ and (6) for csym].
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