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Gauge- and point-invariant vertices of nucleon-to-resonance interactions
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We construct interactions of nucleons N with higher-spin resonances R invariant under point and gauge
transformations of the Rarita-Schwinger field. It is found for arbitrarily high spin of a resonance that the
requirement of point and gauge invariance uniquely determines a Lagrangian of NR interactions with pions,
photons, and vector mesons, which might reduce model ambiguity in effective-field calculations involving
such vertices. Considering the NR interactions with photons and vector mesons, the symmetry provides a
classification of three NR vertices in terms of their differential order. The Q2 dependencies of the point- and
gauge-invariant form factors are considered in a vector-meson–dominance model. The model is in good agreement
with experimental data. In addition, we point out some empirical patterns in the Q2 dependencies of the form
factors: low-Q2 scaling of the N�(1232) form factor ratios and relations between form factors for NN (1520)
and NN (1680) transitions.
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I. INTRODUCTION

Baryon-meson effective-field theory is one of the most
important approaches of hadron phenomenology adopted to
extract form factors from experimental data and to model
Q2 dependencies of the form factors (dispersion relation
approach, chiral perturbation theory, etc.) [1–3]. However,
there are a number of barriers to describing higher-spin
nucleon resonances as effective fields, with the major barrier
being problems with physical and mathematical consistency of
the interaction Lagrangians. Most of these problems originate
from the fact that spin- H

2 baryon resonances (H is equal
to or greater than 3) are commonly described in terms of
the reducible Rarita-Schwinger (RS) representations of the
Lorentz group [4]. The RS fields comprise a spin cascade of
irreducible states,

JP = H

2
,

(
H

2
− 1

)±
, . . .

(
1

2

)±
. (1.1)

The lower-spin components should be eliminated by sub-
sidiary conditions imposed on the field.

While convenient to maintain manifest Lorentz invariance
of the theory, the RS fields are mathematically complicated
structures possessing nontrivial intrinsic symmetries. The
symmetries are inextricably linked to the constraints that are
imposed on the reducible RS field to do away with the re-
dundant degrees of freedom (DOF). This is, perhaps, the most
troublesome aspect of dealing with baryon resonances given
by the RS fields, because the symmetries and constraints can
be broken in the presence of interactions, which consequently
lead to the excitation of the lower-spin components. This may
result in superluminal propagation of the resonance [5,6] and
make the quantization of the field impossible [7,8].

For decades many efforts have been directed towards
construction of the consistent interactions of the RS fields.

*gveresh@gmail.com
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Most of the works seek the physical interpretation for the
lower-spin components of the field [9–12]. However, the
most theoretically appealing solutions [13–15] to the problem
follow another way; these do not invoke additional DOF
and rely on the interaction Lagrangians that possess the
same symmetries as the free-field RS theory. In particular,
Peccei [14] suggested that consistent interaction Lagrangians
should be invariant under point transformations of the RS
field.1 However, it was shown [12,16,17] that the suggestion
by Peccei still does not exclude all the components of the
interacting RS fields. Much later, Pascalutsa and Timmermans
[13] proposed the interaction Lagrangians that are invariant
under gauge transformation of the RS fields. Such interactions
do not involve lower-spin components of the RS fields,
although for a specific value of off-shell parameters.

The purpose of this paper is to write Lagrangians for
the interactions of higher-spin fields with nucleons that are
invariant under both gauge and point transformations of the
field. Thus, this work can be regarded as a synthesis of the ideas
expressed by Peccei [14] and Pascalutsa and Timmermans
[13]. This synthesis results in the most constrained interactions
preserving the highest degree of symmetry of the free RS field.
Such interactions are valid and universal in any formulation
of the RS theory (in theories with [18] or without [4,19] an
a priori tracelessness condition imposed on the field; in the
second-order formalism [20]). The point- and gauge-invariant
interactions do not modify free-field covariant constraints. This
property might be important, because constructing consistent
nonminimal electromagnetic couplings of the RS fields with-
out adding new DOF appears to require that the free-field
γ -tracelessness condition is preserved by interactions [21,22].

1To avoid confusion, it should be noted that throughout this paper
point invariance is taken to mean the invariance under point trans-
formations of the RS field without shifting the free-field parameter
simultaneously (cf. Refs. [16,17]). Thus, the equivalence class of the
free-field Lagrangians is point invariant, while the Lagrangian itself
is not for any value of the free-field parameter.
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The point- and gauge-invariant interactions were studied
earlier for spin- 3

2 and - 5
2 in Refs. [23–26]. In this work, we

generalize the results of Refs. [25,26] to the case of arbitrarily
high spin of the resonance. An outline of the rest of the paper
is given below.

In Sec. II we briefly review the canonical theory of the free
RS field. For the simplest case of spin- 3

2 , we rederive the well-
known facts that (1) the free-field theory is generated by a one-
parameter equivalent class of Lagrangians Lff(A), with the
free-field parameter A amounting to a sort of rotation between
the lower-spin components [4,7,27]; (2) the theory is invariant
under gauge transformations of the field in the massless limit
[4]; (3) the point transformations form the symmetry group of
the equivalent class of the Lagrangians [7,19,27].

Finally, in Sec. II it is shown that point and gauge invariance
of the interactions result in the restrictions on the tensor-spinor
source δSint/δ�̄μ1...μ�

, so that the simple subsidiary conditions
on the free RS field hold in the presence of the interactions.

In Sec. III we proceed to explicitly write the Lagrangians of
point- and gauge-invariant interactions of higher-spin baryon
resonances with nucleons. To this end, we study the general
algebraic properties of coupling matrices preserving required
symmetries. In Secs. III A a basis set of such tensor matrices
is determined. It is shown that there are only three basis
matrices for any spin of the resonance. Then we construct
minimally local Lagrangians of the interactions of baryon
resonances with nucleons and pions and with nucleons and
vector fields such as photons and vector mesons. We find
that the symmetry classifies three terms of the Lagrangian
in terms of the chiralities of the baryons involved. The
classification and the definition of the nucleon-to-resonance
form factors is in accord with perturbative QCD (PQCD) at
asymptotic momentum transfers; the chirality (non)conserving
form factors are asymptotically proportional to corresponding
helicity (non)conserving amplitudes. This means that form
factors exhibit simple power-law scaling, while form factors
of lower symmetry can potentially mix different-scale helicity
conserving and nonconserving contributions.

Section IV concerns the point and gauge interactions of
baryon resonances on the mass shell. The Q2 dependencies
of the Lagrangian form factors are parametrized in the
vector dominance model developed in the papers [28,29].
The point- and gauge-invariant form factors exhibit peculiar
gross features in their Q2 behavior. In particular, the data for
N�(1232) allow for low-Q2 scaling of the form factor ratios
similar to the analogous phenomena observed in the case of
elastic form factors [30]. In addition, the form factors for the
transitions pN (1520) and pN (1680) are proportional to each
other.

II. CONSTRAINTS AND SYMMETRIES
IN THE RS THEORY

Describing baryons of spin J = � + 1
2 � 3

2 as the RS fields
�μ1...μ�

of the tensor rank �, we have to deal with the problems
arising from the reducibility of the RS representations. The
field �μ1...μ�

contains NRS components, which exceeds the

number of spin-J DOF NDOF = 2(2J + 1) = 4(� + 1):

NRS = 4

(
3 + �

�

)
= NDOF

(
1 + �

2

)(
1 + �

3

)
. (2.1)

To eliminate redundant DOF, we have to impose 2
3�(� +

1)(� + 5) constraints on the field, four-transversality and
γ -tracelessness conditions [4]:

∂λ�λμ2...μ�
= 0 = γ λ�λμ2...μ�

. (2.2)

These constraints are linked to the symmetries of the RS theory
that we illustrate by the simplest case of a vector-spinor field.

A. RS theory of a vector-spinor field

The general Lagrangian for a vector-spinor field [19,27]
can be written as

L = �̄μ[i	μνλ(A)∂λ − M	μν(A)]�ν − �̄μJμ + H.c.

(2.3)

Here it is supposed that the interaction Lagrangian is linear in
the RS field; i.e., the source Jμ depends only on external fields.
The matrices in the kinetic and mass terms of the Lagrangian
(2.3) are given by

	μνλ(A) = gμνγλ − Aγμgνλ − A∗γνgμλ

+ (
3
2 |A|2 − �A + 1

2

)
γμγλγν,

	μν(A) = gμν − (3|A|2 − 3�A + 1)γμγν,

where A �= 1
2 is an arbitrary complex parameter.

Evaluating the Euler-Lagrange equation for the Lagrangian
(2.3) gives the RS equation

[i	μνλ(A)∂λ − M	μν(A)]�ν = Jμ. (2.4)

Operating now on Eq. (2.4) by γ μ and ∂μ, we obtain
constraints

2i� + (1 − 3A)i∂/� + 3M(1 − 2A)� = 1

1 − 2A∗ γμJμ,

(2.5a)

i(1 − A∗)∂/� + i 1
2 (1 − A∗)(1 − 3A)∂2�

−M� + M(3|A|2 − 3�A + 1)∂/� = ∂μJμ, (2.5b)

where � = ∂μ�μ and � = γ μ�μ.

1. Constraints and symmetries for a free vector-spinor field

For the free field (∂μJμ = 0 = γ μJμ) solving constraints
(2.5) with respect to � and �, we get the requisite conditions
(2.2) eliminating eight redundant DOF:

∂μ�μ = 0 = γ μ�μ. (2.6)

These conditions recast Eq. (2.4) into the Dirac form

(i∂/ − M)�μ = 0. (2.7)
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We therefore are led to a well-known conclusion that the
free RS theory is derived from a one-parameter equivalent
class of Lagrangians. The free-field parameter A is shifted to
a value A′ by a field transformation,

� ′
μ = �μν(A,A′)�ν, (2.8)

where tensor matrix �μν(A,A′) is given by

�μν(A,A′) = gμν + A′ − A

2(2A − 1)
γμγν. (2.9)

The transformation (2.8) is usually referred to as the “point”
or “contact” transformation. Such transformations form a
nonunitary symmetry group of the equivalent class of the
free-field Lagrangians with the product law

�μ
η(A,A′′)�ην(A′′, A′) = �μν(A,A′). (2.10)

It should be stressed again that we use the definition of point
transformations (2.8) without a simultaneous change of the
free-field parameter A′ → A. Therefore, the equivalent class
of the Lagrangians is point invariant, while a Lagrangian for
any particular A is not point invariant.

Besides, the free massless RS field admits the gauge
transformation [4,19]

� ′
μ = �μ + ∂μθ (x), (2.11)

where i∂/θ = 0.

2. Constraints and symmetries for a vector-spinor field in the
presence of interactions

Introducing interactions to the theory complicates the issue
of lower-spin states, because interaction Lagrangians could
bring the components of the field into nontrivial mixing,
therefore violating off-shell the equivalence of the theories
with different values of the parameter A, breaking free-
field constraints, and making nonphysical lower-spin states
contribute to the observables [5–8,14,16,17,31–33].

The most obvious way to prevent such inconsistencies is
to impose free-field intrinsic symmetries on the interaction
Lagrangian. Indeed, as we can see from Eqs. (2.5), the
constraints in the general case of the interacting theory involve
the operators ∂μJμ and γ μJμ depending on external fields.
However, the requirement of the gauge and point invariance of
the interactions makes these operators be identically zero:

∂μJμ = 0 = γ μJμ. (2.12)

Hereby for the point- and gauge-invariant interactions the free-
field constraints (2.6) remain unaffected and the field equation
remains to be the Dirac equation for every vector component
of the vector spinor field,

(i∂/ − M)�μ = Jμ. (2.13)

It should be emphasized again that the requirements (2.12)
could be considered redundant from the mathematical point of
view. It can be shown that requiring the interaction Lagrangian
to be invariant under the gauge transformation (2.11) solely
still leads to a correct number of DOF present in the theory

[8,13]. Indeed, for the gauge-invariant interactions (∂μJμ = 0)
and A = 1, a field redefinition

�μ = � ′
μ + 1

3M
∂μ∂/

1

∂2
γ λJλ (2.14)

recasts the free-field Lagrangian (2.3) into the form

L = �̄ ′μ(i∂/ − M)� ′
μ − �̄ ′

μJμ + H.c., (2.15)

while the constraints (2.5) become ∂μ� ′
μ = 0 = γ μ� ′

μ. The
Lagrangian (2.15) does not contain any new contact terms
that could be associated with the interactions of the spurious
lower-spin components of the field �μ [34,35]. Therefore, the
gauge-invariant interactions do exclude spin- 1

2 DOF.
We choose, however, to amplify the symmetry of the

interaction Lagrangian by the point invariance suggested by
Peccei [14]. The point invariance is an additional symmetry
that constrains ambiguities in the definition of the gauge-
invariant interaction Lagrangian and corresponding form
factors. For example, consider the first possible differential
order of the gauge-invariant NRV Lagrangian for spin- 3

2
resonance. It can contain at least two invariants I1 = �̄μνNVμν

and I2 = i�̄μνeμνλσ γ5NV λσ . Arbitrary linear combinations of
the invariants could be used as terms of the Lagrangian. For
higher spins and higher derivatives, the number of invariants
increases dramatically. At this point, we have two possibilities.
The first one is to choose some couplings “by hand.” The
second one is to expand the symmetry so that to constrain the
invariants. The most obvious additional symmetry for RS fields
is the point invariance, and it does leave only one invariant, as
we will see. In addition to providing unambiguous definition
of the Lagrangian and form factors, the point invariance leads
to a classification of the form factors in line with the theory of
the elastic form factors.

B. Symmetries of higher-spin RS fields ( J � 5
2 )

The theory of the free massive RS fields �μ1...μ�
for

J = � + 1
2 � 5

2 was constructed by Singh and Hagen in
Ref. [18]. To get the necessary constraints (2.5), it relies
on introducing lower-spin auxiliary fields in the Lagrangian,
which is mathematically inevitable for � � 2 [36]. The Singh-
Hagen Lagrangians imply that the γ tracelessness of the field
(γ λ�λμ2...μ�

= 0) does not follow from the field equation, but is
an a priori condition. In such a formulation the point invariance
means that the Lagrangian is invariant under all nonsingular
linear transformations of the auxiliary fields. Because the
interaction source Jμ1μ2...μ�

is a variational derivative of the
interaction part of the action, the γ tracelessness of the source
follows directly from the γ tracelessness of the field:

γ λJλμ2...μ�
= 0, Jμ1μ2...μ�

= δ

δ�̄μ1μ2...μ�

∫
Lintd

4x.

(2.16)

It should be noted that at least for the spin- 5
2 we can

construct free-field theory in lines with the spin- 3
2 theory,

with γ tracelessness of the field following from the field
equation [24,26]. In this case, to get the condition (2.16),
we should again require the invariance of the interaction
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Lagrangian under the point transformations of the RS
field:

� ′
μ1...μ�

= �μ1...μ�
+ 1

�

�∑
a=1

γμa
θμ1...μa−1μa+1...μ�

,

(2.17)

γ μ2θμ2...μ�
= 0 = ∂μ2θμ2...μ�

. (2.18)

Finally, in any case the constraint ∂λ�λμ2...μ�
= 0 is guar-

anteed by the gauge invariance of the interaction Lagrangian
and the kinematic term of the free Lagrangian:

� ′
μ1...μ�

= �μ1...μ�
+ 1

�

�∑
a=1

∂μa
θμ1...μa−1μa+1...μ�

, (2.19)

∂/θμ2...μ�
= 0, γ μ2θμ2...μ�

= 0 = ∂μ2θμ2...μ�
. (2.20)

III. POINT- AND GAUGE-INVARIANT
NUCLEON-RESONANCE INTERACTIONS

The concern of this section is explicit algebraic construction
of the point- and gauge-invariant NR interactions (N denotes
a nucleon and R a spin-J resonance) with pions and vector
fields, e.g., photons, ρ and ω mesons.

A. Symmetry constraints on coupling matrices

The invariance of the interactions under the gauge trans-
formations (2.11) of the RS field implies that the interaction
Lagrangian should be a functional of the gauge-invariant
curvature �([μ1ν1][μ2ν2]...[μ�ν�]):

Lint = Lvect{�Ā(x), Vμν(x ′), N (x ′′)}
+Lpion{�Ā(x), π (x ′), N(x ′′)}, (3.1)

where Ā = ([μ1ν1][μ2ν2] . . . [μ�ν�]) is a multi-index and Vμν

is a strength tensor of a vector field Vμ. All fields are assumed
to be isotopic scalars for brevity. The square brackets [· · ·]
enclose antisymmetric pairs of indices and the parentheses
(· · ·) indicate that the tensor spinor is symmetric under
permutations of the pairs [μaνa].

For � = 1 and 2 the explicit form of the curvature �Ā

coincides with the Maxwell field strength and the linearized
Riemann curvature tensor, while for higher spins the curvature
is easily constructed as a suitably (anti)symmetrized �th
derivative of the RS field2:

� = 1 : �[μ1ν1] = �ν1,μ1 − �μ1,ν1 ; (3.2)

� = 2 : �([μ1ν1][μ2ν2])

= 1

2

(
�ν1ν2,μ1μ2 − �ν1μ2,μ1ν2 − �μ1ν2,ν1μ2 + �μ1μ2,ν1ν2

)
;

(3.3)

2There is another definition of the generalized curvatures
�(μ1 ...μ�)(ν1 ...ν�) in the literature [37]. However, the curvature
�(μ1 ...μ�)(ν1 ...ν�) of Ref. [37] can be represented as a linear combination
of the curvature �([μ1ν1][μ2ν2]···[μ�ν�]) that is used in this paper.

� � 3 : �([μ1ν1][μ2ν2]...[μ�ν�])

= 1

2�−1

(
�ν1ν2...ν�,μ1μ2...μ�

+ · · · ). (3.4)

The effective interactions of composite particles are ba-
sically nonlocal and the Lagrangian corresponding to such
interactions can contain all the couplings (despite the order of
derivatives involved) preserving required symmetries

Lvect =
+∞∑
i,k=0

i�+i+kgi,k

2M�+i+k+1
N

�̄Ā,ᾱ	Āᾱβ̄λσ γRN,β̄V λσ + H.c.,

(3.5)

Lpion =
+∞∑
i,k=0

i�+i+kfi,k

2M�+i
R mk

π

�̄Ā,ᾱ	Āᾱβ̄γRγ5Nπ,β̄ + H.c.,

(3.6)

where ᾱ = α1α2 . . . αi and β̄ = β1β2 . . . βk are multi-indices
coming from the derivatives of field operators, γR = 1 for
baryon resonances with spin-parities JP = 3

2
−

, 5
2

+
. . ., and

γR = iγ5 in other cases.
Each term of the above derivative expansion of the interac-

tion Lagrangian comprises coupling matrices 	Āᾱβ̄ . The point
invariance of the interaction Lagrangian, which is equivalent
to the γ tracelessness (2.16) of the current Jμ1...μ�

, results in
the couplings 	Āᾱβ̄ being γ traceless; i.e.,

γ μ1	([μ1ν1][μ2ν2]...[μ�ν�])ᾱβ̄ = 0. (3.7)

Thereby, to implement the idea of gauge and point invari-
ance of the interactions, one should find all the (pseudo)tensor
matrices satisfying Eq. (3.7). To this end, we write out the
general expression for the matrix 	Āᾱ as a decomposition in
terms of a complete orthonormal basis set made up of the
identity matrix and matrices γ5, γμ, iγμγ5, and iσμν ,3

	Āᾱ = 1
4 Tr[	Āᾱ] + 1

4γ5 Tr[γ5	Āᾱ] + · · · , (3.8)

with the traces being considered as (pseudo)tensor coefficients
of the decomposition. Then imposing the requirement (3.7) on
the decomposition constrains the coefficients. These calcula-
tions are carried out in the Appendix . Here we proceed to the
results.

The most general γ -traceless matrix of any tensor rank can
be decomposed in terms of explicitly traceless basis as follows:

	Āᾱ = 	ĀB̄

[
RB̄

ᾱ + γρSρB̄
ᾱ + σρωT[ρω]B̄

ᾱ

]
, (3.9)

where RB̄ᾱ , SB̄ᾱ , and TB̄ᾱ are some coefficient tensors. In
the simplest case of � = 1 the matrix 	ĀB̄ = 	[μν][λσ ] can be
written as

	[μν][λσ ] = − 1
6 (σμνσλσ + 3σλσ σμν). (3.10)

3In this paper we use a convention γ5 = i
4! eμνλσ γ μγ νγ λγ σ , σμν =

1
2 (γμγν − γνγμ), g00 = +1 and gii = −1, e0123 = −1, 	̄ = γ0	

†γ0.
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For higher � the matrix 	ĀB̄ is defined by the following
recurrence relation:

	
(�)
ĀB̄

= 3

2(2� + 1)�2

�∑
a,b=1

[
(� + 1)	(�−1)

ĀaB̄b 	
(1)
AaBb

+ (� − 1)	(�−1)
ĀaB̄b 	

(1)
BbAa −

�∑
b �=c=1

	
(�−1)
ĀaAaB̄bc	

(1)
BbBc

]
,

(3.11)

where we have introduced a shorthand notation for the multi-
indices:

Aa = [μaνa], Ā = (A1 . . . A�),

Āa = (A1 . . . Aa−1Aa+1 . . . A�),
(3.12)

Bb = [λbσb], B̄ = (B1 . . . B�),

B̄b = (B1 . . . Bb−1Bb+1 . . . B�).

The matrices (3.10) and (3.11) are traceless and self-
conjugate:

γ μ1	ĀB̄ = 0 = 	ĀB̄γ λ1 , 	̄ĀB̄ = 	B̄Ā. (3.13)

The normalization of the matrix 	ĀB̄ is chosen so that

1

(q2)�
	ĀB̄

�∏
i=1

qνi qσi = P
(�+ 1

2 )

μ̄λ̄
(q), (3.14)

where μ̄ = μ1μ2 . . . μ�, λ̄ = λ1λ2 . . . λ�; P
(�+ 1

2 )

μ̄λ̄
(q) is a pro-

jector on the pure spin-(� + 1
2 ) state defined in Refs. [38,39].

To clarify Eqs. (3.9)–(3.11), we should comment on several
points. First of all, the importance of Eqs. (3.9) needs to be
stressed. These equations significantly simplify constructing
all possible coupling matrices of the point- and gauge-invariant
interactions, because they reduce the problem to finding all
the tensor coefficients made up of the structure tensors of
the Lorentz group gμν and eμνλσ . Constructing such tensor
objects is a much easier problem mathematically compared
with constructing tensor matrices.

An additional point to emphasize is the simplicity of the
results obtained; there are only three traceless tensor matrices
in the basis:

	ĀB̄, 	ĀB̄γρ, 	ĀB̄σρω. (3.15)

It should be noted that the γ -traceless matrices (3.15) do not
form a basis in the strict mathematical sense, for not all of
their components are independent; i.e., the following identity
holds:

	ĀB̄�[λ�σ�]γρ + 	ĀB̄�[ρλ�]γσ�
+ 	ĀB̄�[σ�ρ]γλ�

= 0. (3.16)

Besides, a peculiar feature of the model (following from
the symmetries of the Lagrangian) is that for a particular spin
JR all the basis elements (3.15) are expressed solely by means
of the matrix 	ĀB̄ , which, in turn, is expressed through the
simplest γ -traceless matrix 	[μν][λσ ] defined by Eq. (3.10).
The tensor matrix (3.10) therefore occurs in all point- and
gauge-invariant interaction Lagrangians. In constructing such

interactions 	[μν][λσ ] assumes the similar role as the matrix γμ

in the general case.

B. Minimal local interaction Lagrangian

The vertex for the NR interaction should involve three
invariant amplitudes for the interactions of higher-spin res-
onances (JR � 3/2) with nucleons and vector fields and
one amplitude for the interactions with nucleons and pions.
These amplitudes are nonlocal in the general case; they
are given by Taylor expansions in the momentum space or
derivative expansions (3.5) and (3.6) in the configuration
space. However, practical calculations of electromagnetic NR
form factors are usually performed by utilizing minimally
localized Lagrangians that contain a minimal possible number
of derivatives and lead to minimal possible degrees of kine-
matic invariants in the observables. Based on the knowledge
of the lowest-rank γ -traceless matrices (3.15), we can now
write minimally local interaction Lagrangians that are invariant
under the point and gauge transformations of the RS field.

The minimally local Lagrangian of NRπ interactions could
be written most easily [23,24]. It should involve 3� derivatives
of the field operators, because we have learned earlier that the
simplest traceless coupling matrix for the spin JR = � + 1

2 is
the tensor matrix 	ĀB̄ (3.10) of the tensor rank 4�. Therefore,
we have

L (�)
NRπ = i�f

2M2�
R m�

π

�̄Ā,λ1...λ�	ĀB̄γRγ5Nπ,σ1...σ� , (3.17)

where γR = 1 and iγ5 for the resonances R with the parity
P = (−1)� and P = (−1)�+1, respectively; the multi-indices
Ā = ([μ1ν1] . . . [μ�ν�]) and B̄ = ([λ1σ1] . . . [λ�σ�]) follow the
notation of Eq. (3.12). The NRπ Lagrangian (3.17) was first

written in terms of the projectors P
(�+ 1

2 )

μ̄λ̄
(∂) given by Eq. (3.14)

in Refs. [23,24].
It is worth pointing out that the minimally local point- and

gauge-invariant Lagrangian (3.17) is defined unambiguously
by the symmetry; i.e., there is no other Lagrangian term with
the minimal number of the derivatives of the field operator.

In the same way as in the case of the NRπ Lagrangian,
the first term in the derivative expansion of the point- and
gauge-invariant NRV Lagrangian (3.5) for JR = � + 1/2 is
determined exactly:

L (V,�)
1 = i�gV

1

2M3�−1
N

�̄Ā,λ2...λ�	ĀB̄γRN,σ2...σ�V λ1σ1 , (3.18)

where V = γ , ρ(770), ω(782), ... is a photon or vector-meson
field.

The choice of the next two �NV vertices in Eq. (3.5) is
more subtle. There are two coupling matrices of the (4� + 1)st
tensor rank:

	ĀB̄γργR, 	ĀB̄�[ρλ�]γσ�
γR − 	ĀB̄�[ρσ�]γλ�

γR. (3.19)

However, only one of the above tensor matrices is linearly
independent owing to the identity (3.16). Thus, we can write
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the second term of the Lagrangian as

L (V,�)
2 = i�+1gV

2

2M3�−1
N MR

�̄Ā,λ2...λ�ρ	ĀB̄γργRN,σ2...σ�V λ1σ1 .

(3.20)

The general point- and gauge-invariant NRV Lagrangian with
3� + 1 derivatives could contain another term that differs from
the Lagrangian (3.20) by a place of the (3� + 1)st derivative
∂ρ :

L ′
(2) = i�+1g′

2
V

2M3�−1
N MR

�̄Ā,λ2...λ�	ĀB̄γργRN,σ2...σ�ρV λ1σ1 .

(3.21)

This term can be converted to the (3�)th order NRV La-
grangian (3.18) by virtue of the on-shell field equations for
the nucleon field. If the nucleon is off its mass shell, then the
Lagrangian L ′

(2) will lead to the third degree of the invariant
mass of the nucleon MN in the observables, while L(2) will
give the first degree. Thus, the vertex L ′

(2) should be omitted
from the minimally local Lagrangian, as it represents a
next-order term of the nonlocal derivative expansion (3.5),
whose leading term is the Lagrangian (3.18).

Finally, to find the third term of the Lagrangian, we have
to consider the terms with another additional derivative. Using
the results of Sec. III A, it is easy to show that there are four
linearly independent matrices of the (4� + 2)nd tensor rank:

	ĀB̄γRgρω, 	ĀB̄σCγR, 	ĀB̄1[ρω]σB1γR, (3.22)(
	ĀB̄1[λ1ρ]gσ1ω − 	ĀB̄1[σ1ρ]gλ1ω + 	ĀB̄1[λ1ω]gσ1ρ

−	ĀB̄1[σ1ω]gλ1ρ − 	ĀB̄1[λ1σ ]gρω

)
γR. (3.23)

The matrix (3.23) is chosen so that it is symmetric and traceless
in ρω.

In the general case, we can write five Lagrangian terms
containing the matrices (3.22) and (3.23). Obviously, only
one of these terms gives the third vertex and other four are
next-order corrections to the first two Lagrangian terms (3.18)
and (3.20). It can be shown that it is the matrix (3.23) that
gives the third independent term:

L (V,�)
3 = i�g3

2M3�−1
N M2

R

�̄Ā,λ2...λ�ρ(	ĀB̄1[λ1ρ]gσ1ω

−	ĀB̄1[σ1ρ]gλ1ω + 	ĀB̄1[λ1ω]gσ1ρ − 	ĀB̄1[σ1ω]gλ1ρ

−	ĀB̄1[λ1σ1]gρω)γRN,σ2...σ�ωV λ1σ1 . (3.24)

Finally, the minimally local point- and gauge-invariant
Lagrangian of the electromagnetic nucleon-resonance inter-
actions can be written for the resonances of the spin JR =
� + 1/2 as follows:

L (�) =
∑
V

[
L (V,�)

1 + L (V,�)
2 + L (V,�)

3

] + H.c.,

L (V,�)
1 = i�gV

1

2M3�−1
N

�̄Ā,λ2...λ�	ĀB̄γRN,σ2...σ�V λ1σ1 ,

L (V,�)
2 = i�+1gV

2

2M3�−1
N MR

�̄Ā,λ2...λ�ρ	ĀB̄γργRN,σ2...σ�V λ1σ1 ,

L (V,�)
3 = i�gV

3

2M3�−1
N M2

R

�̄Ā,λ2...λ�ρ
(
	ĀB̄1[λ1ρ]gσ1ω

−	ĀB̄1[σ1ρ]gλ1ω + 	ĀB̄1[λ1ω]gσ1ρ − 	ĀB̄1[σ1ω]gλ1ρ

−	ĀB̄1[λ1σ1]gρω1

)
γRN,σ2...σ�ωV λ1σ1 , (3.25)

where the multi-indices Ā, B̄ are the same as in Eq. (3.12),
γR = 1 for baryon resonances with spin parities JP = 3

2
−

,
5
2

+
. . . and γR = iγ5 in other cases.
We can see that the requirement of the point and gauge

invariance leads to elegant and unified Lagrangians (3.17)
and (3.25); the interactions have the same coupling structure
for arbitrarily high spin of the resonance. Each term of the
Lagrangian comprises (4�)th tensor rank coupling matrix 	ĀB̄

defined by the recurrence relation (3.11). As follows from
Eq. (3.11), explicit form of 	ĀB̄ is a sum of (�!)3(� + 1) prod-
ucts of 2� σ matrices, which is quite a formidable expression
for higher spins. However, this does not pose a problem to
calculating observable quantities. Because lower-spin compo-
nents of the RS field do not participate in the interactions,
the propagator of higher-spin resonance in S-matrix elements
of the point- and gauge-invariant theory is proportional to
the projector P ᾱν̄

(�+1/2)(p). Thus, to calculate observables, we
have to deal with products of the projectors and coupling
matrices P ᾱν̄

(�+1/2)(p)	ĀB̄ . In the Appendix it is proven that the
tensor matrix 	ĀB̄ in such products for arbitrarily high � can
always be reduced to the simplest γ -traceless matrix 	[μν][λσ ].
In particular, for the NRV vertex we have

P ᾱν̄
(�+ 1

2 )
(p)K (V,�)

ĀB̄
(p, k)

�∏
a=1

pμaqσa ·
�∏

b=2

pλb

= (p2)�−1P ᾱν̄
(�+ 1

2 )
(p)K (V,1)

[μν1][λ1σ ](p, k)pμqσ

�∏
a=2

qνa , (3.26)

where Ā = ([μ1ν1] . . . [μ�ν�]), B̄ = ([λ1σ1] . . . [λ�σ�]) and
ᾱ = (α1 . . . α�), ν̄ = (ν1 . . . ν�) are multi-indices; the vertex
matrices K (V,�)

ĀB̄
are defined as follows:

K (V,�)
ĀB̄

(p, k) =
[
gV

1 	ĀB̄ − gV
2

MR

	ĀB̄p/ + gV
3

M2
R

(
	ĀB̄1[λ1ρ]gσ1ω

−	ĀB̄1[σ1ρ]gλ1ω + 	ĀB̄1[λ1ω]gσ1ρ

−	ĀB̄1[σ1ω]gλ1ρ − 	ĀB̄1[λ1σ1]gρω

)
pρkω

]
γR.

(3.27)

In the case of NRπ vertex we get an even simpler result;
the coupling matrix 	ĀB̄ reduces to the projector owing to
Eq. (3.14) and abandons the vertex:

P ᾱν̄
(�+ 1

2 )
(p)	ĀB̄

�∏
a=1

pμapλaqσa

= (p2)�P ᾱν̄
(�+ 1

2 )
(p)P

(�+ 1
2 )

ν̄σ̄ (p)
�∏

a=1

qσa

= (p2)�P ᾱν̄
(�+ 1

2 )
(p)

�∏
a=1

qνa
. (3.28)
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R(p)
μ̄ ν̄ =

i
p/−MR + i0

P( +1/2)
ν̄ μ̄ (p)

N(k)

R(p)

V (q)

σ

ν̄

=
(p2) −1

M3 −1
N

(V,1)
μν1 ][λσ ](p,k)pμ qλ ∏

a=2
qνa

N(k)

R(p)

π(q)

ν̄

=
f

M2
R mπ

(p2)
a=1

qνa

[

∏

FIG. 1. Feynman rules for the propagator of a baryon resonance
R with spin JR = � + 1/2 and the NRV and NRπ vertices (μ̄ =
μ1μ2 . . . μ�; ν̄ = ν1ν2 . . . ν�). The vertex matrix K (V,1)

[μν][λσ ](p, k) is
defined in Eq. (3.27).

The relevant diagrams and Feynman rules making use of
Eqs. (3.26) and (3.28) are depicted in Fig. 1.

C. Helicity amplitudes for the transition of a nucleon to
higher-spin resonance

Using the Feynman rules depicted in Fig. 1, we can calculate
the cross section of resonant electroproduction in the gauge-
and point-invariant model, the helicity amplitudes being of the
form

A
(p,n)
3/2 (Q2)

= ∓
√

N�

[
(Q2 ± μ±MN )F (p,n)

1 (Q2) + μ±MRF
(p,n)
2 (Q2)

− (Q2 + μ±MR)F (p,n)
3 (Q2)

]
, (3.29)

A
(p,n)
1/2 (Q2)

= −
√

�N�

� + 2

[
μ±MRF

(p,n)
1 (Q2) + (Q2 ± μ±MN )

×F
(p,n)
2 (Q2) ∓ μ±MNF

(p,n)
3 (Q2)

]
, (3.30)

S
(p,n)
1/2 (Q2)

= ∓
√

�N�

2(� + 2)
Q+Q−

[
F

(p,n)
1 (Q2) − F

(p,n)
2 (Q2)

+ Q2 + M2
R + M2

N

2M2
R

F
(p,n)
3 (Q2)

]
, (3.31)

where N�(Q2) = πα(�+2)Q2(�−1)
± Q2�

∓ M
2(�−1)
R

22�−1�τ�+1M
6�−1
N (M2

R−M2
N )

, τ�+1 = (2� +
1)!!/(� + 1)!, μ± = MR ± MN , and Q± =

√
Q2 + μ2±. In

Eqs. (3.29)–(3.31) the top and bottom signs correspond to
the resonances with spin parities JP = (3/2)±, (5/2)∓, . . .,
respectively.

Note that in the helicity amplitudes (3.29)–(3.31) only
normalization factors depend upon the spin of the resonance,
while the polynomials accompanying form factors (FFs) are
universal for arbitrarily high spin. This property of the model
is a direct consequence of its symmetry—the point and gauge
invariance of the interactions.

In the point- and gauge-invariant theory the FFs F
(p,n)
f (Q2)

are given by

F
(p,n)
f (Q2) =

+∞∑
i=0

F
(p,n)
f,i (Q2)

(
Q2

4M2
N

)i

, f = 1, 2, 3.

(3.32)

Here the Taylor series in Q2 comes from the higher terms of
the derivative expansion (3.5) of the interaction Lagrangian;
this takes into account the effects of nonlocality of the nucleon
and its resonances. The coefficients F

(p,n)
f,i at powers of Q2

are dispersionlike expansions specified by vector-meson–
dominance model.

In what follows, however, we consider only the first term
F

(p,n)
f,0 in the series (3.32). The FFs F

(p,n)
f,0 correspond to

the minimally local Lagrangian (3.25) and are sufficient to
describe the observed on-shell Q2 dependencies of the helicity
amplitudes.

D. On-shell equivalence of models of transition form factors

For sufficiently high momentum transfers, there arises the
question of differences between the point- and gauge-invariant
model (3.17) and (3.25) and the alternatives of lower symme-
try. The question is of importance, because different choices of
the tensor-matrix kernels of the interaction Lagrangians may
lead to differences in polynomials preceding FFs F

(N)
f (Q2)

(compare the point- and gauge-invariant helicity amplitudes
(3.29)–(3.31) with their counterparts from Refs. [2,29,40,41]).

From general field-theoretical considerations, it is expected
that both conventional and gauge-invariant models involve
only three independent FFs at the peak of the resonance,
because the virtual background of lower-spin components of
the field is not present on the mass shell. As there are three
FFs in every model, increasing the degree of symmetry of a
model only can select a higher-symmetry part of the FFs and,
consequently, increase the degree of the polynomials in Q2

that accompany dispersionlike FF functions in observables.
Comparing Eqs. (3.29)–(3.31) evaluated in the point- and

gauge-invariant model for � = 1 (a vector-spinor field) with the
helicity amplitudes and Jones-Scadron FFs calculated in con-
ventional [29,40,41] and gauge-invariant models [2] shows,
however, that they are equivalent up to linear redefinition of
the Lagrangian FFs F

(N)
f (Q2). In particular, we can obtain the

helicity amplitudes in the conventional model [2,29,40,41] by
the following redefinition:

F
(N)
1 (Q2) = −1

2

[
G

(N)
2 (Q2) + G

(N)
3 (Q2)

]
,

F
(N)
2 (Q2) = MN

MR

G
(N)
1 (Q2) + 1

2

[
G

(N)
2 (Q2) − G

(N)
3 (Q2)

]
,

F
(N)
3 (Q2) = −G

(N)
3 (Q2).
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Likewise, we can obtain the gauge-invariant helicity ampli-
tudes [2] by redefining the FFs as follows:

F
(N)
1 (Q2) = g(N)

m (Q2) + g(N)
e (Q2),

F
(N)
2 (Q2) = g(N)

m (Q2) − g(N)
e (Q2) − 2g(N)

c (Q2),

F
(N)
3 (Q2) = −2g(N)

c (Q2).

Thus, we have come to the conclusion that all three
models—the point- and gauge-invariant model being devel-
oped, the gauge-invariant model [2], and conventional one
[29,40,41]—are equivalent on the mass shell of the resonance
up to a linear redefinition of the FFs. It should be noted,
however, that these models differ if the resonance is off
the mass shell. For example, the one-pion decay of virtual
resonance exhibits different WR dependence in the gauge-
invariant model [42] and the point- and gauge-invariant one
(3.17):

〈Nπ |
∫

d4x
if

mπM2
R

�̄[μν]	[μν][λσ ]γ5N
,λπ,σ |R∗〉

= W 2
R〈Nπ |

∫
d4x

f

mπMR

�̄[μν]eμνλσ γ5γ
λNπ,σ |R∗〉,

(3.33)

where �[μν] = ∂μ�ν − ∂ν�μ.
In addition, linear redefinitions could change the physical

meaning of the FFs mixing helicity conserving and noncon-
serving contributions. This could obscure the Q2 dependencies
of the ratios of the FFs such as their low-Q2 scaling [25,30].

E. High- Q2 behavior of transition form factors

At very high momentum transfer, PQCD predicts the
scaling behavior of the photoabsorption amplitudes to be
[43–46]

A3/2 ∼ 1

Q5 lnn1 Q2

�2

, A1/2 ∼ 1

Q3 lnn2 Q2

�2

,

(3.34)

S1/2 ∼ 1

Q3 lnn3 Q2

�2

, n2 − n1 ≈ 2.

Comparing Eqs. (3.34) with the point- and gauge-invariant
helicity amplitudes (3.29)–(3.31), we get high-Q2 behavior of
the FFs,

F1,3 ∼ 1

Q6+2� lnn1,3 Q2

�2

, F2 ∼ 1

Q4+2� lnn2 Q2

�2

, (3.35)

where n1 < n2 < n3.
This implies that the FFs F1(Q2) ∼ Q−2�−1A3/2, F2(Q2) ∼

Q−2�−1A1/2, F3(Q2) ∼ Q−2�−3S1/2 acquire (in the asymptotic
domain) the statuses of, respectively, the FF of the processes
involving flips of two quark helicities, the non-helicity-flip FF,
and the helicity-flip FF.

It should be noted that such high-Q2 properties of the FFs
are naturally consistent with the classification of the FFs in
terms of the differential order of the interaction Lagrangian.
Indeed, the first and the third terms of the Lagrangian (3.25)

involve baryon fields of opposite chiralities and, thus, describe
electroproduction with the flip of baryon helicity. The second
term, contrarily, links the nucleon and resonance fields of
the same chirality and, consequently, amounts to helicity-
conserving interactions.

F. Summary of properties of the point- and
gauge-invariant interactions

The point- and gauge-invariant Lagrangians (3.17) and
(3.25) are specific among other consistent gauge-invariant
Lagrangians. (i) All terms of the minimally local Lagrangians
are defined uniquely by the symmetry. (ii) The point- and
gauge-invariant FFs have simple power-logarithmic high-
Q2 asymptotes (3.35). (iii) The symmetry classifies the
NR-transition FFs in terms of the differential order of the
corresponding Lagrangian vertex. The first and the third FFs
describe the interactions with hadron-helicity flips, while
the second one is for the helicity-conserving interactions.
(iv) This classification is naturally consistent with PQCD
interpretation of the FFs in the asymptotic domain. The
helicity-(non)conserving amplitudes are proportional to the
corresponding helicity-(non)conserving FFs. (v) The tensor-
matrix structure of the Lagrangians (3.17) and (3.25) are
unified by the symmetry in regard to the spin of the resonance.
All couplings are expressed through the universal matrix
	ĀB̄ . The pre-FF polynomials in the helicity amplitudes
(3.29)–(3.31) are the same for any spin of the resonance.
Consequently, all the properties (i)–(iv) are valid for arbitrarily
high resonance spin.

Therefore, the symmetry of the model (particularly, the
point invariance) can be considered as a tool to eliminate
ambiguities in choosing the Lagrangian terms and to classify
FFs.

It is important to note that the properties (i)–(iv) of the point-
and gauge-invariant theory of the nucleon transitions to higher-
spin resonances are shared with the well-known theory of the
elastic nucleon FFs and the theory of the nucleon transitions
to spin- 1

2 resonances briefly reviewed further.

1. Elastic nucleon interactions

The elastic NNV vertex [47,48] is determined uniquely by
its gauge symmetry,

L =
∑
V

N̄

[
g

(V )
1 γμV μ − ig

(V )
2

2MN

σμνV
μν

]
N. (3.36)

The isotopic indices and matrices are omitted for simplicity.
The first Dirac term comes from the covariant derivative

in the kinetic term of the nucleon Lagrangian and the second
Pauli term is the only gauge-invariant expression involving just
one field derivative. Note also that the Dirac and Pauli terms
of the Lagrangian come from the different differential orders
of the Lagrangian.

The elastic analogs of the NR helicity amplitudes are
Sachs FFs that are related to kinematic-free Lagrangian FFs
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as follows:

GE(Q2) = F1(Q2) − Q2

2M2
N

F2(Q2), (3.37)

GM (Q2) = F1(Q2) + F2(Q2), (3.38)

Ff (Q2) =
∑
V

g
(V )
f m2

V

Q2 + m2
V

, f = 1, 2. (3.39)

The high-Q2 behavior of the FFs is predicted by PQCD
[30,49]:

Ff (Q2) ∼ 1

Q2pf lnnf Q2

�2

, (3.40)

for p1 = 2, n1 ≈ 2 and p2 = 3, n2 ≈ 0. As follows from
Eq. (3.40), at asymptotically high Q2 the magnetic FF scales
like the Dirac one and the electric FF scales like the Pauli
one [30,49]:

GE(Q2) = − Q2

2M2
N

F2(Q2), GM (Q2) = F1(Q2). (3.41)

We can see now that the FFs Ff (Q2) have distinct interpre-
tations in terms of the underlying quark dynamics—the Dirac
FF is the FF of the processes conserving quark helicities,
while the Pauli FF is the FF for the processes with quark-
helicity flips. This is in accord with the classification of the
corresponding Lagrangian terms by their differential order; the
Dirac interaction relates nucleons of the same chirality, while
the Pauli one relates operators of different chiralities.

2. N R interactions ( JR = 1
2 )

The interaction Lagrangian for the transitions of nucleons
to spin- 1

2 resonances is

L =
∑
V

(
L (V )

1 + L (V )
2

) + H.c., (3.42)

L (V )
1 = ig

(V )
2

8MN

R̄σμνγRNV μν, (3.43)

L (V )
2 = g

(V )
1

8M2
N

(R̄,μγνγRN + R̄γμγRN,ν)V μν. (3.44)

Here L (V )
1 is the only possible Lagrangian with one field

derivative. It describes interactions of baryons with the same
chiralities. The second term describes the interactions of
baryons with different chiralities.

The helicity amplitudes are

A
(p,n)
1/2 (Q2) =

√
2N0(Q2)

× [
Q2F

(p,n)
1 (Q2) + μ±MNF

(p,n)
2 (Q2)

]
,

(3.45)

S
(p,n)
1/2 (Q2) = ±Q+Q−

2MR

√
N0(Q2)

× [
μ±F

(p,n)
1 (Q2) − MNF

(p,n)
2 (Q2)

]
, (3.46)

where N0(Q2) = παQ2
∓/[M5

N (M2
R − M2

N )]. In Eqs. (3.45)
and (3.46) the top signs correspond to the resonances of the

positive parity like N (1440), while the bottom ones are for the
negative-parity resonances like N (1535).

Perturbative QCD predictions (3.34) for A1/2(Q2) and
S1/2(Q2) at high Q2 result in the power-logarithmic behavior
(3.40) of the FFs for p1 = p2 = 3, n1 − n2 ≈ 2. The following
relations between helicity-(non)flip amplitudes and FFs are
valid in the asymptotic region:

A1/2(Q2) ∼ Q3F1(Q2), S1/2(Q2) ∼ Q3F2(Q2). (3.47)

IV. POINT- AND GAUGE-INVARIANT INTERACTIONS
OF ON-SHELL RESONANCES

A. Transition form factors in a vector-meson–dominance model

The vector-meson–dominance (VMD) model [28,29]
which we utilize to fit experimental data assumes that a
photon propagating inside nucleon excites all the modes of
a hadronic string carrying quantum numbers of the photon
JPC = 1−−. Thus, all the observed vector mesons (and,
perhaps, hypothetical ones) should be incorporated in the
model. The FFs F

(p,n)
f (Q2) are given by the sum over isosinglet

and isovector contributions:

F
(p,n)
f (Q2) = 1

2

K∑
k=1

[
κ

(ω)
f k (Q2)m2

(ω)k

Q2 + m2
(ω)k

± κ
(ρ)
f k (Q2)m2

(ρ)k

Q2 + m2
(ρ)k

]
,

(4.1)

where f = 1, 2, 3. Because of the value of the � isospin,
ρ mesons are only intermediaries in the N� coupling; i.e.,
κ

(ω)
f k (Q2) = 0 for � resonances.

In Eq. (4.1) it is supposed that the meson spectrum is
truncated at highly excited broad-width states that cannot be
reliably separated from the continuum. In fitting experimental
data (see Sec. IV B), however, we include only five ρω families
in the model, because this is enough to make the VMD model
agree with all the experimental data at spacelike momentum
transfers and to attain correct high-Q2 behavior predicted by
perturbative QCD (3.34). We believe that these mesons give
major contributions to the observables, although to prove this
statement one needs abundant data on the nucleon transition
FFs at the timelike momentum transfers.

Because our model is designed for a global (in Q2)
fit of transition FFs, we should guarantee correct high-Q2

behavior (3.35). This raises a question of how to comply
consistently with the requirement (3.35). There are two
physical considerations that can be invoked to resolve the
problem in the framework of effective field theory.

First of all, because baryons are composite particles,
the effects of nonlocality may manifest themselves for Q2

increasing inverse nucleon size squared R−2
N = (0.2GeV)2. We

can therefore consider transition FFs F
(p,n)
f (Q2) as nonlocal

and use the Taylor expansion of nonlocal FFs (3.32) to suppress
growing polynomial functions in the helicity amplitudes
(3.29)–(3.31).

Second, to retain correct high-Q2 behavior of the FFs is
also possible in minimally local effective field theory. To this
end, one should incorporate the higher excitations of the vector
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mesons in the model and impose superconvergence relations
on the parameters of the meson spectrum [28,50].

What option of the two ones above should be preferred is an
open issue. In what follows we try to stick to the second one,
which is simpler and allows us not to transcend the framework
of local field theory.

To assure correct high-Q2 behavior (3.34) of the disper-
sionlike expansions of the FFs (4.1), we assume the following.

(i) The Q2 dependence of the expansion coefficients is
independent of the meson-family index k:

κkf (Q2) = κkf (0)

Lf (Q2)
. (4.2)

(ii) The logarithmic corrections in Eq. (3.34) are taken into
account by phenomenological interpolation functions:

Lf (Q2) =
[

1 + bf ln

(
1 + Q2

�2

)
+ af ln2

(
1 + Q2

�2

)]nf /2

.

(4.3)

The logarithmic interpolation functions (4.3) take account of
short-distance quark-gluon processes influencing the photon
transition to mesons inside nucleon, i.e., at Q2 > R−2

N =
(0.2 GeV)2.

(iii) Finally, after applying asymptotic restrictions (3.35)
for dispersionlike expansions

K∑
k=1

m2
kκkf (0)

m2
k + Q2

= −
∞∑
i=1

(
− 1

Q2

)i K∑
k=1

m2i
k κkf (0) (4.4)

we have superconvergence relations

K∑
k=1

m2n
(ω, ρ)kκ

(ω, ρ)
kf (0) = 0, (4.5)

where n = 2, 3 for � = JR − 1
2 = 0; n = 2, 3 . . . 4 + � for

f = 1, 3, � � 1; and n = 2, . . . 3 + � for f = 2, � � 1. As we
can see, the minimal number of the mesons enough to saturate
the superconvergence relations increases with the spin of the
resonance, Kmin = 3 + � for � = 0, 1, . . ..

In what follows it is convenient to normalize coefficients
κ

(ω, ρ)
kf (0) by low-energy constants F

(ρ,ω)
f (0) = ∑K

k=1 κ
(ρ)
f k (0):

h
(ω, ρ)
kf = κ

(ω, ρ)
kf (0)

F
(ρ,ω)
f (0)

. (4.6)

The parameters h
(ω, ρ)
kf satisfy the superconvergence relations

(4.5) as the parameters κ
(ω, ρ)
kf (0) do. In addition, the following

sum rule is valid for all f = 1, 2, 3:

K∑
k=1

h
(ω, ρ)
kf = 1. (4.7)

B. Data analysis

1. Resonance �(1232)

Because the resonance �(1232) carries the isospin 3/2, it
couples only to the isovector ρ mesons. Therefore, in the VMD
model described, the FFs for the N�(1232) transition have the

TABLE I. Vector-meson masses [51]. The isosinglet mesons
ω(1960) and ω(2205) are listed in the section “Further states” of
Ref. [51]. The last column gives an averaged mass mk = [(m2

(ω)k +
m2

(ρ)k)/2]1/2.

k m(ρ)k (GeV) m(ω)k (GeV) mk (GeV)

1 ρ(770) 0.77549 ω(782) 0.78265 0.77908
2 ρ(1450) 1.465 ω(1420) 1.425 1.445
3 ρ(1700) 1.720 ω(1650) 1.670 1.695
4 ρ(1900) 1.885 ω(1960) 1.960 1.923
5 ρ(2150) 2.149 ω(2205) 2.205 2.177

form

F
(p)
f (Q2) = F

(p)
f (0)

Lf (Q2)

K∑
k=1

h
(ρ)
f km

2
(ρ)k

Q2 + m2
(ρ)k

, f = 1, 2, 3,

(4.8)

where m2
(ρ)k are the masses of ρ mesons listed in Table I,

the couplings h
(ρ)
f k satisfy the superconvergence relations (4.5)

and the sum rule (4.7), and logarithmic interpolation functions
Lf (Q2) are given by Eq. (4.3).

The data on the Q2 dependence of the N�(1232) transition
[51–61] were fitted in the model that involves five lightest ρ

mesons. Hence, only 4 of the parameters h
(ρ)
f k are independent,

while other 11 are calculated from Eqs. (4.5)–(4.7). Also six
small free parameters af and bf are introduced by the functions
Lf (Q2) to comply with the logarithmic corrections to the high-
Q2 scaling (3.35).

The free parameters are restricted so that ratios of the FFs
do not deviate from a perturbative scaling limit by more than
0.1% at Q2 � 0.4 GeV2:

Ff (Q2)

F2(Q2)
∝ 1

Q2

(
ln

Q2

�2

)n2−nf

, f = 1, 3. (4.9)

TABLE II. Fit parameters.

χ 2/DOF �(1232) N (1440) N (1520) N (1535) N (1680)
1.71 0.97 0.87 0.65 1.05

F
(p)
1 (0) 0.4203 0.0782 0.6899 0.3406 0.2458

F
(p)
2 (0) 0.7556 −0.2490 1.4932 0.2574 0.4643

F
(p)
3 (0) −0.3185 – 0.5602 – 0.0855

h
(p)
14 – −0.0437 – −0.9968 –

h
(p)
15 0.0001 – – – –

h
(p)
24 −0.8642 1.5790 0.1685 −2.4420 –

h
(p)
25 0.8683 – – – 0.1383

h
(p)
35 −0.0341 – – – –

a1 0.0090 −0.4820 0.0011 −0.2379 0.6242
b1 −0.1413 0.0754 – 0.0242 −1.0080
a2 0.2268 −0.5338 0.0032 −0.6667 0.0389
b2 −0.1339 0.1228 – 0.2355 −0.1034
a3 0.9416 – 0.0012 – 0.0883
b3 −0.0377 – – – −0.5403
� (GeV) 0.2950 0.3 0.101 0.3 0.3
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FIG. 2. (Color online) Magnetic FF G∗
M(Q2) normalized by

GD(Q2) = (1 + Q2/0.71)−2 and the amplitude ratios REM(Q2) and
RSM(Q2) for the transition pγ ∗ → �(1232) (χ 2/DOF = 1.51). The
data points are as follows: Frolov 1999 [52], Sparveris 2005 [53],
Sparveris 2008 [54], Aznauryan 2009 [55], Kamalov 2001 [56], Stave
2008 [57], Villano 2009 [58], Juliá-Dı́az 2008 [59], Elsner 2006 [60],
Kelly 2005 [61].

The overall quality of the fit by Eqs. (3.29)–(3.31) and (4.8)
is χ2/DOF = 1.71. The adjusted parameters are set out in
Table II. The corresponding curves are depicted in Fig. 2. The
magnetic dipole FF is defined in the Jones-Scadron convention
[62]:

G∗
M(Q2) = −

[
M3

N

(
M2

� − M2
N

)
2πα(M� + MN )2

]1/2

× A1/2 + √
3A3/2

[Q2 + (M� − MN )2]1/2
.

The ratios REM and RSM of the electric and Coulomb
quadrupole moments to the magnetic dipole one are written as

REM =
A1/2 − 1√

3
A3/2

A1/2 + √
3A3/2

, RSM =
√

2S1/2

A1/2 + √
3A3/2

. (4.10)

The ratios of the FFs F1,3/F2 extracted from the available
experimental data [51–53,55–59,61] on REM and RSM are
depicted in Fig. 3. The agreement of the scaling hypothesis
(4.9) with the data for Q2 � 0.4 GeV2 is at the level of
χ2/DOF = 1.03. The good agreement testifies that the hy-
pothesis of the low-Q2 scaling of the FF ratios is adequate to
describe the Q2 evolution of the ratios REM and RSM for the
N�(1232) transition.

11 0
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1
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Sparveris 2005 Kelly 2005
Julia-Diaz 2008 Aznauryan 2009

 Villano 2009

F p
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/F p
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p 2
, F

p 3
/F

p 2

Q2 (GeV2)

F p

3
/F p

2

FIG. 3. (Color online) FF ratios extracted using Eqs. (3.29)–
(3.31) from the data on the ratios REM and RSM. The fit curves agree
with a low-energy scaling (4.9) at Q2 = 0.4–7 GeV2. The references
to the experimental data are the same as for Fig. 2.

2. Resonances N(1440), N(1520), N(1535), N(1680)

Though both ρ and ω mesons contribute to the excitation of
the nucleon resonances, currently there are no measurements
of neutron helicity amplitudes, except for the photoproduction
data [51] (see Fig. 4). Thus, in the adopted VMD model,
it is hardly possible to distinguish reliably isovector and
isoscalar contributions to the FFs. Because of this reason,
in the following we neglect singlet-triplet mass splitting and
suppose that ρ and ω mesons propagate in the nucleon medium
identically; i.e., L(ρ)

f (Q2) ≡ L
(ω)
f (Q2). In such a model, proton

transition FFs depend on half as many independent parameters
as the FFs (4.1) and are written as

F
(p)
f (Q2) = F

(p)
f (0)

Lf (Q2)

K∑
k=1

h
(p)
f k m

2
k

Q2 + m2
k

, f = 1, 2, 3, (4.11)

with m2
k = (m2

(ω)k + m2
(ρ)k)/2 being vector meson masses

averaged for each singlet-triplet family (see Table I). In spite
of the simplifications described above, the FFs (4.11) provide
a good fit of the existing data on the helicity amplitudes for
the transitions to the resonances N (1440), N (1520), N (1535),
and N (1680).

We should point out an empirical feature of the experimen-
tal data. As we have seen earlier, the relations (3.29)–(3.31)
between FFs Ff (Q2) the helicity amplitudes are universal

for resonances with spin parities JR = 3
2

−
, 5

2

+
, . . . except

for the resonance masses and common Q2-dependent factor
(Q+Q−)�. Therefore, it could be interesting to compare FFs for
the resonances N (1520) (JR = 3

2
−

) and N (1680) (JR = 5
2

+
):

Gf (Q2, 1520) = F
(p)
f (Q2, 1520)

G(Q2)
, (4.12)

Gf (Q2, 1680) = 1.4
Q+Q−

M2
N

F
(p)
f (Q2, 1680)

G(Q2)
, (4.13)
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FIG. 4. (Color online) Helicity amplitudes and point- and gauge-invariant FFs for the transitions pγ ∗ → N∗
+(1520) (χ 2/DOF = 1.05),

pγ ∗ → N∗
+(1680) (χ 2/DOF = 0.87), pγ ∗ → N∗

+(1440) (χ 2/DOF = 0.97), and pγ ∗ → N∗
+(1535) (χ 2/DOF = 0.65). The references to

the experimental data are Particle Data Group (PDG) [51], Aznauryan 2005 [63], Aznauryan 2009 [55], Drechsel 2007 [64], Stoler
1993 [45].

where the normalizing function is

G(Q2) =
4∏

k=1

(
1 + Q2

m2
V (k)

)−1

. (4.14)

The experimental data for the quantities Gf (Q2, MR) at Q2 <

1.5 GeV2 are shown in Fig. 5. It is quite interesting that at these
low-momentum transfers these quantities for the transitions
N (1520) and N (1680) are mostly constant and very close or
even coincide, Gf (Q2, 1520) ≈ Gf (Q2, 1680), f = 1, 2, 3.
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FIG. 5. (Color online) The FFs defined by Eqs. (4.12) and (4.13).
The data points are N (1520) Aznauryan 2009 [55] and N (1520),
N (1680) Drechsel 2007 [64].

V. CONCLUSION

We have investigated interactions of higher-spin baryon
resonances that are invariant under both point and gauge
transformations of the RS field. We have discussed some
of theoretically appealing properties of such interactions. In
particular, it has been shown that such interactions preserve
the supplementary conditions of the original RS formalism
(2.2) and consequently involve the correct number of DOF.
Another advantage of the point- and gauge-invariant inter-
actions is that they explicitly do not depend on off-shell
parameters, either fixed or arbitrary, which is in accord
with the redundancy of these parameters in effective field
theory [65].

We have explicitly written the minimally local point- and
gauge-invariant Lagrangian for nucleon-resonance interac-
tions with photons and vector mesons. To this end, we have
defined the basis set of γ -traceless tensor matrices. With
respect to a spin of the resonance, the point- and gauge-
invariant Lagrangian is unified in its form and properties.
(i) All three vertices of the minimally local Lagrangian
are constructed with the same tensor matrix 	ĀB̄ , and the
tensor-matrix structure of the vertices is the same for arbitrarily
high spin of the resonance. (ii) The symmetry of the model
classifies vertices as helicity-conserving and nonconserving.
(iii) At asymptotically high Q2, the classification is naturally

consistent with PQCD predictions, leading to simple power-
logarithmic scaling behavior of the FFs.

We have fitted the data extracted from resonant electro-
production off nucleon. For this purpose, the Lagrangian FFs
were modeled as dispersionlike expansions with poles at vector
meson masses. The correct high-Q2 behavior was retained by
applying linear superconvergence relations on the parameters
of the meson spectrum. The model is in good agreement with
the experimental data. It should be noted that good fits to
the experimental data on helicity amplitudes of five nucleon
and � resonances are obtained in the unified approach, based
on five-pole dispersionlike FF expansions (4.8) satisfying the
superconvergence relations. This is an evidence for validity of
the VMD model in physics of nucleon excitations.

Based on the available experimental data, we have observed
empirically that the point- and gauge-invariant FFs exhibit
peculiar Q2 dependencies. The available data set on the
transition N�(1232) does not contradict the hypothesis of
low-Q2 scaling of the FF ratios, while the FFs for the
NN (1680) transition are proportional to the FFs for the
NN (1520) transition up to a factor Q+Q−.

APPENDIX: γ -TRACELESS MATRICES

In this appendix we obtain all possible coupling matrices
of the point- and gauge-invariant Lagrangians for baryon
resonances with spin JR = � + 1

2 . To this end, we should
consider matrices 	Āᾱ , where ᾱ is an arbitrary multi-index and
Ā = ([μ1ν1] . . . [μ�ν�]) is a multi-index that is contracted with
indices of a higher-spin field strength guaranteeing the gauge
invariance of the Lagrangian. The point invariance means that
the matrix is γ traceless:

γ μ1	Āᾱ = 0. (A1)

As any 4 × 4 matrix, the coupling 	Āᾱ can be written as a
linear combination of the identity matrix and the matrices iγ5,
γμ, iγμγ5, iσμν . Such a combination should be constrained
by the requirement (A1), which gives all possible γ -traceless
matrices. In the next section this is done straightforwardly for
the simplest case of � = 1. In Sec. A 2 of this appendix the
result for � = 1 are generalized by induction to higher � � 2.
In Sec. A 3 of this appendix we prove some important algebraic
properties of the matrices considered.

1. γ -traceless matrices for � = 1

a. Matrices of odd tensor ranks

Any odd-rank tensor matrix 	[μν]ᾱ can be decomposed as
follows:

	[μν]ᾱ = γ ηSη[μν]ᾱ + iγ ηγ5Pη[μν]ᾱ, (A2)

where the tensor coefficients Sη[μν]ᾱ and Pη[μν]ᾱ are antisym-
metric under interchange of μ and ν, and defined as

Sη[μν]ᾱ = −Sη[νμ]ᾱ = 1
4 Tr(γη	[μν]ᾱ), (A3)

Pη[μν]ᾱ = −Pη[νμ]ᾱ = 1
4 Tr(iγηγ5	[μν]ᾱ). (A4)
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Requiring the decomposition (A2) to obey Eq. (A1) we get

γ μ	[μν]ᾱ = Sμ
[μν]ᾱ + iγ5Pμ

[μν]ᾱ

+ σμη
(
Sη[μν]ᾱ + 1

2eμη
ωρPρωνᾱ

) = 0, (A5)

where the following identity is used

σμνγ5 = − 1
2 ieμνλσ σ λσ . (A6)

Granting the orthonormality of the basis set, it follows from
Eq. (A5) that

Sμ
[μν]ᾱ = 0, (A7)

Pμ
[μν]ᾱ = 0, (A8)

Sη[μν]ᾱ − Sμ[ην]ᾱ + eμη
ωρPρ[ων]ᾱ = 0. (A9)

If we antisymmetrize Eq. (A9) in the indexes μ and ν, we
obtain the simple relation among the tensor coefficients of the
decomposition (A2),

Sη[μν]ᾱ = 1
2 (eνη

ωρPρ[ωμ]ᾱ − eμη
ωρPρ[ων]ᾱ − eμν

ωρPρ[ωη]ᾱ).

(A10)

Equations (A7) and (A10) yield another tensor identity for the
tensor coefficients Pη[μν]ᾱ:

eημνρPη[μν]ᾱ = 0. (A11)

Substituting Eq. (A10) into the decomposition (A2) and
rearranging it, we get the following expression:

	[μν]ᾱ = 1
2

[
1
2γ η(eνηλρgμσ − eμηλρgνσ − eμνλρgησ

− eνησρgμλ + eμησρgνλ + eμνσρgηλ)

+ iγ ηγ5(gμλgνσ − gνλgμσ )gηρ

]
Pρ[λσ ]

ᾱ . (A12)

This is the most general decomposition of the odd-rank
γ -traceless and antisymmetric in μν tensor matrix 	[μν]ᾱ . It
is seen in the above equation that the tensor matrix 	[μν]ᾱ

factorizes into a constant matrix and tensor coefficients Pρ[λσ ]ᾱ

that are antisymmetric in λσ and subjected to the conditions
(A8) and (A11). The matrix in square brackets in Eq. (A12)
does not satisfy the requirement of γ tracelessness of itself
[Despite the total expression (A12) does, owing to the tensor
identities (A8) and (A11).] It is possible, however, to make
it manifestly γ traceless by adding to the right-hand side of
Eq. (A12) the following matrix:

1
12γ η

[
4eλσρμgνη − 4eλσρνgμη − eησμνgλρ + eηλμνgσρ

+ 2iγ5(gλρgσμgνη − gσρgλμgνη − gλρgσνgμη + gσρgλνgμη)

+ 2iγ5eμνηωeλσρ
ω
]
Pρ[λσ ]

ᾱ . (A13)

This is antisymmetric in the indexes μ and ν. It is also evident
that each term in the above expression vanishes by virtue of
the identities (A8) and (A11). Thus, adding the tensor matrix
(A13) to the right-hand side of Eq. (A12) does not affect the
equality. In doing so we find that Eq. (A12) takes the form

	[μν]ᾱ = i

2
	[μν][λσ ]γργ5Pρ[λσ ]

ᾱ . (A14)

Here the matrix 	[μν][λσ ] is defined as

	[μν][λσ ] = − 1
6 (σμνσλσ + 3σλσσμν), (A15)

It is easy to prove that the matrix 	[μν][λσ ] satisfies the γ -
tracelessness condition

γ μ	[μν][λσ ] = 0 = 	[μν][λσ ]γ
λ (A16)

and is related to the projector

P
(3/2)
μλ (q) = 1

q2
qνqσ 	[μν][λσ ]. (A17)

By making the substitution of 	[μν]ᾱ for −iγ5	[μν]ᾱ , we
get the decomposition similar to Eq. (A14), but with the
coefficients being of the same parity as 	[μν]ᾱ ,

	[μν]ᾱ = 1
2	[μν][λσ ]γρSρ[λσ ]

ᾱ, (A18)

where the coefficients Sρ[λσ ]ᾱ are defined by Eq. (A3) and
satisfy the same conditions as Pρ[λσ ]ᾱ do,

Sλ
[λσ ]ᾱ = 0, eηρλσ Sρ[λσ ]ᾱ = 0. (A19)

Therefore, the basis set of the odd-rank matrices constrained by
Eq. (A1) consists of only one γ -traceless element 	[μν][λσ ]γρ .
The problem of finding all possible odd-rank γ -traceless
matrices reduces to finding all the tensor coefficients Sρ[λσ ]ᾱ ,
which are antisymmetric in the indexes λ, σ and subjected to
the conditions (A19).

b. Matrices of even tensor ranks

To construct the even-rank γ -traceless matrices, we should
follow the same logic as in the case of the odd ranks, although
the calculations become more cumbersome. The most general
decomposition of even-rank matrices can be written as

	[μν]ᾱ = R[μν]ᾱ + γ5V[μν]ᾱ + iσ ρωQ[ρω][μν]ᾱ, (A20)

where the tensor coefficients are given by

R[μν]ᾱ = 1
4 Tr(	μνᾱ), (A21)

V[μν]ᾱ = 1
4 Tr(γ5	μνᾱ), (A22)

Q[ρω][μν]ᾱ = 1
8 Tr(iσρω	[μν]ᾱ). (A23)

Imposing the requirement of γ tracelessness on the decompo-
sition (A20), we get

γ μ	[μν]ᾱ = γ μ
[
R[μν]ᾱ + i

(
δω
μgρλ − δρ

μgωλ
)
Q[ρω][λν]ᾱ

]
+ iγ μγ5[−iV[μν]ᾱ − ieλρω

μQ[ρω][λν]ᾱ] = 0,

(A24)

where we have used the identity

γλσμν = (gνηgμλ − gμηgνλ)γ η − ieμνληγ
ηγ5. (A25)

Because the Dirac matrices γμ and iγμγ5 are mutually
orthogonal, the coefficients at these matrices equal zero.
Explicitly separating symmetric and antisymmetric in μ and ν
parts of the coefficients, we obtain the relations

R[μν]ᾱ = iκ ′′
[μν]

[ρω][λσ ]Q[ρω][λσ ]ᾱ, (A26)

V[μν]ᾱ = ε′′
[μν]

[ρω][λσ ]Q[ρω][λσ ]ᾱ, (A27)
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and two tensor constraints imposed on the coefficients
Q[ρω][λσ ]ᾱ

κ ′
(μν)

[ρω][λσ ]Q[ρω][λσ ]ᾱ = 0, (A28)

ε′
(μν)

[ρω][λσ ]Q[ρω][λσ ]ᾱ = 0. (A29)

In Eqs. (A26)–(A29) we introduce the tensors defined as

κ ′
(μν)

[ρω][λσ ] = 1
4

(
δρ
μδσ

ν gωλ − δω
μδσ

ν gρλ + δρ
ν δσ

μgωλ − δω
ν δσ

μgρλ

− δρ
μδλ

ν g
ωσ + δω

μδλ
ν g

ρσ − δρ
ν δλ

μgωσ + δω
ν δλ

μgρσ
)
,

(A30)

κ ′′
[μν]

[ρω][λσ ] = 1
4

(
δρ
μδσ

ν gωλ − δω
μδσ

ν gρλ − δρ
ν δσ

μgωλ + δω
ν δσ

μgρλ

− δρ
μδλ

ν g
ωσ + δω

μδλ
ν g

ρσ + δρ
ν δλ

μgωσ − δω
ν δλ

μgρσ
)
,

(A31)

ε′
(μν)

[ρω][λσ ] = 1
4

(−eλρω
νδ

σ
μ − eλρω

μδσ
ν + eσρω

νδ
λ
μ + eσρω

μδλ
ν

)
,

(A32)

ε′′
[μν]

[ρω][λσ ] = 1
4

(
eλρω

νδ
σ
μ − eλρω

μδσ
ν − eσρω

νδ
λ
μ + eσρω

μδλ
ν

)
.

(A33)

In the above equations square brackets emphasize antisymmet-
ric pairs of indices and round ones denote symmetric pairs.

Substituting Eqs. (A26) and (A27) into the decomposition
(A20), we get

	[μν]ᾱ =
[
iκ ′′

[μν][ρω][λσ ] + γ5ε
′′
[μν][ρω][λσ ]

+ i

2
σρω(gμλgνσ − gνλgμσ )

]
Q[ρω][λσ ]

ᾱ .(A34)

Here the matrix in the square brackets can be made manifestly
γ traceless by adding the following expression to the right-
hand side of Eq. (A34)

− i

2

[(
κ ′

(γ ζ )[μν][ηξ ] + 1

6
(gμηgνξ − gμξgνη)gγ ζ

)
κ ′(γ ζ )

[ρω][λσ ]

+
(

ε′
(γ ζ )[μν][ηξ ] + 1

3
eμνηξgγ ζ

)
ε′(γ ζ )

[ρω][λσ ]

]
σηξQ[ρω][λσ ]

ᾱ,

(A35)

which is equal to zero owing to the identities (A28) and (A29).
Finally, the most general decomposition of even-rank matrix
satisfying Eq. (A1) takes the form

	[μν]ᾱ = −3i

8

[
(	[μν][ρλ]gωσ − 	[μν][ωλ]gρσ − 	[μν][ρσ ]gωλ

+	[μν][ωσ ]gρλ) − 1

3
(	[μν][ρω]σλσ + 	[μν][λσ ]σρω)

]
× Q[ρω][λσ ]

ᾱ, (A36)

where 	[μν][λσ ] is γ -traceless matrix introduced by Eq. (A15).
Note that the first term in square brackets in Eq. (A36)

is antisymmetric under interchange of the pairs of indexes
[λσ ] and [ρω], while the second one is symmetric. We have
thereby come to the conclusion that there are two independent
even-rank basis matrices constrained by Eq. (A1). To express

this manifestly, we can rewrite Eq. (A36) as

	[μν]ᾱ = 	[μν][λσ ]R[λσ ]
ᾱ + i

2
	[μν][λσ ]σρωQ[ρω][λσ ]

ᾱ . (A37)

Here we have used Eq. (A26) and the following identity:

	[μν][ρω]σ[λσ ] − 	[μν][λσ ]σ[ρω] + 	[μν][λρ]gσω

−	[μν][σρ]gλω − 	[μν][λω]gσρ + 	[μν][σω]gλρ = 0. (A38)

2. γ -traceless matrices for � � 2

The general matrix 	Āᾱ for � � 2 can be written as follows:

	Āᾱ = RĀᾱ + iγ5VĀᾱ + iσCQCĀᾱ + γ ηSηĀᾱ + iγ ηγ5PηĀᾱ,

(A39)

where tensor coefficients are given by

RĀᾱ = 1
4 Tr(	Āᾱ), (A40)

VĀᾱ = 1
4 Tr(γ5	Āᾱ), (A41)

QCĀᾱ = 1
8 Tr(iσC	Āᾱ), (A42)

SηĀᾱ = 1
4 Tr(γη	Āᾱ), (A43)

PηĀᾱ = 1
4 Tr(iγηγ5	Āᾱ). (A44)

Here and in what follows multi-indices are defined as

Aa = [μaνa], Ā = (A1 . . . A�),

Āa = (A1 . . . Aa−1Aa+1 . . . A�),

Bb = [λbσb], B̄ = (B1 . . . B�), (A45)

B̄b = (B1 . . . Bb−1Bb+1 . . . B�),

C = [ρω].

The tensor coefficients are subjected to a number of constraints
following from the condition (A1):

gμiμj

H = 0, eAiAj

H = 0, (A46)

eAiμj μk

H = 0, eμiμj μkμl

H = 0, (A47)

eCAi

QCĀᾱ = 0, gρμi

gωμj

QCĀᾱ = 0, (A48)

where i, j , k, l = 1, 2 . . . � and H is any of the tensor
coefficients (A40)–(A44). The relations (A48) follow directly
from Eqs. (A28) and (A29). The relations (A46) and (A47)
are easily proved by well-known identities for products of the
Dirac matrices γμγν , γμγνγλγσ . In particular,

0 = γ μi

γ μj

	Āᾱ = gμiμj

	Āᾱ. (A49)

The first of the relations (A46) follows from Eq. (A49) and
the definitions (A40)–(A44). Other relations in Eqs. (A46) and
(A47) can be proved similarly.

A set of constraints for the coefficients SηĀᾱ and PηĀᾱ

follows from Eqs. (A7), (A11), and (A19):

eρηAi

SηĀᾱ = 0, gρμi

SηĀᾱ = 0, (A50)

eρηAi

PηĀᾱ = 0, gρμi

PηĀᾱ = 0, (A51)

for arbitrary i = 1, 2 . . . �.
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The coefficients QCĀᾱ can be decomposed into two parts:

QCĀᾱ = TCĀᾱ + UCĀᾱ, (A52)

TCĀᾱ = 1

2

(
QCĀᾱ +

�∑
a=1

QAaCĀaᾱ

)
, (A53)

UCĀᾱ = 1

2

(
QCĀᾱ −

�∑
a=1

QAaCĀaᾱ

)
. (A54)

For the tensors (A53) and (A54) the relations (A46)–(A48)
give the following:

eCAi

UCĀᾱ = 0, eCAi

TCĀᾱ = 0, (A55)

eAiAj

UCĀᾱ = 0, eAiAj

TCĀᾱ = 0, (A56)

gμiμj

TCĀᾱ = 0, gρμi

TCĀᾱ = 0, (A57)

gμiμj

UCĀᾱ = 0, gρμi

gρμj

UCĀᾱ = 0. (A58)

Now we can prove that any traceless matrix 	Āᾱ for any �
can be decomposed as

	Āᾱ = 1

4�−1
	ĀB̄

[
RB̄

ᾱ + 1

2
γρSρB̄

ᾱ + i

2
σρωQ[ρω]B̄

ᾱ

]
,

(A59)

if the decomposition (A59) is valid for � − 1. The matrix 	ĀB̄

for arbitrary � is defined recursively:

	
(�)
ĀB̄

= 3

2(2� + 1)�2

�∑
a,b=1

[
(� + 1)	(�−1)

ĀaB̄b 	
(1)
AaBb

+ (� − 1)	(�−1)
ĀaB̄b 	

(1)
BbAa

−
�∑

b �=c=1

	
(�−1)
ĀaAaB̄bc	

(1)
BbBc

]
.

(A60)

From now on summation symbols are omitted for brevity, but
summation over repeated lower-case Latin indices is implied,
if one of the indices is in a subscript position and the other is
in a superscript one (e.g., ĀaAa).

If the decomposition (A59) is valid for � − 1, then the
decomposition (A39) for � can be rewritten as

	Āᾱ = 1

4�−2

1

2�2
	ĀaB̄bgAaBb

×
[
RB̄

ᾱ + 1

2
γρSρB̄

ᾱ + i

2
σCQCB̄

ᾱ

]
, (A61)

where

gAaBb
= g[μaνa ][λbσb] = gμaλb

gνaσb
− gμaσb

gνaλb
. (A62)

Let us consider the term with the coefficient TCB̄
ᾱ:

1

4�−2

1

2�2
	ĀaB̄bgAaBb

σCTCB̄
ᾱ

= 1

4�−1

1

�2
	ĀaB̄b

(
gAaBb

− iγ5eAaBb

)
σCTCB̄

ᾱ

= 1

4�−1

1

2�2
	ĀaB̄b

[
σAa

, σBb

]
+σCTCB̄

ᾱ, (A63)

where[
σAa

, σBb

]
+ = σAa

σBb
+ σBb

σAa
= −2

(
gAaBb

− iγ5eAaBb

)
.

(A64)

The equation (A63) is derived using the identities (A57) and
a relation

iγ5	ĀB̄ = 1
2eBiC	ĀB̄iC (A65)

that is an immediate consequence of Eq. (A6) and the recursive
definition of 	ĀB̄ (A15) and (A60).

Owing to the properties (A56) and (A57) of the coefficients
TCB̄ᾱ , we have σBb

σCTCB̄
ᾱ = 0 = σBa

σBb
TCB̄

ᾱ . Hence, we
can recast (A63) as

1

4�−2

1

2�2
	ĀaB̄bgAaBb

σCTCB̄
ᾱ = 1

4�−1
	ĀB̄σCTCB̄

ᾱ. (A66)

To complete the proof of Eq. (A59), the terms with SρB̄α

and RB̄α + i
2σCUCB̄

ᾱ in the decomposition (A61) can be
transformed in the same way as Eqs. (A61)–(A66). As a result,
we come to a conclusion that any γ -traceless matrix 	Āᾱ for
arbitrarily high � can be written as the decomposition (A59).

3. Algebraic properties of the γ -traceless basis matrices

The martix (A60) is self-conjugate:

	̄ĀB̄ = 	B̄Ā. (A67)

This can be checked straightforwardly for � = 1 and 2. For
higher � � 2 the property (A67) can be proved by using the
recursive definition (A60) twice. We find that if Eq. (A67)
holds for � − 1 and � − 2, then it holds for �.

The γ tacelessness of the matrix 	ĀB̄ ,

γ μ1	ĀB̄ = 0 = 	ĀB̄γ λ1 , (A68)

can now be also proved. The right-hand side of Eq. (A68)
is proved by using Eqs. (A15) and (A60) and the following
relations that are implied to hold for � − 1:

	ĀB̄�[λ�σ�]γρ + 	ĀB̄�[ρλ�]γσ�
+ 	ĀB̄�[σ�ρ]γλ�

= 0, (A69)

	ĀB̄�[ρω]σ[λ�σ�] − 	ĀB̄�[λ�σ�]σ[ρω] + 	ĀB̄�[λ�ρ]gσ�ω

−	ĀB̄�[σ�ρ]gλ�ω − 	ĀB̄�[λ�ω]gσ�ρ + 	ĀB̄�[σ�ω]gλ�ρ = 0.

(A70)

The left-hand side of Eq. (A68) follows directly from the
right-hand one and Eq. (A67). Then the identity can be proved
for �. Because the γ tracelessness of the matrix 	ĀB̄ has been
proved for �, the constraints (A50) and (A51) are valid for the
tensors (A43) and (A44), where 	Āᾱ is taken to be 	ĀB̄γζ . We
have

eωξαβeωηAi

SηĀB̄ζ = −2(Sξ [αβ]Āi B̄ζ + Sβ[ξα]Āi B̄ζ + Sα[βξ ]Āi B̄ζ )

= 0 (A71)

and a similar relation for PηĀB̄ζ . Granting the definitions (A43)
and (A44) of the tensors SηĀB̄ζ and PηĀB̄ζ , the identity (A69)
follows from the relation (A71).

The second identity (A70) is a direct consequence of the
one just proved. To show this, we have to expand matrices σμν
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in Eq. (A70) as 1
2 (γμγν − γνγμ) and transform each term thus

obtained by means of the identity (A69).
Also, it can be proved that the matrix 	ĀB̄ is normalized so

that to give the projector for the spin-(� + 1
2 ):

	ĀB̄ ·
�∏

i=1

qνi qσi

q2
= P

(�+ 1
2 )

μ̄λ̄
(q), (A72)

where μ̄ = μ1μ2 . . . μ�, λ̄ = λ1λ2 . . . λ�. Indeed, because

there is just one unique projector operator P
(�+ 1

2 )

μ̄λ̄
(q) for

any � and the γ tracelessness and other properties of the
left-hand side of Eq. (A72) are those of the projector, then

the left-hand side of Eq. (A72) is obviously proportional to the
projector. The only thing we need to check is the normalization

Tr P
(�+ 1

2 )
μ̄

μ̄(q) = 4(� + 1) [38,39]. This can be done easily by
induction.

Finally, using Eqs. (A15), (A60), and (A72), the validity of
the following identity can be checked:

	ĀB̄P σ̄ ᾱ
(�+ 1

2 )
(p) ·

�∏
a=1

pλaqνa ·
�∏

b=2

pμb

= (p2)�−1pλqν	[μ1ν][λσ1]P
σ̄ ᾱ
(�+ 1

2 )
(p) ·

�∏
a=2

qσa
. (A73)
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