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Quantum Monte Carlo calculations of electromagnetic moments and transitions in A � 9 nuclei
with meson-exchange currents derived from chiral effective field theory
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Quantum Monte Carlo calculations of electromagnetic moments and transitions are reported for A � 9 nuclei.
The realistic Argonne v18 two-nucleon and Illinois-7 three-nucleon potentials are used to generate the nuclear
wave functions. Contributions of two-body meson-exchange current (MEC) operators are included for magnetic
moments and M1 transitions. The MEC operators have been derived in both a standard nuclear physics approach
and a chiral effective field theory formulation with pions and nucleons including up to one-loop corrections. The
two-body MEC contributions provide significant corrections and lead to very good agreement with experiment.
Their effect is particularly pronounced in the A = 9, T = 3/2 systems, in which they provide up to ∼20%
(∼40%) of the total predicted value for the 9Li (9C) magnetic moment.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) calculations of electroweak
transitions in A = 6, 7 nuclei were reported in Ref. [1]
and corrections for the magnetic moments (m.m.’s) and M1
transitions from two-body meson-exchange current (MEC)
operators were given in Ref. [2]. The QMC method is a
two-step process, with an initial variational Monte Carlo
(VMC) calculation to find a good trial function, followed by
a Green’s function Monte Carlo (GFMC) calculation to refine
the solution. When used with the Argonne v18 two-nucleon [3]
and Illinois-2 three-nucleon [4] potentials, the final GFMC
results reproduce the ground- and excited-state energies for
A � 10 nuclei very well [5–8].

In the present paper, we extend these calculations to
A = 8, 9 nuclei using the improved Illinois-7 three-nucleon
potential [9]. The electromagnetic (EM) current operator
includes, in addition to the standard one-body convection and
spin-magnetization terms for individual protons and neutrons,
a two-body MEC component. The latter is constructed
within two distinct frameworks, namely the same standard
nuclear physics approach (SNPA) illustrated in Refs. [2,10],
and the chiral effective field theory (χEFT) formulation of
Refs. [11–13].

We report energies, radii, magnetic and quadrupole mo-
ments, and a number of M1 and E2 transitions. The MEC
contributions can make significant corrections to the m.m.’s
and M1 transitions, and we find general agreement between
the two formulations and with experiment. However the
χEFT formulation provides better agreement for the calculated
m.m.’s, for which both MEC models are tested. The M1
transitions are calculated only with the χEFT MEC operators,
showing improved agreement with experiment in all cases.
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A brief review of the QMC calculational method is given
in Sec. II. The EM current operator is discussed in Sec. III.
Results and conclusions are given in Secs. IV and V.

II. QUANTUM MONTE CARLO METHOD

We seek accurate solutions of the many-nucleon
Schrödinger equation,

H�(Jπ ; T , Tz) = E�(Jπ ; T , Tz), (1)

where �(Jπ ; T , Tz) is a nuclear wave function with specific
spin-parity Jπ , isospin T , and charge state Tz. The Hamiltonian
used here has the form,

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk, (2)

where Ki is the nonrelativistic kinetic energy and vij and Vijk

are, respectively, the Argonne v18 (AV18) [3] and Illinois-7
(IL7) [9] potentials.

The VMC trial function �V (Jπ ; T , Tz) for a given nucleus
is constructed from products of two- and three-body correla-
tion operators acting on an antisymmetric single-particle state
of the appropriate quantum numbers. The correlation operators
are designed to reflect the influence of the interactions at short
distances, while appropriate boundary conditions are imposed
at long range [14,15]. The �V (Jπ ; T , Tz) has embedded
variational parameters that are adjusted to minimize the
expectation value,

EV = 〈�V |H |�V 〉
〈�V |�V 〉 � E0, (3)

which is evaluated by Metropolis Monte Carlo integration [16].
Here E0 is the exact lowest eigenvalue of H for the specified
quantum numbers. A good variational trial function can be
constructed with

|�V 〉 = S
A∏

i<j

⎡
⎣1 + Uij +

A∑
k �=i,j

ŨTNI
ijk

⎤
⎦ |�J 〉, (4)

035503-10556-2813/2013/87(3)/035503(15) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.87.035503


PASTORE, PIEPER, SCHIAVILLA, AND WIRINGA PHYSICAL REVIEW C 87, 035503 (2013)

where the S is a symmetrization operator. The Jastrow wave
function �J is fully antisymmetric and has the (Jπ ; T , Tz)
quantum numbers of the state of interest, while Uij and ŨTNI

ijk

are the two- and three-body correlation operators. Although we
construct the �V (Jπ ; T , Tz) to be an eigenstate of the isospin
T , we allow isobaric analog states with different Tz to have
different wave functions, reflecting primarily the difference in
Coulomb contributions, but also additional charge-symmetry-
breaking parts of the AV18 interaction.

The GFMC method [17,18] improves on the VMC
wave functions by acting on �V with the operator
exp [− (H − E0) τ ]. In practice, a simplified version H ′ of
the Hamiltonian H is used in the operator, which includes the
isoscalar part of the kinetic energy, a charge-independent eight-
operator projection of AV18 called AV8′, a strength-adjusted
version of the three-nucleon potential IL7′ (adjusted so that
〈H ′〉 ∼ 〈H 〉), and an isoscalar Coulomb term that integrates
to the total charge of the given nucleus. More detail can be
found in Refs. [15,19].

The operator is applied in small slices of imaginary time τ
to produce a propagated wave function:

�(τ ) = e−(H ′−E0)τ�V = [e−(H ′−E0)�τ ]n�V . (5)

Obviously �(τ = 0) = �V and �(τ → ∞) = �0. The algo-
rithm for propagation produces samples of the wave function
�(τ ) but does not provide gradient information. Therefore,
quantities of interest are evaluated in terms of a “mixed”
expectation value between �V and �(τ ):

〈O(τ )〉M = 〈�(τ )|O|�V 〉
〈�(τ )|�V 〉 , (6)

where the operator O acts on the trial function �V . The desired
expectation values would, of course, have �(τ ) on both sides;
by writing �(τ ) = �V + δ�(τ ) and neglecting terms of order
[δ�(τ )]2, we obtain the approximate expression,

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V ], (7)

where 〈O〉V is the variational expectation value.
For the energy, the mixed estimate of Eq. (6) with O = H ′

is itself a strict upper bound to the ground state for the
simpler Hamiltonian, as can be seen by commuting half the
imaginary time operator from the left to right hand side,
giving

〈H ′(τ )〉M = 〈�(τ/2)|H ′|�(τ/2)〉
〈�(τ/2)|�(τ/2)〉 . (8)

The total energy is then given by this mixed estimate for H ′
plus the small difference 〈(H − H ′)〉 evaluated by Eq. (7).

For off-diagonal matrix elements required by transitions the
generalized mixed estimate is given by the expression,

〈�f (τ )|O|�i(τ )〉√
〈�f (τ )|�f (τ )〉

√
〈�i(τ )|�i(τ )〉

≈ 〈O(τ )〉Mi
+ 〈O(τ )〉Mf

− 〈O〉V , (9)

where

〈O(τ )〉Mf
= 〈�f (τ )|O∣∣�i

V

〉
〈
�f (τ )

∣∣�f
V

〉
√√√√〈

�
f
V

∣∣�f
V

〉
〈
�i

V

∣∣�i
V

〉 , (10)

and 〈O(τ )〉Mi
is defined similarly. For more details see

Eqs. (19)–(24) and the accompanying discussions in Ref. [1].
Sources of systematic error in the GFMC evaluation of

operator expectation values (other than H ′) include the use
of mixed estimates and the constrained path algorithm for
controlling the Fermion sign problem in the propagation of
�(τ ). These are discussed in Ref. [19]; the convergence of the
current calculations is addressed at the beginning of Sec. IV.

III. THE ELECTROMAGNETIC CURRENT OPERATOR

The nuclear EM current operator is expressed as an
expansion in many-body terms. The current utilized in this
work includes up to two-body terms. In what follows, we use
the notation,

ki = p′
i − pi , Ki = (p′

i + pi)/2, (11)

k = (k1 − k2)/2, K = K1 + K2, (12)

where pi (p′
i) is the initial (final) momentum of nucleon i, and

q = k1 + k2 is the momentum associated with the external
EM field.

The one-body operator at leading order—or impulse ap-
proximation (IA) operator—consists of the convection and
the spin-magnetization currents associated with an individual
nucleon. It is derived from the nonrelativistic reduction of the
covariant single-nucleon current by expanding it in powers
of pi/mN , where mN is the nucleon mass and retaining the
leading-order term. It reads

jIA = e

2 mN

[2 eN,1 K1 + i μN,1 σ 1 × q], (13)

where

eN = (1 + τz)/2, κN = (κS + κV τz)/2, μN = eN + κN .

(14)

Here κS = −0.12 n.m. and κV = 3.706 n.m. are the isoscalar
(IS) and isovector (IV) combinations of the anomalous m.m.’s
of the proton and neutron, e is the electric charge, and τz is the
Pauli isospin projection equal to +1 for protons and −1 for
neutrons.

The calculations of the m.m.’s of the A � 9 nuclei have been
carried out utilizing two models for the two-body EM current
operator, which are discussed in the next two subsections.

A. χEFT current operator

Two-body EM currents have been derived in recent years
within pionful chiral effective field formulations [11–13,
20–22] (for a comparison of the different formalisms we
refer to the last four cited references). Here, we utilize
the operators constructed within the formalism developed in
Refs. [11,12]. The χEFT operators are expanded in powers
of pions’ and nucleons’ momenta, and consist of long- and
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FIG. 1. Diagrams illustrating one- and two-body χEFT EM
currents entering at LO (e Q−2), NLO (e Q−1), N2LO (e Q 0), and
N3LO (e Q 1). Nucleons, pions, and photons are denoted by solid,
dashed, and wavy lines, respectively.

intermediate-range components which are described in terms
of one- and two-pion exchange contributions, as well as
contact currents encoding short-range mechanisms unresolved
at the given order. These operators involve a number of low
energy constants (LECs) which are fixed to the experimental
data. The operators and fitting procedure have been recently
described in Ref. [13]. We refer to that work for a complete
listing of the operators utilized in the present calculations,
and limit ourselves to discussing the various contributions and
to summarizing the fitting strategy adopted to constrain the
LECs.

The χEFT EM operators are diagrammatically represented
in Fig. 1. They are expressed as an expansion in the low-
momentum scale Q. Referring to Fig. 1, the leading-order (LO)
term is counted as e Q−2, and corresponds to the IA one-body
operator given in Eq. (13). The NLO term (of order e Q−1)
consists of the seagull and pion-in-flight one-pion-exchange
(OPE) currents. These purely isovector currents involve two
known LECs, the axial coupling constant gA = 1.29, and the
pion decay amplitude Fπ = 184.6 MeV. The value for gA

is determined from the Goldberger-Treiman relation gA =
gπNNFπ/(2 mN ), where the πNN coupling constant is taken
to have the value g2

πNN/(4π ) = 13.63 ± 0.20 [23,24]. The
N2LO one-body contribution (of order e Q0) is a relativistic
correction to the IA operator, and is thus expressed in terms of
the nucleons’ experimental m.m.’s.

At N3LO (e Q) we distinguish among four kinds of
currents. The first one (“LOOP” in the tables) accounts for
the one-loop contributions of diagrams (e)–(i) and (l)–(o).
These terms lead to a purely isovector current which involves
the known LECs gA and Fπ . For diagram (m) we use the
expression given in Ref. [13] which differs from that given in
previous works [11,12] by some of the present authors.

Next we account for the contact currents illustrated in panel
(k). We distinguish between minimal (MIN) and nonminimal
(NM) currents. The former is linked to the χEFT contact
potential at N2LO via current conservation; therefore it
involves the same LECs entering the NN potential, and

is [12,13]

jN3LO
MIN = i e

16
(τ 1 × τ 2)z [(k1 − k2)

× [C2 + 3 C4 + C7 + (C2 − C4 − C7) σ 1 · σ 2]

+C7 [σ 1 · (k1 − k2) σ 2 + σ 2 · (k1 − k2) σ 1]]

− i C5

4
(σ 1 + σ 2) × (e1 k1 + e2 k2), (15)

where the low-energy constants C1, . . . , C7, have been con-
strained by fitting np and pp elastic scattering data and
the deuteron binding energy. We take their values from the
Machleidt and Entem 2011 review paper [25]. Unknown EM
LECs enter the NM current at N3LO which is given by

jN3LO
NM = −i e[C ′

15 σ 1 + C ′
16 (τ1,z − τ2,z) σ 1] × q + 1 ⇀↽ 2,

(16)

and the determination of the LECs C ′
15 and C ′

16 is discussed
below.

The N3LO OPE current, diagram (j) in Fig. 1, is given
by Refs. [12,13]

jN3LO
OPE = i e

gA

F 2
π

σ 2 · k2

ω2
k2

[(d ′
8τ2,z + d ′

9 τ 1 · τ 2)k2

− d ′
21(τ 1 × τ 2)z σ 1 × k2] × q + 1 ⇀↽ 2. (17)

We fix the LECs multiplying the isovector operators by relating
them, in a resonance saturation picture, to the couplings of the
N to � excitation, i.e.,

d ′
8

4
→ μγN� hA

9 mN (m� − mN )
, d ′

21 = d ′
8

4
, (18)

where m� and hA are the mass of the � (m� − mN =
294 MeV) and the N to � axial coupling constant, μγN� =
3 n.m. is the transition magnetic moment [26], and hA/Fπ =
fπN�/mπ with f 2

πN�/(4π ) � 0.35 as obtained by equating
the first-order expression of the �-decay width with the
experimental value. The current proportional to these LECs,
d ′

8 and d ′
21, reduces to the conventional N -� current. The

isoscalar term in Eq. (17) saturates the standard ρπγ transition
current [12,13,20].

The EM operators described above have power-law be-
havior for large momenta and need to be regularized before
they can be inserted between nuclear wave functions. The
regularization procedure is implemented by means of a cutoff
of the form [13],

C�(k) = exp(−k4/�4). (19)

We utilize the χEFT operators within a hybrid context, in
which the matrix elements are evaluated with wave functions
that are solutions of the realistic Hamiltonian given in Eq. (2).
Intrinsic to this approach is a mismatch between the short-
range behavior of the nuclear potential and that of the EM op-
erator. As a consequence, the current is not strictly conserved.

The fitting of the unknown LECs entering the EM currents,
namely C ′

15, C ′
16, d ′

8, and d ′
9 (with d ′

21 = d ′
8/4, as implied

by the �-saturation mechanism) was done in Ref. [13].
In that work, the cutoff � was varied in the range (500–
600) MeV and the LECs were constrained to reproduce
a set of nuclear EM observables for any given � in this
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TABLE I. Dimensionless values of the isoscalar and isovector
LECs entering the χEFT current operator at N3LO corresponding to
cutoff � = 600 MeV.

� C ′
15 × �4 d ′

9 × �2 C ′
16 × �4 d ′

8 × �2

600 5.238 –0.2033 –1.025 4.980

range. Three different parametrizations were tested in the
A = 2–3 nuclei. The trinucleon wave functions, required for
the evaluation of the matrix elements, were obtained with
the hyperspherical harmonics (HH) expansion discussed in
Refs. [27–29] with a nuclear Hamiltonian consisting of the
Argonne v18 (AV18) [3] and Urbana IX (UIX) [30] potentials.
(There is very little difference between the A = 3 wave
functions for AV18 + UIX and AV18 + IL7.) The three models
(labeled models I, II, and III) determine the LECs multiplying
isoscalar operators (i.e., C ′

15 and d ′
9) so as to reproduce the

experimental deuteron m.m. and the isoscalar combination
of the trinucleon m.m.’s. Models II and III fix the isovector
LEC d ′

8 by � saturation as indicated in Eq. (18), while C ′
16 is

constrained so as to reproduce either the np radiative capture
cross section at thermal neutron energies in model II, or the
isovector combination of the trinucleon magnetic moments in
model III. In model I, d ′

8 is left as a free parameter and is
constrained, along with C ′

16, so as to reproduce both the np
radiative capture cross section and the isovector combination
of the trinucleon m.m.’s. As already observed in Ref. [13],
model I leads to unnaturally large values for both isovector
LECs, severely spoiling the convergence pattern of the chiral
expansion. We have, nevertheless, tested all three models (with
cutoffs of both 500 and 600 MeV) in VMC m.m. calculations
for A = 3–8 nuclei, and verified that this pathology—i.e., the
lack of convergence—persists, and indeed gets worse, in larger
systems. We have therefore disregarded model I, and adopted
model III with cutoff � = 600 MeV in the present study. The
parameters entering this model, obtained from the calculations
performed in Ref. [13], are listed in Table I. Model III (with
� = 600 MeV), when tested in VMC calculations, produced
the best results for the m.m.’s.

B. SNPA current operator

The two-body currents in the SNPA formalism have been
described in detail most recently in Ref. [10]. These cur-
rents are separated into model-independent (MI) and model-
dependent (MD) terms. The former (MI) are derived from the
NN potential (the AV18 in present case), and their longitudinal
components satisfy, by construction, current conservation with
it. They contain no free parameters, and their short-range
behavior is consistent with that of the potential. The dominant
terms, isovector in character, originate from the static part
of the potential, which is assumed to be due to exchanges
of effective pseudoscalar (PS or “π -like”) and vector (V or
“ρ-like”) mesons. The associated currents are then constructed
by using the PS and V propagators, projected out of the static
potential [10]. Additional (short-range) currents follow by
minimal substitution in the momentum-dependent part of the
potential. They have both isoscalar and isovector terms, and

lead to contributions which are typically much smaller (in mag-
nitude) than those generated by the PS and V currents. At large
internucleon separations, where the NN potential is driven by
the OPE mechanism, the MI current coincides with the stan-
dard seagull and pion-in-flight OPE currents diagrammatically
illustrated in panels (b) and (c), respectively, of Fig. 1.

The MD currents are purely transverse, and unconstrained
by current conservation. The dominant term is associated with
excitation of intermediate � isobars, which are treated non-
perturbatively with the transition-correlation-operator method
developed in Ref. [31]. These � currents are discussed in
considerable detail in Ref. [2]. Additional (and numerically
small) MD currents arise from the isoscalar ρπγ and isovector
ωπγ transition mechanisms. The values for the coupling
constants entering them are also listed in Ref. [2].

IV. RESULTS

The IA m.m. for the eight- and nine-body nuclei have
significantly higher Monte Carlo statistical errors than most
quantities that we have computed with GFMC. Therefore we
present two examples of the GFMC propagation as a function
of the imaginary time τ . Figure 2 shows the propagation of
a typical case, 8Li. Three propagations are shown, one in
which the constrained propagation [19] is relaxed with 40
unconstrained steps (nu = 40) and two with nu = 80. The
nu = 40 case was made with 10 000 walkers while the nu = 80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.5

1.0

1.5

2.0

τ (MeV-1)

μ 
(μ

N
)

IA, nu=40, 10k
IA, nu=80, 60k
IA, nu=80, 140k

MEC, nu=40, 10k
MEC, IA, nu=80, 60k

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-44

-42

-40

-38

-36

-34

-32

E 
 (M

eV
)

nu=40, 10k
nu=80, 60k
nu=80, 140k

8Li (a)

FIG. 2. (Color online) Propagation of the energy (a) and m.m. (b)
as a function of imaginary time τ for the ground state of 8Li.
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cases are averages of calculations with 20 000 and 40 000
(60 000 total) and 20 000, 40 000, and 80 000 walkers (140 000
total), respectively. The energy is shown in panel (a); it is
similar to results shown in Ref. [19]. As can be seen, there
is a rapid drop from the initial VMC value at τ = 0 that
reaches a stable result before 0.1 MeV−1. The results for all
quantities presented in this article are averages over τ from 0.2
to 0.8 MeV−1, as indicated by the solid lines, with statistical
errors denoted by the dashed lines. The propagations of point
proton and neutron radii are similar, except that the starting
VMC values are within 5% of the final results. As was shown
in Ref. [19], these quantities are all converged by nu = 40,
often by nu = 20. The quadrupole moments are much more
difficult to evaluate, because they have long-lived oscillations
in the propagation time τ .

The IA and χEFT MEC m.m. are shown in panel (b). The
statistical fluctuations of the IA term are much worse than those
of the MEC term when the same number of configurations are
used. Also there may be a small systematic change in the IA
term going from nu = 40 to nu = 80; the average values are
1.120(27) and 1.164(17), respectively, giving a difference of
0.044(32). The MEC does not have this sensitivity; the two
calculations are in excellent agreement. However because of
the rapid growth of statistical error with increasing nu, the
nu = 80 calculation needs seven times as many walkers to
achieve the same statistical error.

The Monte Carlo statistical errors in our computed m.m.’s
are most severe for 9C, as is shown in Fig. 3. Two propagations
are shown, one in with nu = 60 and one with nu = 80. The

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-1.5

-1.0

-0.5

0.0

τ (MeV-1)

μ 
(μ

N
)

IA, nu=60, 20k

IA, nu=80, 320k

MEC, nu=60, 20k

(b)

-45

-40

-35

-30

E
  (

M
eV

)

nu=60, 20k

nu=80, 320k
9C

(a)

FIG. 3. (Color online) Propagation of the energy (a) and m.m. (b)
as a function of imaginary time τ for the ground state of 9C.

first was made using 20 000 walkers while the latter is the
average of two calculations, each with 160 000 walkers. Again
the energy, shown in panel (a), is well converged for both
cases. As before for 8Li, the χEFT MEC m.m., panel (b), has
smaller fluctuations for a given number of walkers than the IA
m.m. In this case the χEFT MEC is a large (80%) addition to
the IA m.m.

In both examples the statistical fluctuations in the IA term
are much larger than in the MEC term. However the evaluation
of the MEC requires much more computational effort per
walker than does the propagation and IA term. Therefore
for most of the calculations, we propagate a large number
of walkers using nu = 60 or 80 to obtain the IA m.m. term
(and also the other reported quantities). The MEC is obtained
with comparable statistical error using fewer walkers and the
two numbers and their errors combined to get the total m.m.
The propagations are averaged over τ = 0.2–0.8 MeV−1.

The large statistical fluctuations (and possible nu sensitiv-
ity) are coming from the IV combination of the spin term of the
IA m.m., Eq. (13). The IV convection term and both IS terms
have much smaller fluctuations. Thus if isospin symmetry is
assumed for the wave functions of isobaric analogs, we can
make precise statements about the IS m.m. However, if we do
not want to assume such isospin symmetry, as in the 9C–9Li
case below, then we have to make separate calculations for each
nucleus and the large errors in the IV parts make the extraction
of an IS m.m. with small statistical error impossible.

The energies E, point proton rms radii rp (and point
neutron rms radii rn for N �= Z nuclei), m.m.’s μ in IA, and
quadrupole moments Q for the nuclear states calculated in this
work are presented in Table II along with experimental values
where available. Experimental energies are from Ref. [33], EM
moments are from Refs. [34–37], and point radii are converted
from the charge radii given in Refs. [38–42]. Many energies for
A � 7 nuclei evaluated with the AV18 + IL7 Hamiltonian have
been reported previously in Ref. [43]. The present energies,
which are from independent calculations, are in agreement
with the previous results within the Monte Carlo statistical
errors shown in parentheses.

For many of the isobaric analog states, the energy and
moments are calculated using the GFMC wave functions
generated for the Tz = −T state and then simply interchanging
protons and neutrons to evaluate the Tz = +T state. These
calculations are denoted by an asterisk (*) in the table, and
will be referred to as charge-symmetry-conserving (CSC)
results. For 3He, 8B, and 9C ground states we also made
independent calculations with different starting VMC wave
functions and different isoscalar Coulomb terms [1,32] in
the GFMC propagator appropriate to the Tz = +T state.
We then use these wave functions to predict the quantities
in their isobaric analogs, i.e., 3H, 8Li, and 9Li. The pairs
of independent solutions for the isobaric analogs will be
referred to as charge-symmetry-breaking (CSB) results. Thus
six nuclear states have two entries in the table, comparing
a direct calculation with the prediction by charge symmetry
from its isobaric analog.

We see from the table that the energies in these paired
calculations are in generally good agreement, with the largest
discrepancy for A = 9, where the difference is ∼2% and the
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TABLE II. GFMC results for A � 9 nuclear states studied in this work, compared to experimental values [33–42]. Numbers in parentheses
are statistical errors for the GFMC calculations or experimental errors; errors of less than one in the last decimal place are not shown.

AZ(J π , T ) E (MeV) rp[rn] (fm) μ(IA) (n.m.) Q (fm2)

GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+, 0) −2.225 −2.2246 1.968 1.976(3) 0.847 0.8574 0.270 0.286
3H( 1

2

+
, 1

2 ) −8.50(1) −8.482 1.58[1.76] 1.58(10) 2.556 2.979
3H( 1

2

+
, 1

2 )* −8.46(1) 1.60[1.80] 2.550
3He( 1

2

+
, 1

2 ) −7.73(1) −7.718 1.80[1.60] 1.76(1) −1.743 −2.127
3He( 1

2

+
, 1

2 )* −7.75(1) 1.76[1.58] −1.750
6Li(1+, 0) −31.82(3) −31.99 2.39 2.45(4) 0.817 0.822 −0.20(6) −0.082(2)
6Li(0+, 1) −28.44(4) −28.43

7Li( 3
2

−
, 1

2 ) −39.0(1) −39.24 2.28[2.47] 2.31(5) 2.87 3.256 −4.0(1) −4.00(3)
7Li( 1

2

−
, 1

2 ) −38.9(1) −38.76
7Be( 3

2

−
, 1

2 )* −37.4(1) −37.60 2.47[2.28] 2.51(2) −1.06 −1.398(15) −6.7(1)
7Be( 1

2

−
, 1

2 )* −37.3(1) −37.17
8Li(2+, 1) −41.5(2) −41.28 2.10[2.46] 2.20(5) 1.16(2) 1.654 3.3(1) 3.14(2)
8Li(2+, 1)* −41.0(2) 2.11[2.48] 1.13(3) 3.0(4)
8Li(1+, 1) −40.1(2) −40.30

8Li(3+, 1) −38.5(3) −39.02
8B(2+, 1) −37.5(2) −37.74 2.48[2.11] 1.45(1) 1.036 5.9(4) 6.83(21)
8B(2+, 1)* −37.8(2) 2.46[2.10] 1.42(2) 6.5(2)
8B(1+, 1)* −36.6(2) −36.97
8B(3+, 1)* −34.8(3) −35.42
9Be( 3

2

−
, 1

2 ) −58.1(2) −58.16 2.37(1)[2.56(1)] 2.38(1) −1.18(1) −1.178 5.1(1) 5.29(4)
9Be( 5

2

−
, 1

2 ) −55.7(2) −55.74

9B( 3
2

−
, 1

2 )* −56.3(1) −56.31 2.56(1)[2.37(1)] 2.97(1) 4.0(3)
9B( 5

2

−
, 1

2 )* −53.9(2) −53.95
9Li( 3

2

−
, 3

2 ) −45.2(3) −45.34 1.97(1)[2.36(2)] 2.11(5) 2.66(3) 3.437 −2.3(1) −3.06(2)
9Li( 3

2

−
, 3

2 )* −45.9(3) 2.03(1)[2.45(1)] 2.64(4) −2.7(2)
9Li( 1

2

−
, 3

2 ) −43.2(4) −42.65
9C( 3

2

−
, 3

2 ) −39.7(3) −39.04 2.45(1)[2.03(1)] −0.75(3) −1.391 −4.1(4)
9C( 3

2

−
, 3

2 )* −38.8(3) 2.36(2)[1.97(1)] −0.82(4) −3.7(1)

statistical errors almost touch. In each of the CSB cases,
the T = −Tz state is more bound than its isobaric analog,
and the expectation values of individual terms in the nuclear
Hamiltonian, like 〈Ki〉 and 〈vij 〉, are larger in magnitude.

The point nucleon rms radii are slightly larger for the
proton-rich nuclei compared to the charge symmetric solution
from the proton-poor isobaric analog. For example, the proton
rms radius of 9Li (9C) is smaller (larger) when the appropriate
Coulomb term is included in the GFMC propagator, indicating
that the system is more compact (diffuse). If 9Li (9C) is
constructed from the 9C (9Li) solution, then it appears to be
a more diffuse (compact) system. Consistently with this weak
sensitivity of the calculated energies and radii to the charge
symmetry picture implemented to derive the nuclear wave
functions, we find that the calculated m.m.’s in IA are not
statistically different in the T = 1

2 , 1 cases and we see only
very weak evidence that the IA m.m.’s of the A = 9, T = 3/2

systems are affected by charge symmetry. The quadrupole
moments are also fairly consistent in the paired results and
close to the experimental values.

A. Magnetic moments in A = 2–9 nuclei

The calculations of the matrix elements, both diagonal and
off diagonal, have been described in detail in Refs. [1,2]. In par-
ticular, the IA matrix element is evaluated using the M1 opera-
tor induced by the one-body current given in Eq. (13), namely

μIA =
∑

i

(eN,i Li + μN,i σ i). (20)

The matrix element associated with the MEC contribution is〈
Jπ

f ,Mf

∣∣μMEC
∣∣Jπ

i ,Mi

〉

= −i lim
q→0

2 mN

q

〈
Jπ

f ,Mf

∣∣jMEC
y (q x̂)

∣∣Jπ
i ,Mi

〉
, (21)
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TABLE III. Magnetic moments in nuclear magnetons for A = 2–3 nuclei evaluated with SNPA and χEFT EM current operators. The current
model labeled χEFT† accounts for an exact calculation of the N2LO relativistic correction to the IA current (see text for explanation). Results
labeled with HH are obtained utilizing trinucleon wave functions constructed with the hyperspherical harmonics (HH) method developed in
Refs. [27–29], and a nuclear Hamiltonian consisting of AV18 + UIX. The remaining results (except for the deuteron ones which are exact)
are from GFMC calculations discussed in the text. The spatial symmetry (s.s.) of the nuclear wave function is also given. The IS and IV
labels indicate the isoscalar and isovector combinations. Results obtained with the χEFT and χEFT† models are not predictions (see text for
explanation).

Nucleus(J π ;T ) Current s.s. IA MEC Total Expt.

n( 1
2

+
; 1

2 ) −1.913
p( 1

2

+
; 1

2 ) 2.793
IS 0.440
IV 4.706
2H( 1

2

+
; 1

2 ) SNPA [2] 0.8470 0.0012 0.8482 0.8574
χEFT 0.8470 0.0134 0.8604(1)
χEFT† 0.8472 0.0102 0.8574

3H( 1
2

+
; 1

2 ) SNPA [3] 2.556(1) 0.347(2) 2.903(2) 2.979
χEFT 2.556(1) 0.404(1) 2.960(1)
χEFT†(HH) 2.569 0.410 2.979

3He( 1
2

+
; 1

2 ) SNPA [3] −1.743(1) −0.334(2) −2.077(2) −2.127
χEFT −1.743(1) −0.357(1) −2.100(1)
χEFT†(HH) −1.749 −0.378 −2.127

IS SNPA 0.407 0.006 0.413 0.426
χEFT 0.407 0.024 0.431
χEFT†(HH) 0.410 0.016 0.426

IV SNPA −4.299 −0.681 −4.980 −5.106
χEFT −4.299 −0.761 −5.060
χEFT†(HH) −4.318 −0.788 −5.106

where the spin-quantization axis and momentum transfer q
are, respectively, along the ẑ and x̂ axes, and MJ = J . The
various contributions are evaluated for two small values of
q < 0.02 fm−1 and then extrapolated smoothly to the limit
q = 0. The error due to extrapolation is much smaller than
the statistical error in the Monte Carlo sampling.

In Table III, we show, in addition to the proton and neutron
experimental m.m.’s, the experimental and calculated m.m.’s
for the A = 2 and 3 nuclei, including MEC contributions from
the EM currents in the SNPA and χEFT models. In the table we
label with IS and IV the isoscalar and isovector combinations
of the magnetic moments as given by

μ(T , Tz) = μ(IS) + μ(IV)Tz. (22)

With the label MEC we denote anything that goes beyond the
IA picture, therefore the χEFT MEC current includes also the
one-body relativistic correction operator entering at N2LO.
The results for the deuteron are from calculations of matrix
elements with wave functions which are exact solutions of
the two-body Schrödinger equation with the AV18 potential.
Results for the A = 3 nuclei are from GFMC calculations with
the nuclear Hamiltonian consisting of the AV18 two-body
and IL7 three-body potentials (AV18 + IL7), while those
designated with HH are results from hyperspherical harmon-
ics from Ref. [13] obtained with the nuclear Hamiltonian
consisting of the AV18 and the UIX three-body potentials
(AV18 + UIX). Both the GFMC and HH wave functions
have been constructed separately without exploiting charge
symmetry. Strictly speaking, the GFMC m.m.’s are for the

propagating Hamiltonian H ′, i.e., AV8′ + IL7′, as discussed in
Sec. II. The small 0.3%–0.5% difference between the GFMC
and HH IA values may be attributable to this difference in the
Hamiltonians.

Numerical differences between the calculated χEFT MEC
terms are also affected by an additional approximation im-
plemented in the GFMC calculations. The one-body m.m.
operator associated with the relativistic correction at N2LO
[illustrated in Fig. 1(d)] reads [11]

μN2LO = − e

8 m3
N

A∑
i=1

[{
p2

i , eN,i Li + μN,i σ i

}

+ eN,i pi × (σ i × pi)
]
, (23)

where pi = −i∇i and Li are the linear momentum and angular
momentum operators of particle i, and {. . . , . . .} denotes
the anticommutator. In the GFMC calculations we do not
explicitly evaluate the p2

i term, but instead approximate it
with its average value, that is, p2

i ∼ 〈p2
i 〉, as determined from

the expectation value of the kinetic energy operator in each
nucleus. This approximation leads, in the case of 3He, to a

TABLE IV. Values (in units of fm−2) of the approximated 〈p2
i 〉,

entering the χEFT current at N2LO, used in the GFMC calculations.

A 2 3 6 7 8 9

〈p2
i 〉 0.5 0.8 1.2 1.2 1.2 1.3
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5% difference in the MEC correction which itself is a 20%
correction to the total calculated m.m., and to an even smaller
effect in 3H. The values utilized in the GFMC calculations
are reported in Table IV, for the nuclei investigated in this
work. Of course, this approximation only affects the N2LO
χEFT operator. The HH calculations use the nonapproximated
operator at N2LO and are designated with χEFT†. These
calculations have been used to constrain the LECs entering
the χEFT currents, therefore the HH results presented in
Table III are not predictions, in that they reproduce the
experimental data by construction.

There are also tiny numerical differences between the SNPA
calculations presented here and those reported in Ref. [2].
These may be due to differences in the starting variational
wave functions as well as systematic uncertainties in the
GFMC calculation. At any rate, all the numerical differences
mentioned above are of little importance if one accounts for the
sensitivity of these results to the nuclear and current models

utilized. The results in the A = 2 and 3 nuclei show that the
SNPA model underestimates the isoscalar component in both
the deuteron and the trinucleon m.m.’s.

In Table V, we report the GFMC calculations for the
m.m.’s of the A = 6–9 nuclei. We compare results obtained
using either the SNPA or the χEFT MEC currents. The
MEC corrections evaluated in both models are qualitatively
in agreement. They boost the IA in the direction of the
experimental data in all cases, except for 6Li and 9Be. In these
systems the IA results are already in very good agreement
with the experimental data while the small MEC contributions
make the predictions slightly worse.

The calculations denoted with an asterisk (*) are obtained
exploiting charge symmetry, that is, by interchanging protons
and neutrons to generate the isobaric analog wave functions.
For the A = 7,8 nuclei, we verified that m.m. predictions
obtained with independent nuclear wave functions for the
isobaric analogs, i.e., calculations which account for the proper

TABLE V. Magnetic moments in nuclear magnetons for A = 6–9 nuclei evaluated with SNPA and χEFT EM current operators. Results
labeled with a star are obtained exploiting charge symmetry. The dominant spatial symmetry (s.s.) of the nuclear wave function is given.

Nucleus(J π ;T ) Current s.s. IA MEC Total Expt.

6Li(1+;0) SNPA [42] 0.817(1) −0.010(1) 0.807(1) 0.822
χEFT 0.817(1) 0.020(1) 0.837(1)

7Li( 3
2

−
; 1

2 ) SNPA [43] 2.87(1) 0.25(2) 3.12(2) 3.256
χEFT 2.87(1) 0.37(1) 3.24(1)

7Be( 3
2

−
; 1

2 )* SNPA [43] −1.06(1) −0.39(2) −1.45(2) −1.398
χEFT −1.06(1) −0.36(1) −1.42(1)

IS SNPA 0.90 −0.07 0.83 0.929
χEFT 0.90 0.01 0.91

IV SNPA −3.93 −0.64 −4.57 −4.654
χEFT −3.93 −0.73 −4.66

8Li(2+;1) SNPA [431] 1.16(2) 0.20(2) 1.36(3) 1.654
χEFT 1.16(2) 0.33(1) 1.49(2)

8B(2+;1)* SNPA [431] 1.42(2) −0.42(2) 1.00(3) 1.036
χEFT 1.42(2) −0.31(1) 1.11(2)

IS SNPA 1.29 −0.11 1.18 1.345
χEFT 1.29 0.01 1.30

IV SNPA 0.13 −0.31 −0.18 −0.309
χEFT 0.13 −0.32 −0.19

9Li( 3
2

−
; 3

2 ) SNPA [432] 2.66(3) 0.34(4) 3.00(5) 3.437
χEFT 2.66(3) 0.70(2) 3.36(4)

9C( 3
2

−
; 3

2 ) SNPA [432] −0.75(3) −0.48(4) −1.23(5) −1.391
χEFT −0.75(3) −0.60(3) −1.35(4)

IS SNPA 0.96 −0.07 0.89 1.023
χEFT 0.96 0.05 1.01

IV SNPA −1.14 −0.27 −1.41 −1.609
χEFT −1.14 −0.43 −1.57

9Be( 3
2

+
; 1

2 ) SNPA [441] −1.18(1) −0.12(1) −1.30(1) −1.178
χEFT −1.18(1) −0.11(1) −1.29(1)

9B( 3
2

+
; 1

2 )* SNPA [441] 2.97(1) −0.10(1) 2.87(1) n.a.
χEFT 2.97(1) 0.09(1) 3.06(1)

IS SNPA 0.89 −0.11 0.78
χEFT 0.89 −0.01 0.88

IV SNPA 4.15 0.02 4.17
χEFT 4.15 0.20 4.35
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isoscalar Coulomb term in the starting VMC wave functions
as well as in the GFMC propagator, are essentially identical to
the standard charge symmetric results, and therefore we do not
report them. In the A = 9, T = 3

2 case there is weak evidence
for a CSB effect so in this case we show the results of the two
independent calculations.

Also in the A = 6–9 nuclear m.m.’s, the difference between
the SNPA and χEFT corrections is more pronounced in the
isoscalar component. In all cases, the χEFT corrections are
more positive (or less negative) than the corresponding SNPA.
This makes the χEFT predictions closer to the experimental
values. The isovector corrections evaluated with the two
models are reasonably in agreement with each other, although
they are bigger when derived from the χEFT model. MEC
corrections are crucial to bring the theory closer to the
experimental values. Their effect is particularly pronounced
in the isovector combination of the A = 9, T = 3/2 nuclei’s
m.m.’s, for which the MEC SNPA (χEFT) correction provides
∼20% (∼30%) of the total calculated isovector contribution.

It is interesting to note that, despite the large effect observed
in the A = 9, T = 3/2 systems, MEC corrections are consid-
erably smaller in the A = 9, T = 1/2 nuclei. This feature can
be explained by considering the dominant spatial symmetry
(s.s.) of the wave functions associated with the A = 9 systems.
In particular, the dominant spatial symmetry of 9Be (9B) is
[441], corresponding to an [α, α, n(p)] structure as shown in
Ref. [44]. A single nucleon outside an α particle feels no net
OPE potential, and this holds true also for a single nucleon
outside a double-α [44] symmetry state. Consequently, the
NLO OPE currents illustrated in Figs. 1(b) and 1(c), which
are generally the largest MEC terms in both SNPA and χEFT
approaches, do not contribute significantly. On the other hand,
the dominant spatial symmetry of 9C (9Li) is [432] ∼ [α, 3He
(3H), pp (nn)], and the NLO OPE term contributes in both the
trinucleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close to the
experimental value, while those for 9Li and 9C are far from
the data, so this pattern of small and large MEC corrections
provides good overall agreement with the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–37]
(there are no data for the m.m. of 9B) are represented by black
stars. We show also the experimental values for the proton and
neutron m.m.’s, as well as their sum, which corresponds to the
m.m. of an S-wave deuteron. The experimental values of the
A = 2–3 m.m.’s have been utilized to fix the LECs, therefore
predictions are for A > 3 nuclei. The blue dots labeled as
GFMC(IA) represent theoretical predictions obtained with the
standard IA one-nucleon EM current entering at LO: diagram
(a) of Fig. 1. The GFMC(IA) results reproduce the bulk
properties of the m.m.’s of the light nuclei considered here.
In particular, we can recognize three classes of nuclei with
nonzero m.m.’s, i.e., odd-even nuclei whose m.m.’s are driven
by an unpaired valence proton, even-odd nuclei driven by
an unpaired valence neutron, and odd-odd nuclei with either
a deuteron cluster or a triton-neutron (3He-proton) cluster
outside an even-even core. Predictions which include all the
contributions to the N3LO χEFT EM currents illustrated in
Fig. 1 are represented by the red diamonds of Fig. 4, labeled

-3

-2

-1

0

1

2

3

4

μ 
(μ

N
)

EXPT

GFMC(IA)
GFMC(TOT)

n

p

2H

3H

3He

6Li

7Li

7Be

8Li 8B

9Li

9Be

9B

9C

FIG. 4. (Color online) Magnetic moments in nuclear magnetons
for A � 9 nuclei. Black stars indicate the experimental values [35–
37], while blue dots (red diamonds) represent GFMC calculations
which include the IA one-body EM current (total χEFT current up
to N3LO). Predictions are for nuclei with A > 3.

GFMC(TOT). In all cases except 6Li and 9Be (where the IA is
already very good and the MEC correction is very small) the
predicted m.m.’s are closer to the experimental data when the
MEC corrections are added to the IA one-body EM operator.

It is also interesting to consider the spatial distribution of
the various contributions to the m.m., i.e., to examine the
magnetic density. The one-body IA contributions from the
starting VMC wave functions are shown in Fig. 5 for
the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–9C.
(The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the red
upward-pointing triangles are the contribution from the proton
spin, μp[ρp↑(r) − ρp↓(r)], and similarly the blue downward-
pointing triangles are the contribution from the neutron spin.
The green diamonds are the proton orbital (convection current)
contribution, and the black circles are the sum. The integrals
of the black curves over d3r give the total m.m.’s of the nuclei
in IA.

For the neutron-rich lithium isotopes, there is one unpaired
proton (embedded in a p-shell triton cluster) with essentially
the same large positive contribution in all three cases. The
proton orbital term is also everywhere positive, but relatively
small. For 7Li and 9Li, the neutrons are paired up, and give only
a small contribution, so the total m.m. is close to the sum of the
proton spin and orbital parts. However, 8Li has one unpaired
neutron which acts against the proton and significantly reduces
the overall m.m. values. For the proton-rich isobaric analogs,
there is one unpaired neutron (embedded in a p-shell 3He
cluster) with the same sizable negative contribution in all three
cases. In 7Be and 9C, the protons are paired up and give little
net contribution, but the orbital term is always positive and acts
against the neutron spin term. In 8B there is also one unpaired
proton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.
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FIG. 5. (Color online) Magnetic density in nuclear magnetons per fm3 for selected nuclei (see text for explanation).

In Table VI, we explicitly show the various contributions
entering the χEFT operator. The labeling in the table was
defined in Sec. III A. We list the contributions at each order. At

N3LO, we separate the terms that do not depend on EM LECs
(i.e., the LOOP contribution and the contact MIN currents; the
former depends on the known axial coupling constant gA, and

TABLE VI. Magnetic moments in nuclear magnetons of A � 9 nuclei evaluated with the χEFT current operator. Individual contributions
entering at LO (IA), NLO, N2LO, N3LO are shown (see text for explanation). Remaining notation is as defined in Table V.

Nucleus(J π ;T ) s.s. IA NLO N2LO N3LO N3LO-LECs MEC Total Expt.

LOOP MIN NM OPE

2H(1+;0) [2] 0.8470 – −0.0042 – 0.0364 −0.0135 −0.0052 0.0135 0.8604 0.8574
3H( 1

2

+
; 1

2 ) [3] 2.556(1) 0.253 −0.033 0.058 0.035 −0.011 0.102 0.404 2.960(1) 2.979
3He( 1

2

+
; 1

2 ) [3] −1.743(1) −0.248 0.024 −0.055 0.056 −0.022 −0.110 −0.357 −2.100(1) −2.127
IS 0.407(1) 0.002 −0.005 0.001 0.046 −0.017 −0.004 0.023 0.430(1) 0.426
IV 4.299(1) −0.501 0.057 −0.113 0.020 −0.011 −0.213 −0.760 −5.060(1) −5.106
6Li(1+;0) [42] 0.817(1) – −0.012 – 0.063 −0.023 −0.007 0.020(1) 0.837(1) 0.822
7Li( 3

2

−
; 1

2 ) [43] 2.87(1) 0.237 −0.062 0.064 0.034 −0.012 0.107 0.37(1) 3.24(1) 3.256
7Be( 3

2

−
; 1

2 )* [43] −1.06(1) −0.237 0.015 −0.064 0.072 −0.027 −0.120 −0.36(1) −1.42(1) −1.398
IS 0.90 – −0.024 – 0.053 −0.020 −0.006 0.01 0.91 0.929
IV −3.93 −0.473 0.078 −0.127 0.038 −0.014 −0.227 −0.73 −4.66 −4.654
8Li(2+;1) [431] 1.16(2) 0.226 −0.038 0.045 0.056 −0.021 0.062 0.33(1) 1.49(2) 1.654
8B(2+;1)* [431] 1.42(2) −0.226 −0.020 −0.045 0.090 −0.033 −0.077 −0.31(1) 1.11(2) 1.036
IS 1.29 – −0.029 – 0.073 −0.027 −0.007 0.01 1.30 1.345
IV 0.13 −0.226 0.009 −0.045 0.017 −0.006 −0.070 −0.32 −0.19 −0.309
9Li( 3

2

−
; 3

2 ) [432] 2.66(3) 0.403 −0.076 0.141 0.108 −0.016 0.141 0.70(2) 3.36(4) 3.437
9C( 3

2

−
; 3

2 ) [432] −0.75(3) −0.372 0.039 −0.135 0.058 −0.031 −0.156 −0.60(3) −1.35(4) −1.391
IS 0.96 0.015 −0.019 0.003 0.083 −0.024 −0.008 0.05 1.01 1.023

IV −1.14 −0.258 0.038 −0.092 −0.017 −0.005 −0.099 −0.43 −1.57 −1.609
9Be( 3

2

+
; 1

2 ) [441] −1.18(1) −0.084 0.019 −0.037 0.041 −0.009 −0.038 −0.11(1) −1.29(1) −1.178
9B( 3

2

+
; 1

2 )* [441] 2.97(1) 0.084 −0.057 0.037 −0.005 −0.004 0.032 0.09(1) 3.06(1) n.a.
IS 0.89 – −0.019 – 0.018 −0.007 −0.003 −0.01 0.88
IV 4.15 0.168 −0.076 0.074 −0.046 0.005 0.070 0.20 4.35
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pion decay amplitude Fπ , while the latter depends on the strong
LECs entering the NNχEFT potential at N2LO) and those that
depend on them (i.e., the contact NM and the OPE current
whose isovector component was saturated with the �
transition current). In most cases, chiral convergence is
observed but for the isovector N3LO OPE contribution whose
order of magnitude is in some cases comparable to the OPE
contribution at NLO. It is likely that the explicit inclusion of
� degrees of freedom in the present χEFT would significantly
improve the convergence pattern, because in such a theory this
isovector OPE current, presently entering at N3LO, would be
promoted to N2LO.

In Table VI, we do not provide the errors associated
with the individual terms at each order because they are
highly correlated. We limit ourselves to report the errors
associated with the IA, MEC, and total results. Also in this
table, we denote calculations performed enforcing charge
symmetry with an asterisk (*). In these calculations, the
isoscalar component of pure isovector operators (that is the
OPE operator at NLO and the LOOP operator at N3LO)
are obviously zero. Calculations in which the nuclear wave
functions are constructed independently present an isoscalar
admixture even in the purely isovector corrections, namely
the NLO and N3LO LOOP. We do not report the individual
contributions entering the SNPA calculations. For the A � 7
nuclei, they are found to be in agreement with those reported
in Ref. [2].

The A = 9, T = 3/2 nuclei are very interesting systems
not only for the large effect produced by the isovector MEC
correction, but also for the “anomaly” associated with their
isoscalar component. In Ref. [45] and references therein, the
role of mirror symmetry—or charge symmetry—in the A =
9, T = 3/2 nuclei was investigated. In particular, if mirror
symmetry is assumed, that is, if the equality of nn and pp
forces is enforced, then the isoscalar spin expectation value
〈σz〉 can be deduced as

〈σz〉 = μ(Tz = +T ) + μ(Tz = −T ) − J(
g

p
s + gn

s − 1
)/

2
= 2μ(IS) − J

0.3796
.

(24)

In the equation above, μ and μ(IS) are the total m.m. and the
isoscalar combination of the mirror nuclei m.m.’s, J is the total
angular momentum, and g

p(n)
s is the spin g factor of the proton

(neutron). The experimental value of 〈σz〉 is 1.44 [46] which
is—quoting from Ref. [45]—“anomalously large if compared
to the single-particle estimate of 1.”

Driven by the discussion reported in Ref. [45], we calculate
the 〈σz〉 value for the A = 9, T = 3/2 nuclei using the CSB
and CSC models described at the beginning of this section.
To make this last comment explicit, we show three different
calculations for the 9Li and 9C m.m.’s in Table VII using
the χEFT MEC. The first calculation is performed by con-
structing the nuclear wave functions independently including
the appropriate Coulomb term in the GFMC propagator for
each nucleus. The second (third) CSC calculation uses a 9C
(9Li) wave function which is constructed from that of 9Li
(9C) by interchanging protons with neutrons, i.e., by imposing
mirror symmetry. The CSB isoscalar component is obtained

TABLE VII. Magnetic moments in nuclear magnetons of the A =
9, T = 3/2 systems. The nuclear wave functions are derived within a
CSB picture (first block), and in a CSC framework (last two blocks).
See text for further explanations.

Nucleus(J π ;T ) IA MEC Total Expt.

9Li( 3
2

−
; 3

2 ) 2.66(3) 0.70(2) 3.36(4) 3.437
9C( 3

2

−
; 3

2 ) −0.75(3) −0.60(3) −1.35(4) −1.391
IS 0.96 0.05 1.01 1.023
IV −1.14 −0.43 −1.57 −1.609
9Li( 3

2

−
; 3

2 ) 2.66(3) 0.70(2) 3.36(4) 3.437
9C( 3

2

−
; 3

2 )* −0.82(4) −0.68(2) −1.50(4) −1.391
IS 0.93 0.01 0.94 1.023
IV −1.16 −0.46 −1.62 −1.609
9Li( 3

2

−
; 3

2 )* 2.64(4) 0.62(3) 3.26(5) 3.437
9C( 3

2

−
; 3

2 ) −0.75(3) −0.60(3) −1.35(4) −1.391
IS 0.94 0.01 0.95 1.023
IV −1.13 −0.40 −1.53 −1.609

combining the m.m.’s of 9C and 9Li obtained independently.
Therefore the error associated with this observable follows
from propagating the statistical errors of the calculated m.m.’s
of the A = 9, T = 3/2 nuclei. Within the CSC picture, the
error associated with the isoscalar combination of the A = 9,
T = 3/2 m.m.’s can be directly evaluated in the GFMC
calculation. These CSC isoscalar values are found to be very
stable, with a statistical error of less that ∼1%.

We use the CSC and CSB IA and total values for the
isoscalar combination of the 9C and 9Li m.m.’s to evaluate
the 〈σz〉 value as given in Eq. (24). The results are shown
in Table VIII. From this table, we see that the CSC values
are consistent with the single particle prediction of 1. We
observe that, in the CSB calculation both the isoscalar IA
and MEC corrections are larger than those obtained in the
mirror-symmetry-based picture. However, the error associated
with this last calculation does not allow us to conclude with
certainty that implementing a CSB picture would resolve
the aforementioned “anomaly” associated with the A = 9,
T = 3/2 nuclei. Within the statistics available at present,
we can argue that, to reproduce the experimental 〈σz〉 value,
one would have to combine both the effect of CSB and the
correction due to the MEC currents. As briefly mentioned
before, we investigated the role of mirror symmetry breaking
also in the A = 7, 8 nuclei and found that the calculated m.m.’s
are not sensitive to the different nuclear wave functions. A
trivial argument to justify this result is to be found in the isospin
of the investigated nuclei: Intuitively, one would expect the

TABLE VIII. Spin expectation value 〈σz〉 for the mirror nuclei
9Li and 9C evaluated within CSB and CSC frameworks (see text for
explanation).

Symmetry IA Total Expt.

CSB : 9Li( 3
2

−
; 3

2 ), 9C( 3
2

−
; 3

2 ) 1.11(11) 1.37(15) 1.44
CSC : 9Li( 3

2

−
; 3

2 ), 9C( 3
2

−
; 3

2 )* 0.95(1) 1.00(1)
CSC : 9Li( 3

2

−
; 3

2 )*,9C( 3
2

−
; 3

2 ) 1.00(1) 1.05(1)
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TABLE IX. Matrix elements in units of nuclear magnetons and widths of M1 transitions in A = 6–9 nuclei; IA and MEC contributions are
shown separately.

(J π
i → J π

f ) M1 and � IA MEC Total Expt.

6Li(0+ → 1+) M1 3.63(1) 0.38 4.01(1)
�(eV) 6.90(2) 8.41(3) 8.19(17)

7Li( 1
2

− → 3
2

−
) M1 2.66(1) 0.47(1) 3.13(2)

�(10−3 eV) 4.47(5) 6.19(8) 6.30(31)
7Be( 1

2

− → 3
2

−
) M1 2.31(2) 0.41(1) 2.72(2)

�(10−3 eV) 2.44(4) 3.39(6) 3.43(45)
8Li(1+ → 2+) M1 3.47(4) 0.74(2) 4.21(5)

�(10−2 eV) 4.4(1) 6.5(2) 5.5(1.8)
8B(1+ → 2+) M1 3.17(5) 0.67(2) 3.84(6)

�(10−2 eV) 1.8(1) 2.6(1) 2.52(11)
8Li(3+ → 2+) M1 0.98(6) 0.20(5) 1.17(8)

�(10−2 eV) 1.8(2) 2.6(3) 7.0(3.0)
8B(3+ → 2+) M1 1.31(6) 0.23(5) 1.56(8)

�(10−2 eV) 3.5(3) 4.9(5) 10(5)
9Li( 1

2

− → 3
2

−
) M1 2.28(3) 0.36(4) 2.64(5)

�(10−1 eV) 5.9(2) 7.9(3) n.a.
9Be( 5

2

− → 3
2

−
) M1 1.42(3) 0.20(2) 1.62(4)

�(10−2 eV) 5.6(3) 7.2(4) 8.9(1.0)

effect of mirror symmetry breaking to increase as �Tz = 2 T
of the mirror nuclei becomes larger.

B. Electromagnetic transitions in A = 6–9 nuclei

In Table IX, we report the results for the M1 transition
matrix elements and the transition widths in nuclei with
mass number A � 9. For these calculations—obtained with
the χEFT EM current operator—we report only the IA and

the MEC contributions. Experimental data in the table are
taken from Refs. [35,36]. The widths � in units of MeV are
calculated as

�M1 = 0.890

(
�E

h̄c

)3

B(M1), (25)

where h̄c is in units of MeV fm, and B(M1) is the squared
reduced matrix element of the m.m. operator between the
initial and the final nuclear state divided by (2Ji + 1), with
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FIG. 6. (Color online) M1 transition density in nuclear magnetons per fm3 for selected nuclei (see text for explanation).
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Ji the initial state angular momentum. In the equation above,
�E is the energy difference between the final and the initial
state (in units of MeV) for which we take the experimental
values as given in Refs. [35,36].

These calculations are obtained, as before, by propagating
up to τ = 0.8 MeV−1 with an evaluation after every 40 propa-
gation steps, i.e., at intervals of τ = 0.02 MeV−1. The analysis
of the IA and the MEC contributions are performed separately
in the same fashion that was implemented for the m.m.’s.

The predictions for the A = 6, 7 nuclei as well as those for
the A = 8, (1+ →2+) transitions are in very good agreement
with the experimental data. In all these cases the MEC
corrections are needed to bring the theory in agreement with
the experimental data. Results for the (3+ → 2+) transitions
in the A = 8 systems underpredict the experimental data,
however, the latter have large experimental errors, and thus it
is difficult to reach any robust conclusions as to the actual level
of agreement between theory and experiment. The transition
in 9Be is known with good accuracy, but the predicted width
is lower than the experimental data although the error bars
almost touch. We also report a prediction for the ( 1

2
− → 3

2
−

)
M1 transition in 9Li which has not been measured yet. We did
not calculate the 9C transition to its unbound 1

2
−

state.
The magnetic transition densities in IA as obtained from the

VMC starting wave functions are shown in Fig. 6. As before,
the red upward-pointing triangles are the contribution from
the proton spin term, the blue downward-pointing triangles are
from the neutron spin, the green diamonds are from the proton
orbital term, and the black circles are the total IA contribution.
For the lithium isotopes, the transitions are predominantly
from the proton spin term, i.e., these are almost pure proton
spin-flip transitions. For 7Be and 8B, the neutron spin term
is the most important, but with some contribution from the
proton spin and orbital terms. The neutron spin-flip is also the
biggest term in the 9Be transition, but here the proton orbital
piece is almost the same size.

TABLE X. Matrix elements in units of e fm2 and widths of E2
transitions in A = 7–9 nuclei. Only IA results are shown.

(J π
i → J π

f ) E2 and � IA Expt.

7Li( 1
2

− → 3
2

−
) E2 5.59(16)

�(10−7 eV) 3.1(2) 3.30(21)
7Be( 1

2

− → 3
2

−
) E2 9.43(24)

�(10−7 eV) 5.2(3) n.a.
8Li(1+ → 2+) E2 2.04(8)

�(10−6 eV) 1.0(1) n.a.
8B(1+ → 2+) E2 4.40(16)

�(10−6 eV) 1.4(1) n.a.
8Li(3+ → 2+) E2 6.09(10)

�(10−4 eV) 2.5(1) n.a.
8B(3+ → 2+) E2 8.64(23)

�(10−4 eV) 5.8(3) n.a.
9Li( 1

2

− → 3
2

−
) E2 3.69(9)

�(10−4 eV) 7.7(4) n.a.
9Be( 5

2

− → 3
2

−
) E2 12.39(15)

�(10−3 eV) 1.7(1) 1.89(14)

0 1 2 3

Ratio to experiment

EXPT

6Li(0+ → 1+) B(M1)

7Li(1/2
- → 3/2

-) B(M1)

7Li(1/2
- → 3/2

-) B(E2)

7Be( 1/2
- → 3/2

-) B(M1)

8Li(1+ → 2+) B(M1)

8Li(3+ → 2+) B(M1)

8B(1+ → 2+) B(M1)

8B(3+ → 2+) B(M1)

9Be( 5/2
- → 3/2

-) B(M1)

9Be( 5/2
- → 3/2

-) B(E2)

GFMC(IA) GFMC(TOT)

FIG. 7. (Color online) Ratio to the experimental M1 and E2
transition widths in A � 9 nuclei. Black stars with error bars indicate
the experimental values [35,36], while blue dots (red diamonds)
represent GFMC calculations which include the IA one-body EM
current (total χEFT current up to N3LO).

Finally in Table X, we show IA results for the electric
quadrupole matrix elements and the associated transition
widths. The latter in units of MeV is

�E2 = 0.241

(
�E

h̄c

)5

B(E2), (26)

where B(E2) is the square of the reduced matrix element of
the electric quadrupole operator given by

ρIA =
∑

i

eN,i r2
i Y2(r̂i), (27)

where YL is the spherical harmonic. The IA picture provides a
decent description of the two experimental data points that are
available, which might possibly be improved by the inclusion
of two-body effects. This topic has not been addressed in this
work although effort in this direction is underway.

The results discussed in this section are summarized in
Fig. 7 for EM transitions whose widths are known experimen-
tally. We observe that in most cases, the agreement with the
experimental data is excellent, and that the MEC contributions
are crucial for the B(M1) cases.
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V. CONCLUSIONS

In this work we have reported GFMC results for EM
moments and transitions of A � 9 nuclei. The calculations of
m.m.’s and M1 transitions account for the effect of two-body
EM currents, for which we considered two models: (i) the
SNPA model described in Refs. [2,10], and (ii) the pionful
χEFT EM operator derived in Refs. [11–13]. The goals of
this work were to continue the study initiated in Refs. [1,2],
by extending the calculations to systems with A > 7, and to
test the χEFT two-body EM current operator within a hybrid
context. Both models describe the long-range behavior of the
two-body EM current in terms of OPE contributions. These
pseudoscalar terms constitute the major contribution to the
total MEC correction. The models also include, albeit in
different formulations, the effects due to currents involving
� isobar degrees of freedom. While the SNPA current does
not involve free parameters, the χEFT EM operator invokes a
number of unknown LECs which have been fixed to reproduce
EM observables in the A = 2, 3 nuclei. This additional
freedom is probably responsible for the closer agreement with
experiment given by the χEFT formulation compared to the
SNPA model. In particular, both the isoscalar and isovector
MEC corrections for the m.m.’s are closer to experimental data
when calculated with the χEFT EM currents. Nevertheless, we
find that the two models are in good qualitative agreement and
both support the necessity of adding MEC corrections to reach
agreement with the experimental data.

In view of the study presented in Ref. [45] and references
therein, we have paid special attention to the 9Li, 9C mirror nu-
clei. The experimental value for the isoscalar spin expectation
value, 〈σz〉 = 1.44, was considered “anomalous” and various
explanations, including a broken mirror symmetry, have been
suggested. We find that calculations of 〈σz〉 obtained assuming
mirror symmetry are close to the single-particle estimate of
1, even if MEC contributions are included. When the mirror
nuclei wave functions are constructed individually, including
the appropriate Coulomb differences in both the starting VMC
trial function and GFMC propagator, and thus breaking mirror
symmetry, both the IA and MEC components of 〈σz〉 are

increased in the right direction, giving a result that is consistent
with the experimental value, and indicating that both broken
symmetry and MEC contributions are required. However, the
error associated with this last calculation of the 〈σz〉 value is
too large to make a definitive statement at this stage.

Finally, we have studied a number of EM transitions
induced by the M1 and E2 operators. After including the
MEC contributions, the calculated M1 transition widths are
in excellent agreement with the experimental data for the
A = 6, 7 nuclei and the A = 8 (1+ →2+) cases, while theory
underpredicts the data in the A = 8 (3+ →2+) and A =
9 cases. However, the latter A = 8 transitions have large
experimental errors, so new precise measurements for these
as well as for the as yet unmeasured 9Li( 3

2
− → 1

2
−

) transition
would be most useful. For the E2 transitions we provide
only IA results. While two-body corrections to the IA charge
operator have been derived in both SNPA [48,49] and χEFT
[50], nevertheless their leading contribution due to OPE is
expected to be small, because the associated operator vanishes
in the static limit. The present IA calculations appear to
describe satisfactorily the E2 transition widths for both the
7Li( 1

2
− → 3

2
−

) and 9Be( 5
2

− → 3
2

−
) cases.
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