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We study nuclear medium effects and the non-isoscalarity correction in the extraction of weak mixing angle
sin2θW using the Paschos-Wolfenstein (PW) relation. The calculations are performed for the iron nucleus.
Nuclear medium effects such as Fermi motion, binding, shadowing, and antishadowing corrections and pion
and rho meson cloud contributions have been taken into account. Calculations have been performed in the local
density approximation by using a relativistic nuclear spectral function which includes nucleon correlations. The
results are discussed along with the experimental result inferred by the NuTeV Collaboration. These results may
be useful for the ongoing MINERνA experiment as well as for the proposed NuSOnG experiment.
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I. INTRODUCTION

MINERνA [1] is presently taking data using neutrinos
from NuMI Lab, and its aim is to perform cross section
measurements in the neutrino energy region of 1–20 GeV
with different nuclear targets such as helium, carbon, oxygen,
iron, and lead. Among the various goals of the MINERνA
experiment, one of them is to measure dσ

dxdQ2 in the deep-
inelastic scattering (DIS) region using these nuclear targets,
obtaining the ratio of the structure functions between the
different target materials, and also to study structure functions
in the DIS and transition region [2,3]. Neutrino Scattering
On Glass (NuSOnG) [4] is another experiment proposed at
Fermilab to study the neutrino and antineutrino charged current
deep-inelastic scattering events to precisely measure the struc-
ture functions F

ν/ν̄
2 , xF

ν/ν̄
3 , etc. Furthermore, experimenters

plan to measure sin2 θW from ν-nucleon scattering using
the Paschos-Wolfenstein (PW) relation [5]; a similar type of
analysis was performed by the NuTeV group [6–8]. Recently,
we studied nuclear medium effects on the electromagnetic
structure function F EM

2 (x,Q2) [9] and the weak structure
functions F2(x,Q2) and F3(x,Q2) [10,11]. For F EM

2 (x,Q2) [9],
we found that our results are reasonably in good agreement
with the recent results from Jefferson Lab (JLab) [12] as well as
with some of the older experiments such as those at SLAC [13].
In the case of ν(ν̄) deep-inelastic-scattering-induced processes,
the results were compared with the available data from NuTeV,
CDHSW, and CHORUS experiments [14–16] for the weak
structure functions F2(x,Q2) and xF3(x,Q2) in iron [10] and
lead [11], as well as with the results of the differential scattering
cross section 1

E
dσ

dxdy
. In this work, we study the effect of

the nuclear medium and the non-isoscalarity correction in
extracting sin2 θW using the PW relation by taking iron as
the nuclear target.

Paschos and Wolfenstein [5] suggested that the ratio of
neutral current to charged current neutrino interaction cross
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sections on nucleon targets may be used to measure sin2 θW :

RPW = σ (νμN → νμX) − σ (ν̄μN → ν̄μX)

σ (νμN → μ−X) − σ (ν̄μN → μ+X)
= 1

2
− sin2 θW .

(1)

The above relation is valid when there is no contribution from
heavy quarks, the charm quark mass is neglected, strange
quark and antistrange quark symmetry are assumed, and in
the absence of a medium effect and any contributions from
outside the standard model. This equation is valid for both the
total cross section σ as well as differential cross sections d2σ

dx dy
,

because the neutral current (NC) differential cross section
can be expressed in terms of the charged current (CC) ones,
and these cancel out in the quotient [17]. For the total cross
sections, the PW relationship is true under more general
assumptions (see for instance [5,17,18]).

The above relation is also valid for an isoscalar nuclear
target (N = Z) for both the total cross sections and differential
cross sections and the above Eq. (1) may be written as

RPW = σ (νμA → νμX) − σ (ν̄μA → ν̄μX)

σ (νμA → μ−X) − σ (ν̄μA → μ+X)
, (2)

where σ (νμA → νμX) and σ (ν̄μA → ν̄μX) are the neutral-
current-induced neutrino and neutral-current-induced antineu-
trino cross sections, respectively, and σ (νμA → μ−X) and
σ (ν̄μA → μ+X) are the charged-current-induced neutrino
and charged-current-induced antineutrino cross sections, re-
spectively. The condition of pure isoscalarity includes the
requirement of the cancellation of different strong interaction
effects which also include the nuclear medium effects in the
ratio of the neutral current to the charged current scattering
cross sections.

The NuTeV Collaboration [6–8] has measured the ratio R of
neutral current to charged current total cross sections in iron,
for which they took the ratio of charged current antineutrino
to neutrino cross sections, i.e., r = σ (ν̄μA→μ+X)

σ (νμA→μ−X) , as 1
2 , and

obtained the value for the weak mixing angle sin2 θW using
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Eq. (2) as

RPW =
σ (νμA→νμX)
σ (νμA→μ−X) − σ (ν̄μA→ν̄μX)

σ (ν̄μA→μ+X)
σ (ν̄μA→μ+X)
σ (νμA→μ−X)

1 − σ (ν̄μA→μ+X)
σ (νμA→μ−X)

= Rν − rRν̄

1 − r
, (3)

where Rν
exp = 0.3916 ± 0.0007 and Rν̄

exp = 0.4050 ± 0.0016
[6,7]. The reported value of sin2 θW is 0.2277 ± 0.0004
[6–8], which is 3 standard deviations above the global fit
of sin2 θW = 0.2227 ± 0.0004 [19] and this is known as the
NuTeV anomaly. To resolve this anomaly, explanations within
and outside the standard model of electroweak interactions
have been sought [20–36].

The Paschos and Wolfenstein [5] relation is valid for an
isoscalar target while iron is a non-isoscalar target (N =
30, Z = 26); therefore, non-isoscalar corrections are required.
Furthermore, nuclear dynamics may also play an important
role in the case of neutrino-nucleus scattering. Various
corrections made by the NuTeV Collaboration have been
discussed in the literature, but still the reported deviation could
not be accounted for Ref. [8]. Theoretically, Kulagin [25]
has investigated the effect of the nuclear medium on the
PW ratio and pointed out that the shadowing effect being a
low-x and low-Q2 phenomenon is small in the Q2 region
of the NuTeV experiment [37] and observed the effects of
Fermi motion and binding energy correction to be small but
found a significant isoscalar correction. Kumano [21] in a
phenomenological analysis pointed out that the difference
between the nuclear effects in the valence u and d quark
distributions may be a reason for this anomaly. However,
this effect is too small to explain the anomaly. Recently,
Thomas [36] has discussed various possible corrections and
concluded that charge symmetry violation and the isovector
EMC effect together may explain this anomaly.

In the present work, we used the results of our earlier study
of the nuclear medium and non-isoscalarity correction on the
weak structure functions and the differential scattering cross
sections [10,11], on the extraction of sin2 θW using the PW
relation. We have obtained the modified PW relation for a
non-isoscalar nuclear target. This study has been performed
by using a relativistic nucleon spectral function [38,39], which
is used to describe the momentum distribution of nucleons in
the nucleus. We define everything within a field-theoretical
approach where nucleon propagators are written in terms of
this spectral function. The spectral function has been calcu-
lated by using Lehmann’s representation for the relativistic
nucleon propagator and nuclear many-body theory is used for
calculating it for an interacting Fermi sea of nuclear matter.
The local density approximation is then applied to translate
these results to finite nuclei [9–11,40,41]. The contributions
of the pion and rho meson clouds are taken into account in
a many-body field-theoretical approach which is based on
Refs. [40,42]. We have taken into account the target mass cor-
rection following Ref. [43], which has a significant effect at low
Q2 and at moderate and high Bjorken x. To take into account
the shadowing effect, which is important at low Q2 and low x,
and which modulates the contribution of pion and rho cloud

contributions, we have followed the works of Kulagin and
Petti [44,45]. All the formalism is the same for neutral current
scattering as done in the case of charged-current-neutrino-
induced and charged current-antineutrino-induced reactions.
For the numerical calculations, parton distribution functions
for the nucleons have been taken from the parametrization of
the CTEQ Collaboration (CTEQ6.6) [46].

The paper is organized as follows. In Sec. II, we present the
formalism: we write the expressions for the ν-nucleon and the
ν̄-nucleon differential scattering cross sections in Sec. II A, and
we give the expressions for the ν-nucleus and the ν̄-nucleus
differential scattering cross sections for the isoscalar as well
as non-isoscalar nuclear targets in Sec. II B. In Sec. II C, we
explicitly show the construction of the nuclear hadronic tensor
for nonsymmetric nuclear matter and in Sec. II D the nuclear
corrections to PW ratio are presented. In Sec. III, we present
and discuss the results of our calculations, and finally our
conclusions are summarized in Sec. IV.

II. FORMALISM

A. Deep inelastic neutrino nucleon scattering

The cross section for the CC neutrino interaction with a
nucleon target, i.e.,

νl(k) + N (p) → l−(k′) + X(p′), l = e, μ, (4)

is given by

σ = 1

vrel

2mν

2Eν(k)

2M

2E(p)

∫
d3k′

(2π )3

2ml

2El(k′)

N∏
i=1

∫
d3p′

i

(2π )3

×
∏
lεf

(
2M ′

l

2E′
l

) ∏
jεb

(
1

2ω′
j

)∑̄ ∑
|T |2 (2π )4

× δ4

(
p + k − k′ −

N∑
i=1

p′
i

)
, (5)

where f stands for fermions and b for bosons in the final state
X. The index i is split into l and j for fermions and bosons,
respectively, four-momenta of the particles involved in the
process are represented as k (incoming neutrino), k′ (outgoing
lepton), p (target nucleon), and p′ (jet of hadrons).

T is the invariant matrix element for the above reaction and
is written as

−iT =
(

iGF√
2

)
ūl(k

′)γ α(1 − γ5)uν(k)

×
(

m2
W

q2 − m2
W

)
〈X|Jα|N〉. (6)

After performing the phase-space integration in Eq. (5),
we can express the double differential scattering cross section
evaluated for a nucleon target in its rest frame as

d2σN
ν,ν̄

d�′dE′ = GF
2

(2π )2

|k′|
|k|

(
m2

W

q2 − m2
W

)2

L
αβ
ν,ν̄ WN

αβ, (7)

where GF is the Fermi coupling constant, mW is the mass
of the W boson, l(=e, μ) is a lepton, q = k − k′ is the
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four-momentum transfer, and �′ and E′ refer to the outgoing
lepton. N is a nucleon, X is a jet of n hadrons consisting of
fermions (f ) and bosons (b) in the final state.

The leptonic tensor Lαβ is given by

Lαβ = kαk′β + kβk′α − k.k′gαβ ± iεαβρσ kρk
′
σ , (8)

where plus sign is for antineutrino and minus sign is for
neutrino, and the hadronic tensor WN

αβ is defined as

WN
αβ = 1

2π

∑̄
sN

∑
X

∑
si

n∏
i=1

∫
d3p′

i

(2π )3

∏
lεf

(
2M ′

l

2E′
l

)

×
∏
jεb

(
1

2ω′
j

)
〈X|Jα|N〉〈X|Jβ |N〉∗

× (2π )4δ4

(
p + q −

n∑
i=1

p′
i

)
, (9)

where sN is the spin of the nucleon and si is the spin of
the fermions in X. In the case of antineutrinos 〈X|Jα|N〉 is
replaced by 〈X|J †

α |N〉.
The most general form of the hadronic tensor WN

αβ is
expressed as

WN
αβ =

(
qαqβ

q2
− gαβ

)
W

ν(ν̄)
1

+ 1

M2

(
pα − p.q

q2
qα

)(
pβ − p.q

q2
qβ

)
W

ν(ν̄)
2

− i

2M2
εαβρσ pρqσ W

ν(ν̄)
3

+ 1

M2
qαqβW

ν(ν̄)
4 + 1

M2
(pαqβ + qαpβ)Wν(ν̄)

5

+ i

M2
(pαqβ − qαpβ)Wν(ν̄)

6 , (10)

where M is the nucleon mass and WN
i are the structure

functions, which depend on the scalars q2 and p.q(=p0q0 −
p.q). The terms depending on W4, W5, and W6 in Eq. (10) do
not contribute to the cross section in Eq. (7) in the limit of
lepton mass ml → 0.

In terms of the Bjorken variables x and y defined as

x = Q2

2Mν
, y = ν

Eν

, Q2 = −q2, ν = p.q

M
, (11)

WN
i are expressed in terms of dimensionless structure func-

tions F
ν,ν̄
i (x,Q2):

F
ν(ν̄)
1 (x,Q2) = MW

ν(ν̄)
1 (ν,Q2),

F
ν(ν̄)
2 (x,Q2) = νW

ν(ν̄)
2 (ν,Q2), (12)

F
ν(ν̄)
3 (x,Q2) = νW

ν(ν̄)
3 (ν,Q2).

The expression for the differential cross section, for DIS of a
neutrino with a nucleon target induced by a charged current

reaction, is now given by

d2σ ν(ν̄)

dx dy
= G2

F MEν

π
(
1 + Q2/M2

W

)2

{(
y2x + m2

l y

2EνM

)
F1(x,Q2)

+
[(

1 − m2
l

4E2
ν

)
−

(
1 + Mx

2Eν

)
y

]
F2(x,Q2)

±
[
xy

(
1 − y

2

)
− m2

l y

4EνM

]
F3(x,Q2)

}
. (13)

In the above equation the plus sign (minus sign) in the
coefficient with F3 is for neutrinos (antineutrinos). F1 and
F2 are related by the Callan-Gross relation, leading to only
two independent structure functions F2 and F3. For l = e, μ
we take ml = 0 and assume Q2 � M2

W .
The nucleon structure functions are determined in terms of

parton distribution functions for quarks and antiquarks given
by

F
νp
2 = 2x[d(x) + s(x) + ū(x) + c̄(x)],

F
ν̄p
2 = 2x[u(x) + c(x) + d̄(x) + s̄(x)],

F νn
2 = 2x[u(x) + s(x) + d̄(x) + c̄(x)],

F ν̄n
2 = 2x[d(x) + c(x) + ū(x) + s̄(x)],

(14)
xF

νp
3 = 2x[d(x) + s(x) − ū(x) − c̄(x)],

xF νn
3 = 2x[u(x) + s(x) − d̄(x) − c̄(x)],

xF
ν̄p
3 = 2x[u(x) + c(x) − d̄(x) − s̄(x)],

xF ν̄n
3 = 2x[d(x) + c(x) − ū(x) − s̄(x)].

For the neutral-current-induced reaction

νl(ν̄l)(k) + N (p) → νl(k
′) + X(p′), l = e, μ, τ, (15)

the expression of the cross section (13) is modified by changing
MW → MZ , the mass of the Z0 boson, and the corresponding
NC structure functions are given by

F NC
2 (νp, ν̄p) = 2x

{(
u2

L + u2
R

)
[u + c + ū + c̄]

+ (
d2

L + d2
R

)
[d + s + d̄ + s̄]

}
,

(16)
xF NC

3 (νp, ν̄p) = 2x
{(

u2
L − u2

R

)
[u + c − ū − c̄]

+ (
d2

L − d2
R

)
[d + s − d̄ − s̄]

}
for the proton target and

F NC
2 (νn, ν̄n) = 2x

{(
u2

L + u2
R

)
[d + c + d̄ + c̄]

+ (
d2

L + d2
R

)
[u + s + ū + s̄]

}
,

(17)
xF NC

3 (νn, ν̄n) = 2x
{(

u2
L − u2

R

)
[d + c − d̄ − c̄]

+ (
d2

L − d2
R

)
[u + s − ū − s̄]

}
for the neutron target. Here uL = 1

2 − 2
3 sin2 θW , uR =

− 2
3 sin2 θW and dL = − 1

2 + 1
3 sin2 θW , dR = 1

3 sin2 θW .

B. Deep inelastic neutrino nucleus scattering

When the reaction given by Eq. (4) takes place in a
nucleus, several nuclear effects have to be considered. One may
categorize these medium effects into two parts: a kinematic
effect, which arises because the struck nucleon is not at rest
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but is moving with a Fermi momentum in the rest frame of the
nucleus, and a dynamic effect, which arises due to the strong
interaction of the initial nucleon in the nuclear medium. For
details see the discussion given in Refs. [40,41].

The expression for the differential scattering cross section
for a nuclear target A is similar to Eq. (7) and is given by

d σ
ν(ν̄)A
CC

dE′ d�′ = G2
F

(2π )2
· |	k′|

|	k| ·
(

m2
W

q2 − m2
W

)2

· L
αβ
ν,ν̄W

ν(ν̄)A
αβ , (18)

where L
αβ
ν,ν̄ is given by Eq. (8) and W

ν(ν̄)A
αβ , the nuclear hadronic

tensor, is given by

W
ν(ν̄)A
αβ =

(
qαqβ

q2
− gαβ

)
W

ν(ν̄)A
1 (PA, q)

+ 1

M2
A

(
PAα − PA · q

q2
qα

)(
PAβ − PA · q

q2
qβ

)

×W
ν(ν̄)A
2 (PA, q) − ı

2M2
A

εαβρσ P
ρ
Aqσ

×W
ν(ν̄)A
3 (PA, q), (19)

where PA is the momentum of the nucleus A.
In the local density approximation, the nuclear hadronic

tensor W
ν(ν̄)A
αβ can be written as a convolution of the nucleonic

hadronic tensor with the hole spectral function. For symmetric
nuclear matter, this would be [10]

W
ν(ν̄)A
αβ = 4

∫
d3r

∫
d3p

(2π )3

M

E(p)

×
∫ μ

−∞
dp0 Sh(p0, p, kF (	r))Wν(ν̄)N

αβ , (20)

where kF (	r) is the Fermi momentum for symmetric nuclear
matter, which depends on the density of nucleons in the
nucleus, i.e., kF (	r) = ( 3π2

2 ρ(	r))1/3. Sh(p0, p, kF (	r)) is the hole
spectral function and μ is the chemical potential, both of them
have been taken from Ref. [38]. Wν(ν̄)N is the hadronic tensor
for the free nucleon target given by Eq. (10). M and E(p) are,
respectively, the mass and energy of the nucleon.

The natural extension of the above expression for taking into
account the nonsymmetric nature of the target nucleus would
be to consider separate distributions of Fermi seas for protons
and neutrons, the expression for which is given by Ref. [11]

W
ν(ν̄)A
αβ = 2

∫
d3r

∫
d3p

(2π )3

M

E(p)

×
∫ μp

−∞
dp0 S

proton
h (p0, p, kF,p) · W

ν(ν̄)p
αβ

+ 2
∫

d3r

∫
d3p

(2π )3

M

E(p)

×
∫ μn

−∞
dp0 Sneutron

h (p0, p, kF,n) · W
ν(ν̄)n
αβ , (21)

where the factor 2 in front of the integral accounts for the two
degrees of freedom of the spin of the nucleons. In the above
equation, S

proton
h and Sneutron

h are the two different spectral
functions and are normalized, respectively, to the number of
protons or neutrons in the nuclear target. kF,p = (3π2ρp)1/3

[kF,n = (3π2ρn)1/3] is the Fermi momentum of the proton
[neutron]. For the proton and neutron densities in iron, we
have used a two-parameter Fermi density distribution and the
density parameters are taken from Ref. [47].

C. Construction of the nuclear hadronic tensor
for nonsymmetric nuclear matter

The natural invariant quantities for DIS of neutrinos with
nuclei are

xA = Q2

2P · q
; νA = P · q

MA

; yA = P · q

P · k
, (22)

where xA is the Bjorken variable in the nucleus and xA ∈ [0, 1];
yA is the inelasticity. These two variables are related to the
nucleonic ones via

xA = x

A
; yA = q0

Eν

= y, (23)

where x and y are defined in Eq. (11). We can see that x ∈
[0, A], although for x > 1 the nuclear structure functions are
negligible. The variable yA varies between the following limits:

0 � yA � 1

1 + MAxA

2Eν

≈ 1

1 + Mx
2Eν

, (24)

so, for sufficient high neutrino energy we have 0 � yA � 1.
If we express the differential cross section with respect to

these variables (xA, yA), we obtain the following expression in
terms of the nuclear structure functions:

d2σ
ν(ν̄)A
CC

dxA dyA

= G2
F MAEν

π

(
m2

W

Q2 + m2
W

)2{
y2

AxAF
ν(ν̄)A
1

+
[

1 − yA − MAxAyA

2Eν

]
F

ν(ν̄)A
2

± xAyA

(
1 − yA

2

)
F

ν(ν̄)A
3

}
. (25)

For the neutral-current-induced neutrino interaction, the form
of the differential cross section is the same as for the charged-
current-induced process but with the following changes:

d2σ
ν(ν̄)A
CC

dxA dyA

−→ d2σ
ν(ν̄)A
NC

dxA dyA

, mW −→ mZ, F CC
i −→ F NC

i .

(26)

First we look at the denominator of the Paschos-Wolfenstein
relationship, an expression similar to Eq. (2), but in terms
of the differential scattering cross section, for which we
subtract the charged current antineutrino-nucleus cross section
from the charged current neutrino-nucleus cross section and
obtain the expression as

d2σ νA
CC

dxA dyA

− d2σ ν̄A
CC

dxA dyA

= G2
F MAEν

π

{
y2

AxA

(
FνA

1 − F ν̄A
1

)
+

[
1 − yA − MAxAyA

2Eν

](
FνA

2 − F ν̄A
2

)
+ xAyA

(
1 − yA

2

)(
FνA

3 + F ν̄A
3

)}
. (27)

035502-4



EFFECTS OF THE NUCLEAR MEDIUM AND NON- . . . PHYSICAL REVIEW C 87, 035502 (2013)

Since Q2 � M2
W in the present study, we have neglected the

W -boson propagator term.
We need to relate the nuclear structure functions FA

i to
the nucleon ones via an integral with the spectral function.
Therefore, we introduce the following notation to avoid writing
the integration symbols every time. For example, we may
rewrite Eq. (21) with the following notation:

W
ν(ν̄)A
αβ = 〈

W
ν(ν̄)p
αβ

〉
S

proton
h

+ 〈
W

ν(ν̄)n
αβ

〉
Sneutron

h

, (28)

where 〈Wν(ν̄)p
αβ 〉Sproton

h
stands for the proton:

〈
W

ν(ν̄)p
αβ

〉
S

proton
h

= 2
∫

d3r

∫
d3p

(2π )3

M

E(p)

∫ μp

−∞
dp0

× S
proton
h (p0, p, kF,p)Wν(ν̄)p

αβ , (29)

and for the neutron the expression is the same when the indices
for the proton are replaced by the neutron indices.

Taking the three-momentum transfer 	q along the z axis,
i.e., qμ = (q0, 0, 0, qz), and writing the xx component of the
nuclear hadronic tensor [Eq. (19)], we get it in terms of the
nuclear structure function F1, i.e.,

Wν(ν̄)A
xx = W

ν(ν̄)A
1 = F

ν(ν̄)A
1 (xA)

MA

= Wν(ν̄)A
yy . (30)

Similarly, if we take the xx components of the nucleonic
hadronic tensor given by Eq. (10) and recall that nucleons in
the nucleus are not at rest, the xx component of the nucleonic
hadronic tensor is related only not to just the nucleon structure
function F1, but it is a mixture of F1 and F2 components like
the following expression:

Wν(ν̄)N
xx = W

ν(ν̄)N
1 + p2

x

M2
W

ν(ν̄)N
2

= F
ν(ν̄)N
1 (xN )

M
+ p2

x

M2

F
ν(ν̄)N
2 (xN )

νN

, (31)

where N ≡ p, n; xN ≡ Q2

2p·q = Q2

2(p0q0−pzqz) ; and νN = p·q
M

=
p0q0−pzqz

M
.

Using Eqs. (30) and (31) we may write

F
ν(ν̄)A
1 (xA)

MA

=
〈
F

ν(ν̄)p
1 (xN )

M
+ p2

x

M

F
ν(ν̄)p
2 (xN )

p · q

〉
S

p
h

+
〈
F

ν(ν̄)n
1 (xN )

M
+ p2

x

M

F
ν(ν̄)n
2 (xN )

p · q

〉
Sn

h

. (32)

The difference FνA
1 − F ν̄A

1 that appears in Eq. (27) may then
be written as
FνA

1 (xA)

MA

−F ν̄A
1 (xA)

MA

=
〈

1

M

[
F

νp
1 (xN ) − F

ν̄p
1 (xN )

]
+ p2

x

M(p · q)

[
F

νp
2 (xN ) − F

ν̄p
2 (xN )

]〉
S

p
h

+
〈

1

M

[
Fνn

1 (xN ) − F ν̄n
1 (xN )

]
+ p2

x

M(p · q)

[
Fνn

2 (xN ) − F ν̄n
2 (xN )

]〉
Sn

h

,

(33)

where

F
νp
1 − F

ν̄p
1 = dv − uv,

F
νp
2 − F

ν̄p
2 = 2xN (dv − uv) ,

F νn
1 − F ν̄n

1 = −dv + uv = −(
F

νp
1 − F

ν̄p
1

)
,

F νn
2 − F ν̄n

2 = 2xN (−dv + uv) = −(
F

νp
2 − F

ν̄p
2

)
.

Here uv and dv are the valence parton distribution functions
(PDFs) and we are working in the up and down quark
approximation, where we neglect strange and charm quark
contributions.

In the case of symmetric nuclear matter, we may relate the
Fermi momentum with the baryon density via k3

F = 3π2

2 ρ,
where ρ is the baryon density. For nonsymmetric nuclear
matter, we have different densities for protons and neutrons
and, corresponding to those, we also have different Fermi
momenta for protons and neutrons. These are related by

k3
F,p = 3π2ρp(r); k3

F,n = 3π2ρn(r). (34)

Instead of discussing in terms of neutron number (N ) and
proton number (Z) as independent variables, we define two
independent variables A = N + Z and their difference δ =
N − Z such that

N = A

2
+ δ

2
; Z = A

2
− δ

2
. (35)

Dividing the above equations by the nuclear volume V , we
obtain the densities of neutrons and protons:

ρn = ρ

2
+ δ

2V
; ρp = ρ

2
− δ

2V
, (36)

where ρ = ρp + ρn and δ
V

= N−Z
V

= ρn − ρp. Replacing the
densities for neutrons and protons by their corresponding
Fermi momenta one has kF,p/n in terms of kF , δ, and V , i.e.,

k3
F,p = k3

F − 3π2

2

δ

V
; k3

F,n = k3
F + 3π2

2

δ

V
. (37)

A nonzero value of δ would imply that we are looking for
deviations from isoscalarity. For kF,p and kF,n, we are going to
perform an expansion in powers of the parameter δ

V
, retaining

the first-order term only, with the assumption that the higher
orders would be negligible. For instance, the expansion for the
Fermi momentum of the proton would be

kF,p =
(

k3
F − 3π2

2

δ

V

)1/3

= kF − π2

2k2
F

δ

V
+ O

(
δ

V

)2

(38)

and the proton’s spectral function may be written as

S
proton
h (p0, p, kF,p) � S

p
h

(
p0, p, kF − π2

2k2
F

δ

V

)

� S
p
h (p0, p, kF ) + ∂S

p
h (p0, p, k)

∂k

∣∣∣∣
k=kF

×
(

− π2

2k2
F

δ

V

)
. (39)

With a change of δ → −δ one gets the neutron spectral
function.
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Using Eq. (32), one may write FνA
1 − F ν̄A

1 as

FνA
1 − F ν̄A

1 = MA

〈
F

νp
1 − F

ν̄p
1

M
+ p2

x

M(p · q)

(
F

νp
2 − F

ν̄p
2

)〉
S

p
h

+MA

〈
Fνn

1 − F ν̄n
1

M
+ p2

x

M(p · q)

(
Fνn

2 −F ν̄n
2

)〉
Sn

h

.

(40)

If we look at the convolution with the proton spectral
function given by Eq. (29), we may write the first term on
the right-hand side as

2MA

∫
d3r

∫
d3p

(2π )3

M

E(p)

∫ μp

−∞
dp0 S

p
h (p0, p, kF,p)

×
(

F
νp
1 − F

ν̄p
1

M
+ p2

x

M(p · q)

(
F

νp
2 − F

ν̄p
2

))
, (41)

where μp = M + k2
F,p

2M
is the chemical potential, which must be

expanded around the isoscalarity condition. μp may be written
as

μp = M + k2
F,p

2M
� M + 1

2M

(
k2
F − π2

kF

δ

V

)
. (42)

Inserting Eq. (39) in Eq. (41), we obtain the following
expression with the spectral function:

2MA

∫
d3r

∫
d3p

(2π )3

M

E(p)

×
∫ M+ 1

2M
(k2

F − π2

kF

δ
V

)

−∞
dp0

{
S

p
h (p0, p, kF )

+ ∂S
p
h (p0, p, k)

∂k

∣∣∣∣
k=kF

(
− π2

2k2
F

δ

V

)}
Gνp−ν̄p(p, xN ), (43)

where

Gνp−ν̄p(p, xN ) =
(

F
νp
1 − F

ν̄p
1

M
+ p2

x

M(p · q)

(
F

νp
2 − F

ν̄p
2

))
.

(44)

Integrating the first term of Eq. (43), over the variable p0, gives

∫ M+ k2
F

2M
− π2

2MkF

δ
V

−∞
dp0 S

p
h (p0, p, kF )Gνp−ν̄p(p0, p, xN )

=
∫ μ

−∞
dp0S

p
h (p0, p, kF )Gνp−ν̄p(p0, p, xN )

+
∫ μ− π2

2MkF

δ
V

μ

dp0 S
p
h (p0, p, kF )Gνp−ν̄p(p0, p, xN )

�
∫ μ

−∞
dp0S

p
h (p0, p, kF )Gνp−ν̄p(p0, p, xN )

+ S
p
h (μ, p, kF )Gνp−ν̄p(p0 = μ, p, xN )

(
− π2

2MkF

δ

V

)
,

(45)

where μ = M + k2
F

2M
and we have used the following property:∫ μ+δx

μ

dy f (y) � f (μ) × δx (46)

for δx → 0.
Let us analyze what we have obtained from the first term

of the integral in Eq. (43). We have obtained an isoscalar term
[the first term in Eq. (45)], which still has to be integrated over
p0, plus a correction proportional to δ

V
. This correction would

be zero for an isoscalar target.
In Eq. (43), we still have another integral (the one that

goes with the partial derivative), which is already of O( δ
V

).
Therefore, we will only have to calculate the contribution
coming from the limits of integration in p0 at O(1). Indeed,
we have

∫ μ− π2

2MkF

δ
V

−∞
dp0 ∂S

p
h (p0, p, k)

∂k

∣∣∣∣
k=kF

(
− π2

2k2
F

δ

V

)
Gνp−ν̄p(p0, p, xN )

=
(

− π2

2k2
F

δ

V

) ∫ μ

−∞
dp0 ∂S

p
h (p0, p, k)

∂k

∣∣∣∣
k=kF

Gνp−ν̄p(p0, p, xN ) + O

(
δ

V

)2

. (47)

Therefore, Eq. (41) may be written as

2MA

∫
d3r

∫
d3p

(2π )3

M

E(p)

{ ∫ μ

−∞
dp0 S

p
h (p0, p, kF )Gνp−ν̄p(p0, p, xN ) − π2

2MkF (r)

δ

V
S

p
h (μ, p, kF )Gνp−ν̄p(μ, p, xN )

− π2

2k2
F

δ

V

∫ μ

−∞
dp0 ∂S

p
h (p0, p, k)

∂k

∣∣∣∣
k=kF

Gνp−ν̄p(p0, p, xN )

}
. (48)

This result is only for the convolution with the proton-hole spectral function. Similarly, there will be a corresponding term for the
neutron-hole spectral function. But the changes are minimal. They reduce to change p (protons) by n (neutrons) in the structure
functions and δ → −δ. With these changes, we may write the equivalent expression to the one above for the convolution with
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the neutron spectral function as

2MA

∫
d3r

∫
d3p

(2π )3

M

E(p)

{∫ μ

−∞
dp0 Sn

h (p0, p, kF )Gνn−ν̄n(p0, p, xN )

+ π2

2MkF (r)

δ

V
Sn

h (μ, p, kF )Gνn−ν̄n(μ, p, xN ) + π2

2k2
F

δ

V

∫ μ

−∞
dp0 ∂Sn

h (p0, p, k)

∂k

∣∣∣∣
k=kF

Gνn−ν̄n(p0, p, xN )

}
, (49)

where Gνn−ν̄n(p0, p, xN ) is the same as Eq. (44) but with the replacement of p → n in the structure functions.
Equations (48) and (49) are summed, by keeping in mind that now the spectral functions are identical as they are evaluated at

k = kF , which results in

2MA

∫
d3r

∫
d3p

(2π )3

M

E(p)

{ ∫ μ

−∞
dp0 Sh(p0, p, kF )[Gνp−ν̄p(p0, p) + Gνn−ν̄n(p0, p)]

+ π2

2MkF (r)

δ

V
Sh(μ, p, kF )[Gνn−ν̄n(μ, p) − Gνp−ν̄p(μ, p)]

+ π2

2k2
F

δ

V

∫ μ

−∞
dp0 ∂Sh(p0, p, k)

∂k

∣∣∣∣
k=kF

[Gνn−ν̄n(p0, p) − Gνp−ν̄p(p0, p)]

}
. (50)

The sum of the structure functions Gνn−ν̄n(p0, p) and Gνp−ν̄p(p0, p) in the first line of the above expression is zero in the limit
of considering only light quarks (up and down quark approximation), and

Gνn−ν̄n(p0, p) − Gνp−ν̄p(p0, p) = (uv − dv)

[
2

M
+ 4p2

x

M(p · q)
xN

]
, (51)

where uv = u − ū and dv = d − d̄ are the up and down valence distributions, respectively.
Furthermore, in the denominator of the PW relation we have the difference FνA

2 − F ν̄A
2 , which is written as

FA
2 = q0WA

2 = q0

〈{
q2

[ 	p 2 + 2(p0)2 − p2
z

] − 2(q0)2
[
(p0)2 + p2

z

] + 4p0q0pz

√
(q0)2 − q2

} · F
p
2

νN

〉
S

p
h

2M2(q2 − (q0)2)

+ q0

〈{
q2

[ 	p 2 + 2(p0)2 − p2
z

] − 2(q0)2
[
(p0)2 + p2

z

] + 4p0q0pz

√
(q0)2 − q2

} · Fn
2

νN

〉
Sn

h

2M2[q2 − (q0)2]
. (52)

Let us define the kinematic factor which goes in front of F2 as

G(p0, 	p) ≡ q0
{
q2

[ 	p 2 + 2(p0)2 − p2
z

] − 2(q0)2
[
(p0)2 + p2

z

] + 4p0q0pz

√
(q0)2 − q2

}
2M[q2 − (q0)2] · (p · q)

. (53)

This expression for F2 is valid for neutrinos as well as for antineutrino. Therefore, when performing the subtraction, we get the
following:

FνA
2 − F ν̄A

2 = 〈
G(p0, 	p)

(
F

νp
2 − F

ν̄p
2

)〉
S

p
h

+ 〈
G(p0, 	p)

(
Fνn

2 − F ν̄n
2

)〉
Sn

h

. (54)

Defining

G
νp−ν̄p
2 (p0, 	p) ≡ G(p0, 	p)

(
F

νp
2 − F

ν̄p
2

)
, (55)

Gνn−ν̄n
2 (p0, 	p) ≡ G(p0, 	p)

(
Fνn

2 − F ν̄n
2

)
(56)

and using the same procedure as we did for F1, one gets

〈
G

νp−ν̄p
2 (p0, 	p)

〉
S

p
h

=
〈 ∫ μ

−∞
dp0 S

p
h (p0, 	p, kF )Gνp−ν̄p

2 (p0, 	p)

〉
−

〈
δ

2V

π2

MkF

S
p
h (μ, 	p, kF )Gνp−ν̄p

2 (μ, 	p)

〉

−
〈

δ

2V

π2

k2
F

∫ μ

−∞
dp0 ∂S

p
h (p0, 	p, k)

∂k

∣∣∣∣
k=kF

G
νp−ν̄p
2 (p0, 	p) + O

(
δ

V

)2〉
, (57)
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where the symbols 〈· · · 〉 indicate the integrals in d3p and d3r . Similarly, one obtains the convolution with the hole spectral
function for neutrons with the known changes (p → n and δ → −δ) and gets

〈
Gνn−ν̄n

2 (p0, 	p)
〉
Sn

h

=
〈 ∫ μ

−∞
dp0 Sn

h (p0, 	p, kF )Gνn−ν̄n
2 (p0, 	p)

〉
+

〈
δ

2V

π2

MkF

Sn
h (μ, 	p, kF )Gνn−ν̄n

2 (μ, 	p)

〉

+
〈

δ

2V

π2

k2
F

∫ μ

−∞
dp0 ∂Sn

h (p0, 	p, k)

∂k

∣∣∣∣
k=kF

Gνn−ν̄n
2 (p0, 	p) + O

(
δ

V

)2〉
. (58)

Therefore, when summing over both the contributions to obtain FνA
2 − F ν̄A

2 , we get two kinds of contributions: the first-order
one and the second-order one (proportional to δ

V
):

FνA
2 − F ν̄A

2 = 〈
G

νp−ν̄p
2 (p0, 	p)

〉
S

p
h

+ 〈
Gνn−ν̄n

2 (p0, 	p)
〉
Sn

h

=
〈 ∫ μ

−∞
dp0 Sh(p0, 	p, kF )

[
G

νp−ν̄p
2 (p0, 	p) + Gνn−ν̄n

2 (p0, 	p)
]〉

+
〈

δ

2V

π2

MkF

Sh(μ, 	p, kF )
[
Gνn−ν̄n

2 (p0, 	p) − G
νp−ν̄p
2 (p0, 	p)

]〉

+
〈

δ

2V

π2

k2
F

∫ μ

−∞
dp0 ∂Sh(p0, 	p, k)

∂k

∣∣∣∣
k=kF

[
Gνn−ν̄n

2 (p0, 	p) − G
νp−ν̄p
2 (p0, 	p)

] + O

(
δ

V

)2〉
. (59)

Writing the sum and the difference of G2 for neutrons and protons, one obtains (in the up and down quark approximation)

G
νp−ν̄p
2 (p0, 	p) + Gνn−ν̄n

2 (p0, 	p) = G(p0, 	p)
(
F

νp
2 − F

ν̄p
2 + Fνn

2 − F ν̄n
2

) = 0,
(60)

Gνn−ν̄n
2 (p0, 	p) − G

νp−ν̄p
2 (p0, 	p) = G(p0, 	p)

(−F
νp
2 + F

ν̄p
2 + Fνn

2 − F ν̄n
2

) = G(p0, 	p) × 4 xN (uv − dv).

Therefore, in this limit, we obtain a dominant non-isoscalarity correction (because the isoscalar term is zero) proportional to δ
V

.
This is exactly the same effect as was obtained in the calculation of FνA

1 − F ν̄A
1 .

For the F3 structure functions for the CC case we have

FνA
3 + F ν̄A

3 = 2A
q0

qz

∫
d3r

∫
d3p

(2π )3

M

E( 	p)

∫ μp

−∞
dp0 S

p
h (p0, 	p, kF,p)

p0qz − q0pz

(p · q)

(
F

νp
3 + F

ν̄p
3

)
+ 2A

q0

qz

∫
d3r

∫
d3p

(2π )3

M

E( 	p)

∫ μn

−∞
dp0 Sn

h (p0, 	p, kF,n)
p0qz − q0pz

(p · q)

(
Fνn

3 + F ν̄n
3

)
≡ 〈

G
νp+ν̄p
3 (p0, 	p)

〉
S

p
h

+ 〈
Gνn+ν̄n

3 (p0, 	p)
〉
Sn

h

, (61)

where in the last step we have defined

G
νp+ν̄p
3 (p0, 	p) ≡ 2A

q0

qz

p0qz − q0pz

(p · q)

(
F

νp
3 + F

ν̄p
3

)
, (62)

Gνn+ν̄n
3 (p0, 	p) ≡ 2A

q0

qz

p0qz − q0pz

(p · q)

(
Fνn

3 + F ν̄n
3

)
. (63)

We perform the expansion of the spectral functions around the Fermi momentum:

〈
G

νp+ν̄p
3 (p0, 	p)

〉
S

p
h

=
〈∫ μ

−∞
dp0 S

p
h (p0, 	p, kF )Gνp+ν̄p

3 (p0, 	p)

〉
−

〈
δ

2V

π2

MkF

S
p
h (μ, 	p, kF )Gνp+ν̄p

3 (μ, 	p)

〉

−
〈

δ

2V

π2

k2
F

∫ μ

−∞
dp0 ∂S

p
h (p0, 	p, k)

∂k

∣∣∣∣
k=kF

G
νp+ν̄p
3 (p0, 	p) + O

(
δ

V

)2 〉
. (64)

The changes to obtain the G3 convoluted structure function for neutrons are the replacements p → n and δ → −δ, which results
in

〈
Gνn+ν̄n

3 (p0, 	p)
〉
Sn

h

=
〈∫ μ

−∞
dp0 Sn

h (p0, 	p, kF )Gνn+ν̄n
3 (p0, 	p)

〉
+

〈
δ

2V

π2

MkF

Sn
h (μ, 	p, kF )Gνn+ν̄n

3 (μ, 	p)

〉

+
〈

δ

2V

π2

k2
F

∫ μ

−∞
dp0 ∂Sn

h (p0, 	p, k)

∂k

∣∣∣∣
k=kF

Gνn+ν̄n
3 (p0, 	p) + O

(
δ

V

)2 〉
. (65)
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Summing the above two equations for the proton and neutron, we get the following:

FνA
3 + F ν̄A

3 =
〈∫ μ

−∞
dp0 Sh(p0, 	p, kF )

[
G

νp+ν̄p
3 (p0, 	p) + Gνn+ν̄n

3 (p0, 	p)
]〉

+
〈

δ

2V

π2

MkF

Sh(μ, 	p, kF )
[
Gνn+ν̄n

3 (μ, 	p) − G
νp+ν̄p
3 (μ, 	p)

]〉

+
〈

δ

2V

π2

k2
F

∫ μ

−∞
dp0 ∂Sh(p0, 	p, k)

∂k

∣∣∣∣
k=kF

[
Gνn+ν̄n

3 (p0, 	p) − G
νp+ν̄p
3 (p0, 	p)

] + O

(
δ

V

)2 〉
. (66)

If we write explicitly the combinations of G3 functions in
terms of PDFs considering only light quarks (up and down),
we get

G
νp+ν̄p
3 (p0, 	p) + Gνn+ν̄n

3 (p0, 	p) = 4G3(p0, 	p)(uv + dv),

(67)

where

G3(p0, 	p) ≡ 2A
q0

qz

p0qz − q0pz

(p · q)
, (68)

and for the difference we get exactly zero, i.e.,

Gνn+ν̄n
3 (p0, 	p) − G

νp+ν̄p
3 (p0, 	p) = 0. (69)

Therefore, for F3, the dominant contribution is the isoscalar
one (the one which is not proportional to δ

V
) and the non-

isoscalar contribution (proportional to δ
V

) is zero at first
order [O( δ

V
)]. Of course there will be corrections at higher

orders, but we are retaining only the first-order non-isoscalar
corrections.

For neutral currents, in the numerator of the PW relation,
we would only have the structure function F 0A

3 , which can be
written as

F 0A
3 (xA) = 2A

q0

qz

∫
d3r

∫
d3p

(2π )3

M

E( 	p)

×
∫ μp

−∞
dp0 S

p
h (p0, 	p, kF,p)

p0qz − pzq
0

p · q
F

0p
3 (xN )

+ 2A
q0

qz

∫
d3r

∫
d3p

(2π )3

M

E( 	p)

×
∫ μn

−∞
dp0 Sn

h (p0, 	p, kF,n)
p0qz − pzq

0

p · q
F 0n

3 (xN )

(70)

≡ 〈
G

0p
3 (p0, 	p)

〉
S

p
h

+ 〈
G0n

3 (p0, 	p)
〉
Sn

h

, (71)

where for the neutral current case, we define

G
0p
3 (p0, 	p) ≡ G3(p0, 	p)F 0p

3 (xN ), (72)

G0n
3 (p0, 	p) ≡ G3(p0, 	p)F 0n

3 (xN ). (73)

G3(p0, 	p) is defined in Eq. (68).

The expression for F 0A
3 around the isoscalar condition is

F 0A
3 =

〈∫ μ

−∞
dp0 Sh(p0, 	p, kF )

[
G

0p
3 (p0, 	p) + G0n

3 (p0, 	p)
]〉

+
〈

δ

2V

π2

MkF

Sh(μ, 	p, kF )
[
G0n

3 (μ, 	p) − G
0p
3 (μ, 	p)

]〉

+
〈

δ

2V

π2

k2
F

∫ μ

−∞
dp0 ∂Sh(p0, 	p, k)

∂k

∣∣∣∣
k=kF

× [
G0n

3 (p0, 	p) − G
0p
3 (p0, 	p)

] + O

(
δ

V

)2 〉
. (74)

For the neutral current in the parton model

F
0p
3 = 2

{[
ε2
L(u) − ε2

R(u)
]
(u − ū) + [

ε2
L(d) − ε2

R(d)
]
(d − d̄)

}
≡ 2[g2

−(u)(u − ū) + g2
−(d)(d − d̄)], (75)

where

g2
−(u) ≡ ε2

L(u) − ε2
R(u) = 1

4 − 2
3 sin2 θW , (76)

g2
−(d) ≡ ε2

L(d) − ε2
R(d) = 1

4 − 1
3 sin2 θW (77)

and invoking isospin symmetry, we also have

F 0n
3 = 2[g2

−(u)
(
d − d̄

) + g2
−(d) (u − ū)]. (78)

With these, we obtain the expressions for the sum and
difference of neutral current G3 functions for protons and
neutrons, i.e.,

G
0p
3 (p0, 	p) + G0n

3 (p0, 	p)

= 2 G3(p0, 	p)[g2
−(u) + g2

−(d)](uv + dv), (79)

G0n
3 (p0, 	p) − G

0p
3 (p0, 	p)

= 2 G3(p0, 	p)[g2
−(d) − g2

−(u)](uv − dv). (80)

D. Nuclear corrections to the PW ratio

Using the expressions obtained in the previous section, we
may write the ratio of the differential scattering cross sections
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as

R− =
dσ νA

NC
dx dy

− dσ ν̄A
NC

dx dy

dσ νA
CC

dx dy
− dσ ν̄A

CC
dx dy

= 2xy
(
1 − y

2

){
2[g2

−(u) + g2
−(d)]

〈∫ μ

−∞ dp0 Sh G′
3[uv(xN ) + dv(xN )]

〉 + O
(
ε0A

3

)}
y2x O

(
ενA−ν̄A

1

) + {
1 − y − Mxy

2Eν

}
O

(
ενA−ν̄A

2

) + xy
(
1 − y

2

)〈
4
∫ μ

−∞ dp0 Sh G′
3(uv + dv)

〉
= 4xy

(
1 − y

2

)
[g2

−(u) + g2
−(d)]

〈∫ μ

−∞ dp0 Sh G′
3[uv(xN ) + dv(xN )]

〉 + O ′(ε0A
3

)
4xy

(
1 − y

2

)〈∫ μ

−∞ dp0 Sh G′
3[uv(xN ) + dv(xN )]

〉 + O ′(ενA−ν̄A)
, (81)

where

G′
3 = G3(p0, 	p)

A
, (82)

O ′(ε0A
3

) = 2xy

(
1 − y

2

)
O

(
ε0A

3

)
, (83)

O ′(ενA−ν̄A) = y2x O
(
ενA−ν̄A

1

) +
{

1 − y − Mxy

2Eν

}
O

(
ενA−ν̄A

2

)
. (84)

Here ε indicates that the contribution is of O( δ
V

).
Expanding the denominator of Eq. (81) using a Taylor series and keeping only the first-order term in δ

V
, we may write the

above equation as

R− �
[

4xy

(
1 − y

2

)
[g2

−(u) + g2
−(d)]

〈∫ μ

−∞
dp0 Sh G′

3 (uv + dv)

〉
+ O ′(ε0A

3

)]

×
[

1

4xy
(
1 − y

2

) 〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉 − O ′(ενA−ν̄A)[
4xy

(
1 − y

2

) 〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉]2

]

� g2
−(u) + g2

−(d) + O ′(ε0A
3

)
4xy

(
1 − y

2

) 〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉 − [g2
−(u) + g2

−(d)]O ′(ενA−ν̄A)

4xy
(
1 − y

2

) 〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉
= 1

2
− sin2 θW + δR−, (85)

where δR− is the correction due to the non-isoscalarity of the target and is written as

δR− = δR−
1 + δR−

2 . (86)

The first correction δR−
1 is given by

δR−
1 = O ′(ε0A

3

)
4xy

(
1 − y

2

) 〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉 = O
(
ε0A

3

)
2
〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉
=

〈
δ

2V
π2

MkF
Sh(μ, 	p, kF )

[
G′0n

3 (μ, 	p) − G
′0p
3 (μ, 	p)

] + δ
2V

π2

k2
F

∫ μ

−∞ dp0 ∂Sh

∂k

∣∣
k=kF

[
G′0n

3 (p0, 	p) − G
′0p
3 (p0, 	p)

]〉
2
〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉
=

[g2
−(d) − g2

−(u)]
〈

δ
2V

π2

MkF
[Sh G′

3(uv − dv)]
∣∣
p0=μ

+ δ
2V

π2

k2
F

∫ μ

−∞ dp0 ∂Sh

∂k

∣∣
k=kF

G′
3(uv − dv)

〉
〈∫ μ

−∞ dp0 Sh G′
3 (uv + dv)

〉 , (87)

and the second correction δR−
2 is given by

δR−
2 = −[g2

−(u) + g2
−(d)]

O ′(ενA−ν̄A)

4xy
(
1 − y

2

) 〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉
= −[g2

−(u) + g2
−(d)]

y2x O
(
ενA−ν̄A

1

) + {
1 − y − Mxy

2Eν

}
O

(
ενA−ν̄A

2

)
4xy

(
1 − y

2

) 〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉 = δR−
2,1 + δR−

2,2, (88)

where

δR−
2,1 = −[g2

−(u) + g2
−(d)]

y2x O
(
ενA−ν̄A

1

)
4xy

(
1 − y

2

) 〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉 , (89)
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δR−
2,2 = −[g2

−(u) + g2
−(d)]

1 − y − Mxy
2Eν

4xy
(
1 − y

2

) O
(
ενA−ν̄A

2

)
〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉 . (90)

Making the substitution of O(ενA−ν̄A
1 ) in Eq. (89), we get

δR−
2,1 = −[g2

−(u) + g2
−(d)]

y 2M
〈

δ
2V

π2

MkF
Sh(μ, 	p, kF )

(
Gνn−ν̄n

1 − G
νp−ν̄p
1

)
p0=μ

〉
4
(
1 − y

2

)〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉
− [g2

−(u) + g2
−(d)]

y 2M
〈

δ
2V

π2

k2
F

∫ μ

−∞ dp0 ∂Sh

∂k

∣∣
k=kF

(
Gνn−ν̄n

1 − G
νp−ν̄p
1

)〉
4
(
1 − y

2

)〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉 . (91)

In the parton model, we have

Gνn−ν̄n
1 − G

νp−ν̄p
1 = 1

M
(uv − dv)

(
2 + 4p2

x xN

(p · q)

)
= 1

M
(uv − dv) G1(p0, 	p). (92)

With this, we can write

δR−
2,1 = −[g2

−(u) + g2
−(d)]

y

2 − y

〈
δ

2V

[
π2

MkF
[ShG1(uv − dv)]

∣∣
p0=μ

+ π2

k2
F

∫ μ

−∞ dp0 ∂Sh

∂k

∣∣
k=kF

G1 (uv − dv)
]〉

〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉 . (93)

Similarly, using Gνn−ν̄n
2 − G

νp−ν̄p
2 = G2(p0, 	p) · 4xN (uv − dv), we may write

δR−
2,2 = −[g2

−(u) + g2
−(d)]

1 − y − Mxy
2Eν

xy
(
1 − y

2

)
〈

δ
2V

[
π2

MkF
[ShG2 xN (uv − dv)]

∣∣
p0=μ

+ π2

k2
F

∫ μ

−∞ dp0 ∂Sh

∂k

∣∣
k=kF

G2 xN (uv − dv)
]〉

〈∫ μ

−∞ dp0 ShG
′
3(uv + dv)

〉 .

(94)

We must point out that when p0 = μ, Sh(μ, 	p, kF ) is zero [38,40] and the imaginary part of the self-energy of the nucleon
is also zero, and this has been used in the definition (numerator) of the hole spectral function while performing the numerical
calculations.

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of our numerical calculations. For performing the numerical calculations we
have used the expressions for the weak structure functions FA

2 and FA
3 for an isoscalar target [10]:

FA
2 (xA,Q2) = 4

∫
d3r

∫
d3p

(2π )3

M

E(p)

∫ μ

−∞
dp0 Sh(p0, p, ρ(r))

x

xN

(
1 + 2xNp2

x

MνN

)
FN

2 (xN,Q2), (95)

FA
3 (xA,Q2) = 4

∫
d3r

∫
d3p

(2π )3

M

E(p)

∫ μ

−∞
dp0Sh(p0, p, ρ(r))

p0γ − pz

(p0 − pzγ )γ
FN

3 (xN,Q2) (96)

and for a non-isoscalar target, the expressions for FA
2 (x) and FA

3 (x) are given by Ref. [11]

FA
2 (xA,Q2) = 2

∫
d3r

∫
d3p

(2π )3

M

E(p)

[ ∫ μp

−∞
dp0 S

proton
h (p0, p, kF,p)F proton

2 (xN,Q2)

+
∫ μn

−∞
dp0 Sneutron

h (p0, p, kF,n)F neutron
2 (xN,Q2)

]
x

xN

(
1 + 2xNp2

x

MνN

)
, (97)

FA
3 (xA,Q2) = 2

∫
d3r

∫
d3p

(2π )3

M

E(p)

[ ∫ μp

−∞
dp0 S

proton
h (p0, p, kF,p)F proton

3 (xN,Q2)

+
∫ μn

−∞
dp0 Sneutron

h (p0, p, kF,n)F neutron
3 (xN,Q2)

]
p0γ − pz

(p0 − pzγ )γ
, (98)

where

γ = qz

q0
=

(
1 + 4M2x2

Q2

)1/2

, xN = Q2

2(p0q0 − pzqz)
. (99)
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FIG. 1. 1
E

d2σ
dxdy

vs y at different x for charged-current-induced

νμ(ν̄μ) (Eνμ = 65 GeV) reactions in 56Fe. The dotted lines are the
base results; for numerical calculations CTEQ [46] PDFs at leading
order have been used. The dashed lines are the full model at leading
order. The solid lines are the full calculation at next to leading order.
The experimental points are from CDHSW [14] (solid circles) and
NuTeV [15] (solid squares) experiments.

Here F
proton
2,3 and F neutron

2,3 are the dimensionless structure
functions for the free proton and the free neutron, respectively.
These structure functions are calculated with the target mass
correction (TMC) [43] and CTEQ6.6 PDFs at leading order
(LO) [46]. Fermi motion and nucleon binding are implemented
through the use of a nucleon spectral function. This is our base
result. We also include pion and rho cloud contributions in FA

2
following the model of Ref. [40] and shadowing corrections
in FA

2 and FA
3 [44], which is our full calculation (Total).

Using them we have obtained the charged current differential
scattering cross sections, the expression for which is given by
Eq. (25). For the neutral current the expression would remain
the same with the changes given in Eq. (26). Using these cross
sections, we evaluate the ratio

R− =
d2σ (νμN→νμX)

dxdy
− d2σ (ν̄μN→ν̄μX)

dxdy

d2σ (νμN→μ−X)
dxdy

− d2σ (ν̄μN→μ+X)
dxdy

. (100)

Results for the charged-current-induced (anti)neutrino-iron
differential cross section have been discussed in detail in
Ref. [10], where the comparisons have been made with the
experimental data of NuTeV and CDHSW, which are corrected
for an isoscalar iron target. However, for completeness we
are showing here the results for the charged- and neutral-
current-induced (anti)neutrino-iron differential cross sections
in Figs. 1 and 2, respectively. In the case of neutral current we
have performed numerical calculations at LO. We observe that
medium effects are important in the study of differential scat-
tering cross sections. For example, when the calculations are
performed for the charged-current neutrino-induced process at
LO, medium effects such as Pauli blocking, Fermi motion, and
nucleon correlations which are taken into account for our base
calculations, result in the reduction of the differential cross
section, which changes by 3%–4% at low y and increases
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FIG. 2. 1
E

d2σ
dxdy

vs y at different x for neutral-current-induced

νμ(ν̄μ) (Eνμ = 65 GeV) reactions in 56Fe. Lines have the same
meaning as in Fig. 1.

to 10%–11% at high values of y for the studied region of x
from the free case. When pion and rho cloud contributions
as well as the shadowing effect are also taken into account
there is a further change of about 8%–9% at low y and this
change decreases with the increase in y for x = 0.2–0.3.
This difference becomes smaller with the increase in the
value of x; for example, at x = 0.5–0.6, it becomes less
than 1% for all values of y. Similarly, in the case of the
antineutrino-induced charged-current process the change in
the base resultings from the free nucleon scattering process is
around 10%–12% at x = 0.2–0.3 for the studied region of y,
which gets further modulated by 12% at low values of y and
significantly increases with the increase in the value of y when
pion and rho cloud contributions and shadowing effects are
incorporated. At higher values of x, the difference in the results
obtained using the base calculation and the full calculation is
negligibly small and the difference between the base results
and the results for the free case is the same as in the case of
neutrinos. Furthermore, calculations performed at next to LO
leads to better results. In the case of neutral current we have
performed calculations at LO and observe that the difference
between the base results and the results for the free case (not
shown here) is 10%–12% at x = 0.2–0.3 for neutrino- as well
as antineutrino-induced processes. When pion and rho cloud
contributions and shadowing effects are taken into account,
results from the base change to 17%–25% for the neutrino
case and for the antineutrino-induced process the change is
30%–40% at x = 0.2–0.3 for all values of y. At higher x,
when Fermi motion, Pauli blocking, and nucleon correlation
are taken into account, the results change by 4%–10% from
the free results at all values of y for both neutrino- as well
as antineutrino-induced processes. When pion and rho cloud
contributions as well as shadowing effects are also considered,
there is a further reduction of 2%–3% for the neutrino-induced
process and 4%–9% for the antineutrino case for all values of y.
Therefore, we observe that in the study of charged current and
neutral current differential scattering cross sections medium
effects are important.
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FIG. 3. (Color online) Paschos and Wolfenstein ratio R− in 56Fe
for the non-isoscalar case. R− is calculated for (anti)neutrino energy
(E) of 80 GeV and at different Bjorken x. The solid line is the result
when one treats 56Fe as an isoscalar target.

We show the PW ratio (R−), given by Eq. (100), in Fig. 3
using the numerical values from charged and neutral current
differential scattering cross sections in iron, treating it to be
isoscalar as well as non-isoscalar nuclear targets, at different
values of x for a fixed value of neutrino or antineutrino energy
Eν(ν̄) = 80 GeV. We have incorporated Fermi motion, Pauli
blocking, and nucleon correlation while calculating R−. We
find that R− is almost independent of x and y for an isoscalar
target, while for the non-isoscalar target there is x as well as
y dependence. We find that the non-isoscalarity and medium
effect increase with the increase in the value of x; for example,
in the mid region of x it is about 14%–15% for low values
of y and 3%–4% at higher values of y. Therefore, for non-
isoscalar targets such as iron, medium effects and an excess
of neutrons strongly affect R− and hence sin2 θW , while for
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FIG. 4. (Color online) Non-isoscalar correction (δR−) vs y at
different values of x for (anti)neutrino energy (E) of 80 GeV.
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FIG. 5. (Color online) sin2 θW vs y at different values of x in
56Fe by treating it as a non-isoscalar nuclear target for (anti)neutrino
energy (E) of 80 GeV.

an isoscalar target such as carbon (not shown here) medium
effects cancel out and the extracted value of sin2 θW from
the PW ratio is in complete agreement with the global value.
When the contributions of pion and rho clouds are also taken
into account, we find that these changes do not bring any
difference in the results of the PW ratio as obtained with our
base calculations. Since shadowing is a low-x phenomenon,
we have not considered it in our present study of the PW
ratio [8]. To see the effect of non-isoscalarity in the iron target,
we have plotted δR− using Eq. (86) at Eν(ν̄) = 80 GeV in
Fig. 4. We find that the effect of non-isoscalarity is large at
low y and high values of x; it decreases with an increase in the
value of y and this effect is smaller at low values of x. Hence
there is a non-isoscalarity dependence in the determination
of sin2 θW . Using the results of R− from Eq. (100) and δR−
from Eq. (86), we have obtained sin2 θW using Eq. (85) and
presented the results in Fig. 5. The above calculated value of
the weak mixing angle is now corrected for the isoscalar target
where we should also keep in mind that medium effects are
still present. We find that due to medium effects sin2 θW is
different from the global fit, and this difference is ≈7% when
evaluated for low values of y at x = 0.2 and this decreases
to 1% at high values of y, while this change is ≈9% when
calculated for low y at x = 0.6 and this reduces to 2% at
high values of y. Thus we observe that both non-isoscalarity
and medium effects such as Pauli blocking, binding energy,
and Fermi motion are important while extracting sin2 θW . To
see the effect of neutrino energy Eν and Q2 dependence on
sin2 θW , we have plotted in Fig. 6 sin2 θW as a function of
x at various values of Eν and Q2. We observe that at Eν =
80 GeV and Q2 = 25 GeV2 it is almost close to the standard
value at low values of x, and the value of sin2 θW changes
significantly with Eν(ν̄), Q2, and x. Therefore, when one looks
at the NuTeV results it is also important to know at what values
of x, Eν and Q2 the analysis was performed as a wide range of
these variables could change considerably the value of sin2 θW .
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FIG. 6. (Color online) sin2 θW vs x in 56Fe by treating it as a
non-isoscalar nuclear target. The results are shown at different values
of Q2 and (anti)neutrino energy E.

IV. CONCLUSIONS

To summarize our results, in this work we have studied
the effects of the nuclear medium on the structure functions
FA

2 (x,Q2) and FA
3 (x,Q2) in the iron nucleus by treating

it to be an isoscalar nuclear target and then we have made
non-isoscalarity corrections. We have used many-body theory
to describe the spectral function of a nucleon in an infinite
nuclear medium. The spectral function takes into account
the Fermi motion and the binding energy of the nucleons.
The spectral function also includes nucleon correlations. Then
to apply it to the case of finite nucleus we have used the
local density approximation. Target mass corrections have
also been considered. We have used CTEQ [46] PDFs in
the numerical evaluation. We have taken into consideration
the effects of mesonic degrees of freedom, of shadowing
and antishadowing for the calculation of FA

2 , and for FA
3

shadowing and antishadowing effects only.
With these structure functions, we have evaluated numeri-

cally the differential scattering cross sections for the charged-
and neutral-current-induced (anti)neutrino interactions on the
iron target. These differential scattering cross sections are then
used to study the nuclear medium effects and non-isoscalarity
correction in the extraction of weak mixing angle sin2θW using
the Paschos-Wolfenstein relation.

Beginning with a model for nonsymmetric nuclear matter,
we have expanded the nuclear hadron tensor in an isoscalar
part plus nuclear corrections which are, roughly speaking,
proportional to the difference between the neutron and the
proton density profiles. We have performed this expansion
for all the nuclear structure functions which appear in the
Paschos-Wolfenstein ratio for differential cross sections and
obtained the pure isoscalar Paschos-Wolfenstein result plus
nuclear corrections which depend on the phase-space Bjorken
variables.

We have also observed that the Paschos-Wolfenstein ratio
for isoscalar nuclear structure functions is almost independent
of x and y, as it should be. However, when one considers the
model for nonsymmetric nuclei, such as 56Fe, one obtains a
PW ratio which depends on the phase-space variables. Fur-
thermore, we have evaluated the first-order nuclear correction
to the isoscalar PW ratio and found it to be important for a
wide range of phase space. Whether this nuclear correction
can explain the NuTeV anomaly is a question that could be
answered if one could weight our results for δR− by the relative
amount of events in every x and y bin, under the assumption
of assigning all the correction to sin2 θW .

Another important point that may be taken into account
is the fact that we have worked in the up and down quark
approximation. Therefore, we have neglected the contribution
coming from heavier flavors. We leave this subject for future
studies.
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