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Low-energy collective excitations in the neutron star inner crust
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We study the low-energy collective excitations in the inner crust of the neutron star, where a neutron superfluid
coexists with a Coulomb lattice of nuclei. The dispersion relation of the modes is calculated systematically from
a microscopic theory including neutron band structure effects. These effects are shown to lead to a strong mixing
between the Bogoliubov-Anderson bosons of the neutron superfluid and the longitudinal crystal lattice phonons.
In addition, the speed of the transverse shear mode is greatly reduced as a large fraction of superfluid neutrons
are entrained by nuclei. Not only does the much smaller velocity of the transverse mode increase the specific heat
of the inner crust, it also decreases its electron thermal conductivity. These results may impact our interpretation
of the thermal relaxation in accreting neutron stars. Due to strong mixing, the mean free path of the superfluid
mode is found to be greatly reduced. Our results for the collective mode dispersion relations and their damping
may also have implications for neutron star seismology.
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I. INTRODUCTION

The crust of a neutron star represents only about 10% of the
star’s radius and 1% of its mass but is expected to play a key role
in various observed astrophysical phenomena such as pulsar
glitches, quasiperiodic oscillations in soft gamma repeaters
(SGRs), and thermal relaxation in soft x-ray transients [1].
The outer crust is primarily composed of pressure-ionized
atoms arranged in a regular crystal lattice and embedded in
a highly degenerate electron gas. With increasing density,
electrons become relativistic and the rapid growth of their
Fermi energy drives nuclei to become neutron rich due to
electron captures (see, e.g., Ref. [2]). Eventually, at a density
∼4 × 1011 g/cm3, some neutrons drip out of nuclei (see, e.g.,
Refs. [3,4]). This defines the boundary between the outer crust
and the inner crust. “Dripped” neutrons in the inner crust are
expected to become superfluid below a critical temperature of
the order of ∼1010 K (see, e.g., Ref. [5]). Despite the absence
of viscous drag, the neutron superfluid can still be coupled
to the crust due to nondissipative entrainment effects arising
from elastic Bragg scattering of dripped neutrons by the
crystal lattice [6,7]. Recent calculations have shown that in
some regions of the inner crust only a very small fraction
of dripped neutrons participate in the superfluid dynamics
[8,9]. Consequently, the vibrations of the crystal lattice are
expected to be strongly coupled to the collective excitations
of the neutron superfluid [10–12]. Collective excitations are
particularly important for understanding thermal and transport
properties of accreting neutron stars with temperatures in the
range T = 107–109 K [13].

In this paper, we study low-energy collective modes with
large wavelengths compared to the typical internuclei distance.
The existence of two longitudinal modes in the inner crust
and the role of entrainment in determining the dispersion
relations were first studied in Ref. [14] using a hydrodynamic
approach. In this pioneering study, long-range perturbations
on the superfluid flow induced by the lattice of nuclei were
neglected. Here we show that they play a crucial role. The

low-energy constants that depend on the microscopic proper-
ties of the inner crust are calculated in a consistent approach
that properly incorporates the long-range correlations leading
to entrainment effects, first discussed in Ref. [8]. We find that
entrainment of superfluid neutrons by crustal nuclei greatly
reduces the velocity of the two transverse (shear) modes, and
this in turn enhances their contribution to the low-temperature
specific heat of the inner crust. Entrainment effects also induce
a strong mixing between the longitudinal lattice phonons
and the Bogoliubov-Anderson (BA) bosons [15,16] of the
neutron superfluid, splitting these modes into a high velocity
global sound mode and a low velocity mode characterized
by a relative motion between the neutron superfluid and the
electron-ion plasma. These results should be also relevant for
studies of global neutron star seismic modes with frequencies
in the range 20–1000 Hz, which could be excited during violent
events such as giant flares in SGRs and binary neutron-star
mergers.

In the following section we define our notations and
present order-of-magnitude estimates of the relevant length
and momentum scales. In Sec. III we describe the low-
energy, long-wavelength, collective excitation modes and their
velocities. The microscopic model of Ref. [9] is employed
in Sec. IV to obtain quantitive values for these velocities.
Damping of these modes is briefly considered in Sec. V.
In the Sec. VI we study how entrainment affects the inner
crust specific heat, its thermal conductivity, and its thermal
relaxation time scale. We finally conclude in Sec. VII.

II. BASIC NOTATIONS AND PHYSICAL SCALES

In what follows, we will assume that the inner crust of
a neutron star is a perfect crystal. Each crustal layer will
consist of a body-centered cubic lattice containing only one
type of nuclide and will be characterized by Z, the total
average number of protons in the Wigner-Seitz (W-S) cell of
the crystal lattice (a truncated octahedron); Acell, the total cell
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average number of nucleons; A, the cell average number of
nucleons bound inside nuclei; and A�, the cell average number
of nucleons entrained by the solid crust. As shown in Ref. [9],
A� is generally much larger than A and close to Acell due to the
Bragg scattering of unbound neutrons by the periodic potential
of the crystal lattice, which manifests itself in neutron band
structure effects.

We will indicate by n = np + nn the total average baryon
number density, which is the sum of the average proton
density np and average neutron density nn. Neutrons entrained
by nuclei are effectively bound. Their density will be noted as
nb

n. By analogy with conduction electrons in ordinary solids,
neutrons that are not entrained will be referred to as conduction
neutrons and their density will be noted as nc

n. As shown in
Ref. [9], the density nc

n is generally much smaller than the
density nf

n of “free” or “dripped” neutrons. Because of Galilean
invariance, we have

nn = nb
n + nc

n. (1)

These densities are related to Z, A�, and Acell by

nb
n = A� − Z

Acell
n (2)

and

np = Z

Acell
n. (3)

The ion number density nI is determined by

nI = n

Acell
. (4)

As discussed in Refs. [10–12], the mass density associated
with lattice vibrations is given by

ρI = m
(
np + nb

n

) = A� m nI, (5)

where m is the nucleon mass (neglecting the small difference
between neutron and proton masses), whereas the total mass
density (neglecting the electron contribution) is

ρ = m n = Acell m nI. (6)

The typical length scale associated with the solid crust is
the ion-sphere radius defined by

rI =
(

3

4πnI

)1/3

≈ 75

(
Acell/1000

ρ12

)1/3

fm, (7)

where ρ12 = ρ/(1012 g cm−3). The characteristic angular fre-
quency and wave number of lattice vibrations is the ion angular
plasma frequency

ωp =
√

4π (Ze)2nI

A�m
=

√
4πe2n2

p(
np + nb

n

)
m

(8)

and the Debye wave number

qD = (6π2nI)
1/3 ≈ 2.4

rI
≈ 0.03

(
ρ12

Acell/1000

)1/3

fm−1, (9)

respectively. The ion plasma temperature is defined by Tp =
h̄ωp/kB (kB being the Boltzmann constant).

The ultrarelativistic electrons found in the inner crust of
neutron stars with density ne = ZnI, are almost uniformly
distributed [17] and are characterized by their Fermi wave
number

kFe = (3π2ne)1/3 =
(

Z

2

)1/3

qD ≈ 7

rI

(
Z

50

)1/3

≈ 0.1

(
ρ12 Z/50

Acell/1000

)1/3

fm−1. (10)

Small deviations of the electron distribution from uniformity
are characterized by the electron Thomas-Fermi screening
wave number

qTFe =
√

4πe2
∂ne

∂μe

=
√

4α

π
kFe ≈ 0.1 kFe ≈ 0.7

rI

(
Z

50

)1/3

,

(11)

where μe = h̄c kFe is the electron chemical potential and α ≡
e2/h̄c ≈ 1/137 the fine structure constant.

III. LOW-ENERGY DYNAMICS OF THE NEUTRON-STAR
INNER CRUST

The equations governing the low-energy dynamics of a
nonrelativistic neutron superfluid immersed in an elastic crust
have been derived in Refs. [11,12,18]. The corresponding
normal modes of oscillation can be found by considering
small perturbations of the densities and currents from their
equilibrium values and solving the resulting linearized hydro-
dynamic equations. The first two of these equations arise from
the conservation of neutron and proton numbers

∂δnn

∂t
+ nc

n∇∇∇ · δvnvnvn + nb
n∇∇∇ · δvpvpvp = 0, (12)

∂δnp

∂t
+ np∇∇∇ · δvpvpvp = 0, (13)

where δnn and δnp are the perturbed neutron and proton
densities, respectively, while δvnvnvn and δvpvpvp are the perturbed
neutron and proton velocities, respectively. In the following,
we will consider oscillations characterized by wave vectors
q � qTFe so the crustal matter remains electrically neutral
locally and np = ne. Treating the neutron-star crust as an
isotropic solid and using i, j , k for coordinate space indices,
the momentum conservation can be expressed as

mnc
n

∂δvni

∂t
+ ρI

∂δvpi

∂t
+ nn∇iδμn + L∇iδnn − K̃∇iujj

− 2S∇j

(
uij − δij

1

3
ukk

)
= 0, (14)

where uij is the strain tensor, δμn the perturbed neutron
chemical potential, S the shear modulus, and K̃ the bulk
modulus of the electron-ion system

K̃ = n2
p

(
∂μp

∂np

+ ∂μe

∂ne

)
, (15)
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and the coefficient L given by

L = np

∂μn

∂np

(16)

takes into account the coupling of the neutron superfluid to
the strain field. The condition for neutron superfluidity is
embedded in Josephson’s equation,

∂δvnvnvn

∂t
+ 1

m
∇∇∇δμn = 0. (17)

The normal modes have the form of plane waves that
vary in space and time as exp[i(qqq · rrr − ωt)], where qqq is the
wave vector and ω the angular frequency. In an isotropic
medium, the normal modes may be separated into transverse
and longitudinal ones. In the long-wavelength limit q → 0,
the normal modes all have a soundlike dispersion relation,
with ω = vq, v being the mode speed. The speed of the two
transverse lattice modes is given by [10,11]

vt =
√

S

ρI
. (18)

Due to interactions between neutron and proton densities
and currents, the BA bosons of the neutron superfluid with
velocity vφ are mixed with the longitudinal lattice phonons
with velocity v
. Neglecting the coupling of the neutron
superfluid to the strain field, the resulting dispersion relation
is given by [11,12](

ω2 − v2
φq2

)(
ω2 − v2


q
2
) = g2

mixω
2q2, (19)

where the strength of the mixing is characterized by the
parameter

gmix = vφ

√
nb

n

np + nb
n

nb
n

nc
n

, (20)

first introduced in Ref. [12]. The velocity of the BA mode is

vφ =
√

nc
n

m

∂μn

∂nn

, (21)

whereas the velocity of the longitudinal mode of the lattice is

v
 =
√

K̃ + 4S/3

ρI
. (22)

In the neutron-star crust, the electron contribution to the bulk
modulus dominates, and the ion contribution can be safely
neglected (see, e.g., Sec. 7.1 of Ref. [1]). As a result, v
 is
approximately given by [19]

v
 ≈ ωp

qTFe
=

√
np

np + nb
n

np

m

∂μe

∂ne

. (23)

Solving Eq. (14) we find that the eigenmode velocities are
given by

v± = V√
2

√√√√
1 ±

√
1 − 4v2


v
2
φ

V 4
, (24)

where

V =
√

v2

 + v2

φ + g2
mix. (25)

The speed of the transverse lattice phonon in Eq. (18) is
unaffected by mixing and is approximately given by [20]

vt ≈ 0.4
ωp

qD
≈ 0.12

(
Z

50

)1/3

v
. (26)

Note that due to entrainment effects, the expressions (21),
(23), and (26) for the velocities of the BA bosons and
lattice phonons differ from those obtained considering either
a neutron superfluid alone or a pure solid crust, respectively.
The self-consistent inclusion of entrainment is an important
new element of this study.

In the normal phase, any relative motion between the
neutron liquid and the crust will be damped by collisions
so in the hydrodynamic regime ions, electrons, and neutrons
will be essentially comoving. In this case, the Josephson’s
equation have to be replaced by the condition δvnvnvn = δvpvpvp. As a
result, only one longitudinal mode corresponding to ordinary
hydrodynamic sound persists and its velocity is given by

cs =
√

K + 4S/3

ρ
, (27)

where K is the total bulk modulus of the crust. It is related to
the bulk modulus K̃ of the electron-ion system by

K = K̃ + 2nnL + n2
n

∂μn

∂nn

. (28)

Since S � K (see, e.g., Sec. 7.1 of Ref. [1]), the sound velocity
can be approximately written as

cs ≈
√

∂P

∂ρ
≈

√
np

n

np

m

∂μe

∂ne

+ nn

n

nn

m

∂μn

∂nn

. (29)

The transverse mode velocity is given by

vt =
√

S

ρ
. (30)

While the existence of two weakly damped longitudinal
modes is unique to the superfluid phase, entrainment is fairly
insensitive to superfluidity provided the pairing gap � � μn

[21], which is the case in most of the inner crust [22–24].

IV. MICROSCOPIC MODEL FOR THE INNER CRUST
OF A NEUTRON STAR

The evaluation of the velocities of the collective modes
requires the knowledge of the susceptibilities defined by
∂ne/∂μe and ∂nn/∂μn, and number densities np and nb

n for
each given baryon density n. At densities above ∼106 g cm−3,
electrons can be treated as an ideal relativistic Fermi gas so

∂ne

∂μe

≈ 3ne

μe

. (31)

Electric charge neutrality requires ne = np so both np and
∂ne/∂μe are uniquely determined by the composition of the
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inner crust (i.e., the variation of the electron density ne with n),
taken from Ref. [3]. The inner crust was assumed to be made
of “cold catalyzed matter,” i.e., matter in full thermodynamic
equilibrium at zero temperature. Nuclei were supposed to be
spherical, an assumption that is generally satisfied in all regions
of the inner crust, except possibly near the crust-core interface
where so-called nuclear “pastas” might exist (see, e.g., Sec. 3.3
in Ref. [1] for a brief review). The composition of the
crust was obtained from a nonrelativistic Skyrme effective
nuclear Hamiltonian solved using the fourth-order extended
Thomas-Fermi method with proton quantum shell effects
added via the Strutinsky-Integral theorem. Neutron quantum
shell corrections, which were shown to be much smaller than
proton quantum shell corrections [25,26], were neglected. This
so-called ETFSI method is a high-speed approximation to the
self-consistent Skyrme-Hartree-Fock equations [27]. These
calculations were carried out with the Skyrme force BSk14
underlying the HFB-14 atomic mass model [28], which yields
an excellent fit to essentially all experimental atomic mass data
with a root-mean-square deviation of 0.73 MeV. At the same
time, an optimal fit to charge radii was ensured. Moreover, the
incompressibility Kv of symmetric nuclear matter at saturation
was required to fall in the experimental range 240 ± 10 MeV
[29]. The symmetry energy J and its slope L play a crucial role
for determining the structure of neutron-star crusts [30]. The
values predicted by the force BSk14, J = 30 MeV, and L =
44 MeV, respectively, are consistent with various constraints
inferred from both experiments and astrophysical observations
[31]. For these reasons, the force BSk14 is expected to be
well suited for describing the nuclei in the inner crust of a
neutron star. In addition, the BSk14 force was constrained to
reproduce various properties of homogeneous nuclear matter
as obtained from many-body calculations using realistic two-
and three-nucleon interactions. In particular, the force BSk14
was fitted to the equation of state of neutron matter, as
calculated by Friedman and Pandharipande [32] using realistic
two- and three-body forces. Incidentally, this equation of state
is in good agreement with more recent ab initio calculations
[33–36] at densities relevant to the neutron-star crusts, as
shown in Fig. 1. Therefore, the properties of the neutron liquid
in the inner crust of a neutron star are well described by the
Skyrme force BSk14. The crustal composition obtained in
Ref. [3] is summarized in Table I.

As discussed in detail in an accompanying paper [9],
neutron band-structure calculations are needed to determine
nc

n. Here, we note that the key ingredient is the single-particle
(s.p.) dispersion relation εαkkk (α being the band index and kkk the
Bloch wave vector) given by the solution of the Schrödinger
equation with the periodic mean-field potential obtained self-
consistently from the ETFSI method. The superfluid density
was then found from the equation

nc
n = m

24π3h̄2

∑
α

∫
F
|∇∇∇kkkεαkkk|dS (α), (32)

where dS (α) is an infinitesimal area element of the piecewise
Fermi surface associated with the α band. As described in
Ref. [9], in most regions of the inner crust only a small fraction
of dripped neutrons contributes to the superfluid density due to

FIG. 1. Energy per baryon in pure neutron matter as calculated
by the Skyrme force BSk14 [28] (solid line) and as obtained from
next-to-next-to-next-to-leading order in chiral effective field theory
[36] (shaded area).

Bragg scattering so nc
n � nf

n or, equivalently, A� ≈ Acell. Note
that unbound (bound) neutrons with density nf

n (respectively,
nn − nf

n) are characterized by s.p. energies εαkkk lying above
(respectively, below) the largest value of the periodic mean-
field potential. Results are summarized in Table I.

The neutron chemical potential is determined by the neutron
band structure from the equation

nn =
∫ μn

−∞
dεD(ε), (33)

where D(ε) is the density of neutron s.p. states defined by

D(ε) =
∑

α

∫
d3kkk

(2π )3
δ(ε − εαkkk), (34)

where the kkk-space integration is taken over the first Brillouin
zone. Differentiating Eq. (33) with respect to μn thus yields

TABLE I. Ground-state composition of the inner crust of a
neutron star (Z, Acell, and A as defined in Sec. II), as obtained
in Ref. [3], for various baryon densities n/mass densities ρ. The
effective number of bound nucleons A� was calculated including
band-structure effects in Ref. [9]. The density nb

n of effectively bound
neutrons can be obtained from Eq. (2). The density of conduction
neutrons can be found from Eq. (1).

n (fm−3) ρ (g cm−3) Z Acell A A�

0.0003 4.98 × 1011 50 200 170 175
0.001 1.66 × 1012 50 460 179 383
0.005 8.33 × 1012 50 1140 198 975
0.01 1.66 × 1013 40 1215 170 1053
0.02 3.32 × 1013 40 1485 180 1389
0.03 4.98 × 1013 40 1590 173 1486
0.04 6.66 × 1013 40 1610 216 1462
0.05 8.33 × 1013 20 800 87 586
0.06 1.00 × 1014 20 780 85 461
0.07 1.17 × 1014 20 714 76 302
0.08 1.33 × 1014 20 665 65 247
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FIG. 2. (Color online) Speeds (in units of the speed of light c) of the longitudinal (left panel) and transverse (right panel) collective
excitations in the inner crust of a neutron star. Dotted curves show results with neither mixing nor entrainment, dashed curves include effects
due to entrainment only, and solid curves include in addition the effects due to mixing.

the neutron number susceptibility

∂nn

∂μn

= D(μn) +
∫ μn

−∞
dε

∂D(ε)

∂μn

. (35)

Because nuclei in the inner crust are neutron saturated, the
neutron susceptibility is essentially independent of the neutron
bound states except possibly in a small region close to neutron
drip. For the reasons explained in Ref. [37], the density D(ε)
of neutron unbound states in a given region of the inner crust
is well approximated by the density of s.p. states in uniform
neutron matter for the corresponding density nf

n of dripped
neutrons. Using these approximations, the velocity of the BA
mode in the inner crust can be expressed as

vφ =
√

nc
n

nf
n

vf
φ, (36)

where vf
φ is the velocity of the BA mode in pure neutron

matter at the density nf
n associated with the crustal layer under

consideration. This latter velocity is given by [38]

vf
φ = v2

F

3
(1 + F0)

(
1 + F1

3

)
, (37)

where vF is the Fermi velocity in pure neutron matter at the
density nf

n while F0 and F1 are the corresponding dimen-
sionless Landau parameters, whose expressions for Skyrme
interactions can be found in Ref. [39]. We have evaluated vf

φ

using the same Skyrme effective interaction BSk14 as that
used to determine the equilibrium composition of the crust.

The speeds of the collective modes in the inner crust of a
neutron star are shown in Fig. 2 and listed in the Table II.
Entrainment modifies the spectrum, vφ , v
, and vt are all
significantly reduced (compare dotted and dashed curves), and
mixing leads to a strong splitting between the longitudinal
eigenmodes (note the difference between speeds of the lowest
and highest eigenmodes). With increasing density, a strong
suppression of the plasma frequency due to entrainment leads
to rapid decrease in the velocity of transverse and longitudinal
lattice phonon modes. Mixing between longitudinal modes
leads to a high velocity eigenmode with velocity v+ and a low
velocity mode with velocity v−. The v− mode is predominantly
the superfluid phonon (BA) mode near neutron drip and trans-
forms to a mode with a large lattice component at the crust-core
boundary. The mode with velocity v+ is a pure lattice mode
at neutron drip and transforms to being a mode which is
predominantly a superfluid mode at the crust-core interface.

TABLE II. Properties of collective modes in the inner crust of a neutron star. The velocities (vφ , v
, cs , vt , v−, and v+) and the mixing
parameter gmix are defined in Sec. III; c is the speed of light. Values in parenthesis are obtained by neglecting entrainment. The ratios of the
mean free path of the longitudinal modes to that of the unmixed longitudinal lattice phonon are shown in the last two columns.

n (fm−3) gmix (10−2c) vφ (10−2c) v
 (10−2c) cs (10−2c) vt (10−2c) v− (10−2c) v+ (10−2c) λ−/λ
 λ+/λ


0.0003 2.11 1.11(1.22) 5.13(5.21) 5.35 0.58(0.59) 1.02 5.56 32.3 1.09
0.001 2.60 1.34(2.56) 3.69(5.40) 4.46 0.42(0.61) 1.08 4.58 9.12 1.28
0.005 3.79 1.64(3.93) 2.60(5.76) 4.78 0.29(0.65) 0.89 4.80 3.98 2.02
0.01 4.34 1.77(4.49) 2.39(5.95) 5.18 0.25(0.62) 0.81 5.20 3.63 2.40
0.02 5.22 1.42(5.21) 2.26(6.28) 5.84 0.24(0.66) 0.55 5.84 4.80 2.74
0.03 5.95 1.62(5.97) 2.31(6.78) 6.55 0.24(0.71) 0.57 6.56 4.59 3.01
0.04 6.67 2.18(6.69) 2.44(6.36) 7.39 0.26(0.67) 0.72 7.39 3.76 3.29
0.05 6.73 4.21(7.69) 2.83(7.35) 8.30 0.24(0.61) 1.44 8.31 2.16 3.84
0.06 6.73 5.86(8.65) 3.31(7.72) 9.28 0.28(0.64) 2.09 9.29 1.72 4.45
0.07 6.20 7.76(9.66) 4.26(8.51) 10.3 0.35(0.71) 3.21 10.3 1.45 5.06
0.08 6.34 8.98 (10.9) 4.87(9.48) 11.4 0.40(0.79) 3.84 11.4 1.37 5.50
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With increasing temperatures, the neutron superfluidity
may disappear in some regions of the crust. In these regions,
the two longitudinal modes will merge and give rise to
ordinary sound as discussed at the end of Sec. III. Note,
however, that the values for the speeds of collective excitations
indicated in Table II are expected to remain essentially the
same for temperatures T � 1010 K. Indeed, as shown in
Ref. [3], thermal effects have a minor impact on the equi-
librium composition of neutron-star crusts in this temperature
range. However, the crust of a real neutron star may not nec-
essarily be in full thermodynamic equilibrium, as discussed,
e.g., in Sec. 3.4 of Ref. [1]. This could affect the spectrum of
collective modes.

V. DISSIPATION

Lattice phonons couple strongly to electrons and easily
excite electron-hole pairs in the dense electron gas. This
Landau damping of lattice phonons has been studied in
Ref. [40] and an approximate result of the lattice phonon mean
free path was obtained. The mean free path of a thermal phonon
that contributes to thermal conductivity was found to be

λlph = 6π

Ze2γ v̄

1

qD

F (Tp/T )

�ph−e


 72.5

(
40

Z

)2/3 [
F (Tp/T )

v̄�ph−e

]
rcell, (38)

where

F (Tp/T ) = 0.014 + 0.03

exp [Tp/(5T )] + 1
, (39)

�ph−e = ln

(
2

γ

)
− 1

2

(
1 − γ 2

4

)
and γ = qD/kFe,

(40)

and v̄ is average velocity of the lattice phonon. Note that for
simplicity we have neglected corrections due to the Debye-
Waller factor and the nuclear form factor to the Coulomb
logarithm �ph−e. Such corrections tend to increase the mean
free path and Eq. (38) therefore must be viewed as a lower
limit.

Our interest here is to investigate the mean free path of the
superfluid phonon mode in the inner crust. In Ref. [41] it was
shown that phonon-phonon and phonon-impurity scattering
were negligible compared to the dissipation that arose due
to mixing with the lattice phonon. The superfluid phonon
mean free path, without the inclusion of entrainment effects,
was found to be much larger than that of the lattice phonons
because mixing due to the density interaction was weak. In the
following, we include effects due to entrainment, which is now
known to be the dominant contribution to the mixing parameter
gmix, and we show that the mean free path of the superfluid
mode is greatly reduced due to strong mixing. Incorporating
this into the dispersion relation in Eq. (19) we obtain(

ω2 − v2
φq2)(ω2 − 2i�
ω − v2


q
2) = g2

mixω
2q2, (41)

where �
 = v
/λ
 and λ
 is the mean free path of the lattice
phonon in the limit of weak damping (�
 � v
q). In general,
λ
 �= λlph as the latter is an average mean free path more closely

related to the mean free path of the transverse thermal phonon.
Nonetheless it provides an order of magnitude estimate.

Mode mixing induces an indirect coupling between the
superfluid BA bosons and electrons. Because the longitudinal
modes contain an admixture of superfluid and lattice phonons,
the damping of lattice vibrations due to electron-hole excita-
tions naturally leads to a finite damping of both modes. In a
small region of the crust in the vicinity of the neutron-drip
transition where g2

mix � v2

 − v2

φ the modes are not strongly
mixed, and, using the fact that v
 � vφ , we can obtain from
Eq. (41) the analytic relation

λφ ≈ v3



g2
mixvφ

λ
 =
(

v


vφ

)3 nc
n

(
np + nb

n

)(
nb

n

)2 λ
 � λ
 (42)

between the mean free paths of the superfluid and lattice
modes. In other regions mixing is strong and damping
associated with each eigenmodes is found by solving Eq. (41).
Although an analytic solution exists, it is cumbersome to write
down explicitly. We present numerical values for the ratio of
the mean free paths λ+/λ
 and λ−/λ
 where λ± are the mean
free paths of the eigenmodes in the last two columns of Table II.
It is meaningful to calculate these ratios without specifying λ


because it is independent of λ
 in the weak damping limit.
From the table we see that the mean free path of the mode
with a large superfluid component is large near neutron drip
but decreases rapidly due to mixing when v
 
 vφ . In the
bulk of the inner crust both modes have comparable mean free
paths and this behavior qualitatively differs from that observed
in Ref. [41] where entrainment was neglected and mixing was
found to be weak except in a narrow region close to resonance.

VI. IMPLICATIONS

X-ray observations of accreting neutron stars in low-mass x-
ray binaries have recently proved to be very useful for probing
neutron-star interiors. The accretion of matter onto the surface
of the neutron star triggers thermonuclear fusion reactions.
Under certain circumstances, these reactions can become
explosive, giving rise to x-ray bursts and superbursts [42].
The ignition conditions of these thermonuclear flashes depend
sensitively on the thermal properties of the crust. Valuable
information on neutron star crusts can also be obtained from
the thermal x-ray emission in quiescence following a long
outburst of accretion during which the crust has been driven
out of its thermal equilibrium with the core [43]. The thermal
relaxation between the accreting and quiescent stages has been
monitored for the four quasipersistent soft x-ray transients KS
1731−260 [44], MXB 1659−29 [45], XTE J1701−462 [46],
and EXO 0748−676 [47]. Numerical simulations of these
phenomena have shown that the cooling is very sensitive to
the properties of the neutron-star crust [43,48,49]. In particular,
the thermal relaxation time of the crust is approximately given
by [50,51]

τ ∼ (�R)2

(
1 − 2GM

Rc2

)−3/2
CV

κ
, (43)

where �R is the crust thickness, R is the radius, and M is
gravitational mass of the neutron star, while CV and κ are the
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average heat capacity and thermal conductivity in the density
range between ∼0.1 n̄cc and n̄cc, where n̄cc = 0.08 fm−3

is the crust-core transition density. The thermal relaxation of
hot newly born neutron stars could also shed light on the
crust properties. However, such very young neutron stars have
not been observed yet, being presumably obscured by their
expanding supernova envelope.

The inner crust heat capacity is the sum of contributions
from the quasiparticle excitations of the electron gas and
neutron liquid and from the collective excitations described
above. In what follows, we describe these contributions to
the volumetric crustal heat capacity. Treating electrons as a
relativistic Fermi gas, their heat capacity is simply given by
(kBT � μe)

Ce
V = 1

3

μ2
e

(h̄c)3
kBT . (44)

The heat capacity of nonsuperfluid degenerate neutrons (for
kBT � μn) is similarly given by

Cn
V = 1

3π2D(μn)kBT , (45)

where D(μn) is well approximated by the density of states
in uniform neutron matter at the density nf

n [37]. This
neutron contribution is enormous and will always dominate
in the layers where neutrons are normal. Once superfluidity
sets in, however, Cn

V is strongly suppresssed and becomes
negligible when the temperature is much lower than the critical
temperature T n

c [23,24]. Given the density dependence of the
neutron 1S0 gap there are only two regions, just above the
neutron drip point and possibly in the deepest part of the crust,
where Cn

V is relevant (see, e.g., Ref. [13]).
The heat capacity associated with a collective excitation

having a dispersion relation of the form ω = vq is given by

Ccoll
V = 3np

Zx3
D

∫ xD

0
dx

x4ex

(ex − 1)2
, (46)

with xD = �D/T , �D = (h̄/kB) qDv being the Debye temper-
ature of the collective mode. At low temperatures, T � �D

such that xD � 1, one has the standard Debye result

Ccoll
V 
 2π2

15

(
kBT

h̄v

)3

= nI
4π4

5

(
kBT

h̄qDv

)3

(47)

while at high temperatures, T � �D when xD � 1, one
obtains the classical result Ccoll

V = nI. At low-enough temper-
atures (T � �D and T � T n

c ) the heat capacity of the crust
is, hence, approximately given by

CV 
 1

3

μ2
e

(h̄c)3
kBT + 2π2

15

(
kBT

h̄v̄

)3

, (48)

with
1

v̄3
= 2

v3
t

+ 1

v3−
+ 1

v3+
. (49)

We plot in Fig. 3 the Debye temperatures of the four collec-
tive modes and the various contributions to CV are displayed
in Figs. 4–6 for three typical temperatures of astrophysical
interest. While at T = 109 K, the v− mixed mode and the two
degenerate transverse modes are in the classical regime, all
modes are well into the quantum regime at T = 108 K and
T = 107 K. This suggests that entrainment and mixing will
not affect the thermal relaxation of newly born isolated neutron
stars but could be important for accreting neutron stars.

Figures 4–6 show that the heat capacity of nonsuperfluid
neutrons would largely dominate over all collective modes
but becomes insignificant once neutron superfluidity sets in,
i.e., in most of the inner crust. Overall, the transverse lattice
mode contribution Ct

V to the heat capacity dominates at T =
109 K and 108 K, while electrons dominate at 107 K due
to the linear temperature dependence of Ce

V compared to the
T 3 dependence for Ct

V . Ct
V in not affected by entrainment at

T = 109 K, since the transverse modes are in the classical
regime, but at T = 108 K and 107 K it is increased by almost
one order of magnitude in most of the crust. Notice that at
T = 108 K without entrainment Ct

V would be comparable to

13 1014 1013 1014

[g cm   ]−3 [g cm   ]−3
10121012

T 
[K

]

11

1010

109

108

10

10

ρ ρ

FIG. 3. (Color online) Left panel: Debye temperatures �D of the longitudinal collective excitations in the inner crust of a neutron star
using the same notations as in Fig. 2. Dotted curves show values with neither mixing nor entrainment, dashed curves include effects due to
entrainment only and solid curves include in addition the effects due to mixing. Right panel: Debye temperature �D of the transverse collective
modes (lines with filled squares) and ion plasma temperature Tp = (h̄/kB)ωp (lines with diamonds). Dotted (dashed) curves show values
without (with) entrainment. In both panels, the light blue band delimits the range of T below which nuclei crystalize (using �c = 180 to 220).
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FIG. 4. (Color online) Heat capacity of electrons (e), transverse
lattice phonons (tph) and longitudinal excitations (− and +) in
the inner crust of neutron stars at T = 107 K, with mixing and
entrainment effects (solid lines) and without (dotted lines). In the
absence of mixing, the longitudinal modes are the Bogoliubov-
Anderson superfluid phonons (sph) and the longitudinal lattice
phonons (lph). For comparison, is also shown the normal neutron
contribution (n), but it is strongly suppressed by superfluidity except
in the shallowest and densest parts of the inner crust where the neutron
1S0 pairing gap becomes vanishingly small.

Ce
V while it clearly dominates once entrainment is taken into

account. Moreover, the heat capacity of the longitudinal mode
is increased by several orders of magnitude by entrainment
and mixing. In particular, the contribution of the lowest mixed
mode becomes even comparable with Ce

V at high temperatures.
Because entrainment modifies the spectrum of collective

excitations, it also affects the heat transport in the crust.
The thermal conductivity is generally governed by electrons.
Changes of phonon velocities alter the electron-phonon
process hence also the electron thermal conductivity. The
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FIG. 5. (Color online) Same as Fig. 4 for T = 108 K.
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FIG. 6. (Color online) Same as Fig. 4 for T = 109 K.

conductivity is mainly limited by the Umklapp process, in
which an electron simultaneously Bragg scatters off the lattice
and emits a transverse phonon [52,53]. Since the scattering
rate scales as v−3, where v is the phonon velocity, and v
 �
vt , processes involving longitudinal phonons are typically
negligible. This observation also permits us to reliably estimate
the changes in the electron mean free path due to entrainment.
First, we note that the electron-phonon scattering rate depends
on the electron Fermi momentum kFe, the ion plasma frequency
ωp, and vt (see Ref. [13] for a discussion). Since vt ∝ ωp/qD,
it follows that effects due to entrainment on the scattering are
entirely incorporated through its effects on ωp. It therefore
suffices to employ an existing fitting formula developed in an
earlier work but with a suitably reduced value of ωp due to
entrainment. In Fig. 7 we plot the electron thermal conductivity
with and without entrainment effects included. As anticipated,
the conductivity decreases with entrainment simply reflecting

FIG. 7. (Color online) Electron thermal conductivity κe in the
inner crust of a neutron star, with (solid) and without (dashed)
entrainment effects included, at five densities, n = 0.0003, 0.001,
0.01, 0.02, and 0.08 fm−3 as labeled on the curves. The minimum
of κe occurs at T ∼ 0.1Tp , marked by a square on the corresponding
curve, κe ∝ T −1 in the quantum regime, T � Tp , while it only weakly
increases with T in the classical regime at higher temperatures.
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FIG. 8. (Color online) Ratio of the heat capacity CV to the
electron thermal conductivity κe at five temperatures, as labeled. CV

includes the ion as well as the electron contributions, the neutron
part is neglected. Continuous lines show values when entrainment,
through its modification of Tp , is taken into account, while in the
values for dotted lines it is neglected.

the fact that it is easier to excite lower velocity transverse
phonon modes.

Having described the impact of entrainment on reducing the
electron thermal conductivity and increasing the lattice specific
heat, we now discuss their combined effect on the thermal
time scale, Eq. (42). We plot CV /κ in Fig. 8 for five different
temperatures. For T = 109 K, the impact of entrainment is
negligible since T is comparable or larger than �D of the
transverse modes, as already pointed out previously. As the
temperature is decreased, entrainment leads to a significant
enhancement in CV /κ , hence also in τ : at ρ = 1013 g cm−3 and
for T = 108 K, τ can be increased by more than one order of
magnitude. For T = 107 K, the lowest temperature considered
here, the effect of entrainment is smaller, being moderated by
the dominance of the electron contribution to CV .

Although electrons dominate heat conduction under normal
conditions, phonons can contribute either at high temperature
when Ccoll

V � Ce
V or when large magnetic fields suppress

electron conduction transverse to the field [40,41]. In the inner
crust, the lattice and superfluid phonons contributions were
estimated in Refs. [40] and [41], respectively. From kinetic
theory and in the case where phonon conduction is diffusive
(rather than convective), the thermal conductivity is given by

κcoll = 1
3Ccoll

V vλ, (50)

where Ccoll
V is the heat capacity, v is the velocity, and λ is

the mean free path of each collective mode. Entrainment
alters the thermal conductivity through these three factors. The
larger specific heat associated with lower velocity transverse
modes implies that their contribution to the heat conduction
is proportionately enhanced. In addition, since λ ∝ 1/v, the
smaller vt acts to further increase the conductivity, and the
combined effect is to increase the earlier estimate of Ref. [40]
by the factor (A�/A)3/2.

The effects on the superfluid phonon contribution is more
complex because mixing is strong throughout the inner crust

except in the vicinity of neutron drip. It is only meaningful to
discuss heat diffusion due to eigenmodes, and, in general,
there are two competing effects due entrainment. At first
entrainment lowers the velocity of the mode with a larger
superfluid component and increases its heat capacity, but
with increasing density this increase is overcome by strong
mixing which dramatically reduces the mean free path. Since
λ+ and λ− are of the same magnitude as λ
, and because
v+ � vt and v− � vt , their contribution to heat transport is
typically negligible. This new result implies that superfluid
modes may play a smaller role in heat transport in magnetars
than anticipated in Ref. [41], and it is likely that the enhanced
heat conduction due to the transverse mode will dominate in
much of the inner crust.

VII. CONCLUSIONS

A large fraction of dripped neutrons in the inner crust
of a neutron star are entrained by nuclei and move with
them, due to coherent (Bragg) scattering of neutrons by the
crystal lattice [8,9]. This nondissipative entrainment induces
a strong coupling between the superfluid and lattice dynamics
and is shown to affect the spectrum of low-energy collective
excitations of the inner crust. Superfluid and longitudinal
lattice phonons are found to be very strongly mixed, and
the speed of transverse lattice modes is greatly reduced, thus
leading to a significant enhancement of the crustal specific
heat at temperatures above ∼108 K. This, combined with
entrainment induced reduction in the electron mean free
path, entails an increase of the heat diffusion time in the
crust, especially for temperatures in the range 107–108 K
encountered in quasipersistent soft x-ray transients. This
warrants the need to take into account entrainment effects in
the interpretation of the observed thermal relaxation in these
accreting neutron stars.

Shear modes in neutron-star crusts with velocity in the range
vt 
 10−3–10−2 c have been proposed to play a role in the
interpretation of quasiperiodic oscillations (QPOs) observed
in giant flares from SGRs [54]. The fundamental frequency of
the global shear mode is given by �0 
 v̄t /2πR, R being the
neutron-star radius and v̄t an appropriate average of the shear
velocity in the inner crust, where the mode energy mainly
resides [55]. Since entrainment lowers vt by a factor of about
2–3 in most of the inner crust, our results suggest that �0 is too
small to account for the observed QPO frequencies in the giant
flares [56]. It is also likely that the existence of the low-velocity
longitudinal eigenmode in the coupled superfluid-solid inner
crust may be relevant to interpret global oscillation modes.

However, there are several issues that deserve further
attention before one can draw quantitative conclusions from
our study. The possible presence of nuclear “pastas” in the
deep regions of the inner crust, which has been neglected
here, would reduce the effects of Bragg scattering [6] and
change the temperature dependence of the specific heat at
low temperatures [57] due to the low dimensionality of these
configurations. Besides, the composition and the properties of
neutron-star crusts may differ from those of cold-catalyzed
matter that we have considered in this work. We anticipate
that quantum and thermal fluctuations of nuclei about their

035803-9



N. CHAMEL, D. PAGE, AND S. REDDY PHYSICAL REVIEW C 87, 035803 (2013)

equilibrium positions, crystal defects, impurities, and, more
generally, any source of disorder would presumably reduce
the number of entrained neutrons. Quantitative estimates of all
these effects is beyond the scope of this work.

ACKNOWLEDGMENTS

This work was financially supported by FNRS (Belgium)
and CompStar, a Research Networking Programme of the

European Science Foundation. N.C. thanks the Institute
for Nuclear Theory at the University of Washington for
its hospitality and the Department of Energy for partial
support. The work of S.R. was supported by DOE Grant
No. DE-FG02-00ER41132 and by the Topical Collaboration
to study neutrinos and nucleosynthesis in hot dense matter.
D.P.’s work was supported by grants from Conacyt (Grant No.
CB-2009/132400) and UNAM-DGAPA (Grant No. PAPIIT
IN113211).

[1] N. Chamel and P. Haensel, Living Rev. Relativity 11, 10 (2008),
http://relativity.livingreviews.org/Articles/lrr-2008-10/.

[2] J. M. Pearson, S. Goriely, and N. Chamel, Phys. Rev. C 83,
065810 (2011).

[3] M. Onsi, A. K. Dutta, H. Chatri, S. Goriely, N. Chamel, and
J. M. Pearson, Phys. Rev. C 77, 065805 (2008).

[4] J. M. Pearson, N. Chamel, S. Goriely, and C. Ducoin, Phys. Rev.
C 85, 065803 (2012).

[5] M. Baldo, E. E. Saperstein, and S. V. Tolokonnikov, Nucl. Phys.
A 749, 42c (2005).

[6] B. Carter, N. Chamel, and P. Haensel, Nucl. Phys. A 748, 675
(2005).

[7] B. Carter, N. Chamel, and P. Haensel, Int. J. Mod. Phys. D 15,
777 (2006).

[8] N. Chamel, Nucl. Phys. A 747, 109 (2005).
[9] N. Chamel, Phys. Rev. C 85, 035801 (2012).

[10] N. Andersson, K. Glampedakis, and L. Samuelsson, Mon. Not.
R. Astron. Soc. 396, 894 (2009).

[11] C. J. Pethick, N. Chamel, and S. Reddy, Prog. Theor. Phys.
Suppl. 186, 9 (2010).

[12] V. Cirigliano, S. Reddy, and R. Sharma, Phys. Rev. C 84, 045809
(2011).

[13] D. Page and S. Reddy, in Neutron Star Crust, edited by C.
Bertulani and J. Piekarewicz (Nova Science Publishers, 2012),
pp. 281–308.

[14] R. I. Epstein, Astrophys. J. 333, 880 (1988).
[15] N. N. Bogoliubov, V. V. Tolmachev, and D. N. Shirkov,

New Method in the Theory of Superconductivity (Academy of
Sciences of the USSR, Moscow, 1958).

[16] P. W. Anderson, Phys. Rev. 112, 1900 (1958).
[17] T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tanigawa, and

S. Chiba, Phys. Rev. C 72, 015802 (2005).
[18] B. Carter and E. Chachoua, Int. J. Mod. Phys. D 15, 1329 (2006).
[19] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,

Rinehart & Winston, 1976).
[20] G. Chabrier. N. W. Ashcroft, and H. E. Dewitt, Nature 360, 6399

(1992).
[21] B. Carter, N. Chamel, and P. Haensel, Nucl. Phys. A 759, 441

(2005).
[22] M. Baldo, E. E. Saperstein, and S. V. Tolokonnikov, Eur. Phys.

J. A 32, 97 (2007).
[23] N. Chamel, S. Goriely, J. M. Pearson, and M. Onsi, Phys. Rev.

C 81, 045804 (2010).
[24] M. Fortin, F. Grill, J. Margueron, D. Page, and N. Sandulescu,

Phys. Rev. C 82, 065804 (2010).
[25] K. Oyamatsu and M. Yamada, Nucl. Phys. A 578, 181 (1994).

[26] N. Chamel, S. Naimi, E. Khan, and J. Margueron, Phys. Rev. C
75, 055806 (2007).

[27] J. R. Stone and P. G. Reinhard, Prog. Part. Nucl. Phys. 58, 587
(2007).

[28] S. Goriely, M. Samyn, and J. M. Pearson, Phys. Rev C 75,
064312 (2007).
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