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We study meson-baryon scattering with strangeness –1 in unitary chiral perturbation theory. Ten coupled
channels are considered in our work, namely, π0�, π 0�0, π−�+, π+�−, K−p, K̄0n, η�, η�0, K0�0, and
K+�−. A large amount of experimental data are analyzed, including the recent precise measurement by the
SIDDHARTA Collaboration of the energy shift and width of the 1s state of kaonic hydrogen. This leads to a
strong constraint on the free parameters in our theory and of the resulting meson-baryon scattering amplitudes.
We also analyze the uncertainty that stems by using several different strategies to perform the fits to data. It
is found that large uncertainties in the subthreshold extrapolation of the K−p scattering amplitude arise by
either employing only one common weak pseudoscalar decay constant or distinguishing between fπ , fK , and fη.
However, in both cases a good reproduction of experimental data is obtained. We also discuss the pole content of
the resulting S-wave amplitudes, particularly in connection with the two-pole structure of the �(1405) resonance.
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I. INTRODUCTION

The antikaon-nucleon reaction is quite an interesting
subject in hadron physics. At low energies Chiral Perturbation
Theory (ChPT) [1–3] constrains strongly the possible
interactions but at the same time strong nonperturbative
effects take place. In this respect we have the presence of
the �(1405) resonance between the π� and K̄N thresholds,
which is also a manifestation of strong coupled-channel
dynamics. There are also big SU (3) symmetry breaking
effects, giving rise to a large split in thresholds because of
the different masses of the coupled channels composed by the
lightest octets of pseudoscalars and baryons. Nevertheless,
in the chiral limit all these channels are degenerate, which
implies that despite the potential presence of large differences
in the thresholds all of them are relevant in a wide range
of energies. By the same reason a realistic study of the
resonances in meson-baryon scattering with strangeness −1
in the energy region between 1 and 2 GeV requires one to
take all of them into account. Within SU (3) baryon ChPT
no explicit (baryonic or mesonic) resonances are introduced
in the Lagrangians. In particular, we do not include the 3

2
+

decuplet of baryon resonances. Because in our present study
we are concerned with S-wave scattering near thresholds, the
effects of these resonances should be properly encoded in the
low-energy counterterms of the ChPT Lagrangians. However,
for P -waves the �(1385) is below the K̄N threshold and
it should be explicitly included or generated by a proper
multichannel unitarization approach, like already done for the
scalar and vector resonances in meson-meson scattering [4].

In recent years, great progress by exploiting chiral effective
field theory has been made in this research field [5–19]. These
studies corroborate the nature of the �(1405) resonance [20]
as a dynamically generated resonance from K̄N and π�
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interactions. However, in Ref. [7] the presence of two nearby
poles in the �(1405) region has been noted. This fact
concerning the two-pole structure of the �(1405)resonance
has been studied in subsequent papers [8–11,13,14,16–18,21].
The two poles are commonly characterized as follows: the
first pole in the complex energy plane is located quite close
to the K̄N threshold with a small imaginary part, around
10–30 MeV, and a strong coupling to K̄N . In turn, the second
one is wider, with a relatively large imaginary part around
50–200 MeV, coupling more strongly to the π� channel,
and its pole position shows more dependence on the specific
theoretical model [11,13].

On the other hand, the K−p scattering length can be
determined by the measurement of the energy shift and width
of the 1s state in kaonic hydrogen. Due to the controversial
results of the DEAR Collaboration [22] and the low precision
of the KEK measurement [23] there was an uncertainty of
around a factor of 2 in this scattering length [8,9,12]. In this
respect the recent precise measurement by the SIDDHARTA
Collaboration [24] may finally fix the K−p scattering length,
up to a precision of around 20%. Of course, an important
point now is to reproduce this measurement simultaneously
with all the other scattering data. Studies in this direction
have already been accomplished [16–19]. In the present work
we take a step forward and take into account all the data
included in Refs. [16–19] and also consider additional data
in our fits, such as the π−�+ event distribution [25], the
cross section of K−p → η� [26], measurements from the
reaction of K−p → π0π0�0 [27], and the π� phase shift at
the �− mass [28,29], δπ�. Moreover, to further constrain the
fits we include the pion-nucleon isospin even S-wave scattering
length a+

0+, the nucleon σ term σπN , and the masses of N , �,
�, and �. We do not aim to give a precise description for
a+

0+, σπN , and the masses, since we only calculate them up to
O(p2) at tree level in SU (3) baryon ChPT. Potentially large
corrections from loops and higher-order low-energy constants
could exist. So in the fit we allow relatively large errors for
those quantities to account for our theoretical uncertainties.
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Even so, we still find that they can lead to important constraints
on the free parameters. In addition, we discuss here two sources
of ambiguity overlooked in previous studies. One point is
concerned with using either just one common weak decay
constant for all the channels or distinguishing between fπ ,
fK , and fη. The other controversial issue that also requires
a closer look is the definition employed for the χ2, as it has
become customary in many cases to weight differently the
data fitted corresponding to different observables. The first
point is of relevance because it shows that the uncertainty
affecting the subthreshold extrapolation of the K−p elastic
S-wave amplitude is much larger than that estimated in the
recent studies [16–19] that also reproduced the SIDDHARTA
measurement. Let us recall that this subthreshold extrapolation
is of great interest for the active and controversial field of K̄
few-nucleon systems and the possible existence of bound states
of K̄ with heavy nuclei [30–33].

As an output of our study, we can also obtain important
information on the rich resonant content or spectroscopy asso-
ciated with strangeness −1 meson-baryon S-wave scattering.
In this respect, for I = 0 we confirm the two-pole nature for
the �(1405) resonance and find poles associated with the reso-
nance �(1670). In I = 1 we find poles that are more dependent
on the details of the fits. Poles in the region of the �(1620)
resonance are found. Other poles corresponding to the �(1750)
resonance and to more controversial I = 1 resonances around
the K̄N threshold are obtained in one of the fits.

After this introduction, we present the basic setup of our
approach in Sec. II. Next, we discuss in Sec. III the fits to
the data included with the interacting kernel fixed at leading
and next-to-leading order in the chiral expansion. We find a
good reproduction of scattering data together with the energy
shift and width of the 1s state of kaonic hydrogen. Finally, we
discuss in Sec. IV the pole content of our solutions. Section V
includes a summary of the work and our conclusions.

II. FORMALISM

Our starting point is the SU (3) meson-baryon chiral
Lagrangian at O(p) and O(p2) [34]:

L1 = 〈iB̄γ μ[Dμ,B]〉 − m0〈B̄B〉
+ D

2
〈B̄γ μγ5{uμ, B}〉 + F

2
〈B̄γ μγ5[uμ, B]〉 ,

L2 = b0〈B̄B〉〈χ+〉 + bD〈B̄{χ+, B}〉
+ bF 〈B̄[χ+, B] + b1〈B̄[uμ, [uμ, B]]〉
+ b2〈B̄{uμ, {uμ, B}}〉 + b3〈B̄{uμ, [uμ, B]}〉
+ b4〈B̄B〉〈uμuμ〉 + · · · , (1)

where we do not show those terms, represented by the ellipses,
that do not contribute to the S-wave meson-baryon scattering at
tree level. The octet of baryons N,�,�, and � is collected in
the unitary 3 × 3 matrix B and the octet of light pseudoscalar
mesons π,K , and η is introduced through the basic chiral
building blocks: the covariant derivative Dμ, χ+, and uμ. In

our notation, uμ = iu†∂μUu† and U = u2 = ei
√

2�/f , with �
being the unitary 3 × 3 matrix for the octet of light pseu-
doscalars π,K , and η. In this way the parameter f corresponds

to the pseudoscalar weak decay constant f in the SU (3)
chiral limit [35]. Furthermore, DμB = ∂μB + [
μ,B], with

μ = (u†∂μu + u∂μu†)/2, and χ+ = 2B0(u†Mqu

† + uMqu),
with Mq = {mu,md,ms} being the diagonal mass matrix
for the three light flavor quarks. B0 is defined in terms of
the vacuum quark condensate in the SU (3) chiral limit as
〈0|q̄iqj |0〉 = −f 2B0δ

ij [35]. TheO(p2) low-energy constants
b0, bD , bF , and bi=1,2,3,4 will be fitted to data. The values for D
and F are taken from the determination of hyperon and neutron
β decays [36]: D = 0.80 and F = 0.46. For more details on
the notation and derivation of these chiral Lagrangians the
reader is referred to Ref. [34].

The perturbative amplitudes Vij for the meson-baryon
scattering (φB)i → (φB)j up to O(p2) have been given in
Refs. [7,9,13]. Here the labels i, j = 1, 2, 3, . . . , 10 corre-
spond to the ten different channels π0� (1), π0�0 (2), π−�+
(3), π+�− (4), K−p (5), K̄0n (6), η� (7), η�0 (8), K0�0

(9), and K+�− (10). Taking the initial center of mass (c.m.)
three-momentum along the z axis, the S-wave amplitudes
Tij (W ) can be projected out through

Tij (W ) = 1

4π

∫
d�Vij (W,�, σ, σ ) , (2)

where W is the energy in c.m., σ is the third component of the
spin for the initial and final baryons, and � is the solid angle of
the scattered final three-momentum. Notice that for an S-wave
amplitude, the third component of the spin of the initial and
final baryons is the same in Eq. (2). We point out that in the
following discussions the S-wave amplitudes (φB)i → (φB)j
are exploited to study the corresponding cross sections. This
should be justified in our case because we only consider data
near the threshold of the reaction.

In SU (3) baryon ChPT the resummation of the unitarity
chiral loops is crucial because of the large mass of the s quark
and the corresponding larger masses of those pseudoscalar
mesons and baryons with strangeness. Then, in many kinetic
configurations the masses of the two particles in a given
channel are much larger than the typical three-momentum
and this enhances the two-particle reducible loop contribu-
tions [37]. In addition, we are also interested in the chiral
dynamics involving the resonance region where the unitarity
upper bound in partial waves could be saturated. Thus, it
is not appropriate to treat unitarity in a perturbative way
as in plain ChPT. The presence of the �(1405) resonance,
which is near below the K̄N threshold, clearly signals that
the perturbative chiral amplitudes can not be appropriate here
and a nonperturbative method must be developed to probe
the meson-baryon dynamics in the strangeness −1 sector. As
a result, one must resum the right-hand cut that stems from
unitarity and for that we employ Unitary ChPT (UChPT).
This is based on an approximate algebraic solution to the
N/D method [38–40], which was first applied to meson-meson
interactions and then to meson-baryon scattering [6–9].

The unitarized meson-baryon scattering amplitude in this
formalism can be cast in matrix notation as [7]

T (W ) = [1 + N (W ) · g(W 2)]−1 · N (W ). (3)

The function g(s), s = W 2, collects the unitarity cuts con-
tributed by the two-particle intermediate states and N (W ) only
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contains the crossed-channel cuts. The unitarity loop g(s) can
be calculated through a once subtracted dispersion relation
(as well as in the dimensional regularization replacing the
divergence by a constant) and for the ith channel its explicit
form reads

16π2g(s)i = ai(μ) + log
m2

i

μ2
− x+ log

x+ − 1

x+

− x− log
x− − 1

x−
,

x± = s + M2
i − m2

i

2s

± 1

2s

√
−4s

(
M2

i − i0+) + (
s + M2

i − m2
i

)2
,

(4)

where ai(μ) is the subtraction constant that will be fitted to
data, and Mi and mi denote the baryon and meson masses
in the ith channel. We point out that g(s) is independent of
the scale μ, introduced for dimensional reasons. Note that
the combination ai(μ) + log m2

i /μ
2 could be reabsorbed in

a scale-independent subtraction constant. In our following
discussions, we set μ = 770 MeV, which fixes the scale at
which the subtraction constants ai(μ) are determined. We also
constrain these subtraction constants by taking into account
that when isospin symmetry is conserved the different ai

attached to the states with different charges but made up from
the same type of pseudoscalars and baryons should be the
same. This was demonstrated for SU (3) symmetry in Ref. [11]
and a similar proof can be given straightforwardly for the
isospin SU (2) symmetry, a subgroup of SU (3). In this way,
the three subtraction constants for π0�0, π−�+, and π+�−
are the same and equal to a2. The two subtraction constants
for K−p and K̄0n are denoted by a5 and those for K0�0 and
K+�− correspond to a9.

Concerning N (W ) in Eq. (3), it does not contain any
unitarity cut and in our present discussion it is simply
equal to the perturbative partial wave amplitude T (W ) in
Eq. (2) calculated up to O(p2). However, for a higher-order
calculation of the input chiral amplitude T (W ), the interaction
kernel N (W ) is different from T (W ) and the corresponding
formula relating both can be found in Ref. [7].

With the previous setup, we are ready to calculate the cross
section (φB)i → (φB)j , which in our normalization reads

σ [(φB)i → (φB)j ] = 1

16π s

| �pj |
| �pi |

∣∣T(φB)i→(φB)j

∣∣2
. (5)

In the previous equation T(φB)i→(φB)j corresponds to the
unitarized S-wave amplitude in Eq. (3), and �pi and �pj denote
the initial and final c.m. three-momentum of the baryons,
respectively. We fit the cross sections of eight different
processes: σ (K−p → K−p), σ (K−p → K̄0n), σ (K−p →
π+�−), σ (K−p → π−�+), σ (K−p → π0�0), σ (K−p →
π0�), σ (K−p → η�), and σ (K−p → π0π0�0).

In this work, we only consider the total cross sections near
the energy region above the threshold. Near the threshold,
the leading behavior of the partial wave amplitude T l(W ),
with the orbital angular momentum number l, is proportional

to |p|l|p′|l , with �p and �p ′ being the initial and final three-
momenta of the baryons in c.m. For the higher three-momenta
shown for the first six panels in Figs. 1–3 the geometric mean√

pp′ is around 200 MeV, which is significantly smaller than
the upper limit of the laboratory K−p three-momentum of
300 MeV. Note also that, a posteriori, our assumption of
S-wave dominance is able to provide a good description of
data in the higher-energy region shown in the plots. This is
achieved in a natural way without forcing the free parameters
of the fit. This assumption that we make here is shared by any
other previous studies of K̄N scattering in coupled channels
based on ChPT [5–19]. Nevertheless, if one attempts to study
the differential cross sections, the higher partial waves become
crucial, since only higher partial waves encompass the non-
trivial angular distribution information and, furthermore, they
add coherently so that larger interference effects are present.

Two event distributions are also fitted: the π−�+ event dis-
tribution from K−p → �+(1660)π− → �+π−π+π− [25]
and the π0�0 event distribution from K−p → π0π0�0 [27].
For the K−p → π0π0�0 reaction we consider the proton pole
dominant exchange mechanism developed in Ref. [14] and
evaluated as in Ref. [9] (see Fig. 3 of the latter reference).1

We normalize the π0�0 event distribution by multiplying our
theoretical results by a constant fixed to reproduce the highest
peak value in the event distribution.

To describe the π−�+ event distribution in the �(1405)
energy region, we follow the scheme developed in Ref. [7]
based on the assumption that the process takes places from
an original scalar isoscalar source [with the same quantum
numbers as the �(1405) resonance] which is then corrected
by final state interactions involving the three π� channels and
the two K̄N channels. For more details we refer to Ref. [7].
Two extra free parameters r and r ′ are then introduced and the
resulting formula is [7]

dNπ�

dW
= |r(D−1|32 + D−1|33 + D−1|34)

+ r ′(D−1|35 + D−1|36)|2| �pπ−�+|. (6)

In this equation we indicate by D−1|ij the matrix elements of
the inverse of the matrix D = [1 + T (W ) · g(W 2)].2

Three ratios between different cross sections at the K−p
threshold are also included in the fit [41,42]:

γ = σ (K−p → π+�−)

σ (K−p → π−�+)
,

Rc = σ (K−p → charged particles)

σ (K−p → all)
, (7)

Rn = σ (K−p → π0�)

σ (K−p → all neutral states)
.

The formulas for σπN , a+
0+, and the masses of N , �, �, and

� at the O(p2) level calculated from the Lagrangians L1 and

1In this exchange the proton is almost on-shell and this is the
reason why the proton pole exchange mechanism is expected to be
dominant [14].

2Notice that the T matrix in Eq. (3) can be written as T (W ) =
D(W )−1N (W ).
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FIG. 1. (Color online) The ten panels from (a) to (j) correspond to the cross sections of K−p → K−p, K−p → K̄0n,K−p → π+�−,
K−p → π−�+, K−p → π 0�0, K−p → π 0�, the π−�+ event distribution from K−p → �+(1660)π−, the K−p → η� cross section, the
π 0�0 event distribution from the reaction K−p → π 0π 0�0 with pK = 0.687 GeV, and the total cross section of K−p → π 0π 0�0, respectively.
The data points represented by black diamonds, magenta squares, orange circles, blue crosses, cyan down-triangles, and blue up-triangles in the
first four panels are taken from Refs. [48,56–60], respectively. The data in the panels (e) and (f) are from Ref. [61]. The π−�+ event distribution is
from Ref. [25] and the K−p → η� cross-section data are from Ref. [26]. The measurements on the reaction K−p → π 0π 0�0 are from Ref. [27].
The red solid lines and blue dashed lines represent the best fits from Fit I using Eqs. (11) and (12) (which is indicated by Fit I S), respectively.
The areas covered by green hatched lines and the gray shaded areas correspond to our estimates of error bands for Fit I and Fit I S, in order.

L2 in Eq. (1) read

σπN = −2M2
π (2b0 + bD + bF ) ,

a+
0+ = − M2

π

2πf 2

[
(2b0 + bD + bF ) − (b1 + b2 + b3 + 2b4)

+ (D + F )2

8mp

]
,

mN = m0 − 2(b0 + 2bF )M2
π − 4(b0 + bD − bF )M2

K ,

m� = m0 − 2

3
(3b0 − 2bD)M2

π − 4

3
(3b0 + 4bD)M2

K ,

m� = m0 − 2(b0 + 2bD)M2
π − 4b0M

2
K ,

m� = m0 − 2(b0 − 2bF )M2
π − 4(b0 + bD + bF )M2

K ,

(8)
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FIG. 2. (Color online) The same as in Fig. 1 but for Fit II. We refer the reader to Fig. 1 for notation.

where we do not consider isospin-breaking effects for these
quantities. The expressions for the masses of the baryons
depend on the baryon mass in the SU (3) chiral limit denoted by
m0, which always enters as m0 − 2b0(m2

π + 2m2
K ). Thus, from

the study of masses one cannot disentangle both parameters
m0 and b0, although the latter can be fitted from scattering. In
our study we fix m0 = 0.9 ± 0.2 GeV from the higher-order
study [43], as in Ref. [9]. Its uncertainty is propagated to the
errors in the final results obtained. Let us note that for the
fits employing the interacting kernel calculated at O(p) all
the next-to-leading (NLO) counterterms, b0, bD , bF , and bi ,
i = 1, 2, 3, 4, are set to zero in Eq. (8) and none of these
quantities are then introduced in the fits at O(p) described
below.

Finally, the new SIDDHARTA measurement on the energy
shift �E and the width 
 of the kaonic hydrogen 1s state are
related to the K−p scattering length aK−p, after taking into
account isospin-breaking corrections [44], through

�E − i



2
= −2α3 μ2

r aK−p[1 + 2α μr (1 − ln α) aK−p], (9)

where α is the fine structure constant and μr =
mpMK−/(MK− + mp) is the reduced mass of the K− and p
system. In our normalization the relation between the K−p
scattering length and the unitarized amplitude Eq. (3) reads

aK−p = F(
√

s) ≡ TK−p→K−p(
√

s)

8π
√

s
,

√
s = MK− + mp .

(10)
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FIG. 3. (Color online) The same as in Fig. 1 but for the O(p) Fit. We refer the reader to Fig. 1 for notation.

III. FITS AND RESULTS

Once we have introduced the theoretical formalism and
the data included in the fits, we now proceed with the
phenomenological discussions. To fix the free parameters we
consider two different strategies to perform the fits, taking into
account the fact that in the literature there are two common
ways to treat the light meson decay constants. For example,
only one single decay constant is used for π , K , and η
in Refs [5–7,9–11,14], while physical values are adopted in
Refs. [16,17,19,45]. In Fit I, we use a common decay constant
for all the states in the meson-baryon scattering amplitudes and
then fit this single decay constant. In Fit II, we distinguish the
decay constants for π , K , and η, according to the pseudoscalar

appearing in the state, so that one then employs fπ , fK , and
fη, in order. The values fπ = 92.2 MeV and fK = 110.0 MeV
are taken from the Particle Data Group (PDG) [46], while
fη = 120 MeV (in fact it is fη8 ) is estimated by using the
result from Ref. [47]. Note that both strategies are compatible
with the calculation of T in ChPT up to O(p2), since the dif-
ferences induced by using one or other decay constants are
at least of O(p3). For the masses of mesons and baryons, we
always take their physical values in the scattering amplitudes
to properly account for the threshold effects.

To equally weight experimental data from different mea-
surements, we divide χ2 from each measurement by its number
of data points and then sum over all the partial χ2 values
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together. Then, the χ2 per degree of freedom (χ2
d.o.f ) is defined

as

χ2
d.o.f =

∑
k nk

K
(∑

k nk − np

)
K∑

k=1

χ2
k

nk

,

(11)

χ2
k =

nk∑
i=1

(
y th

k;i − y
exp
k;i

)2

σ 2
k;i

.

Here K is the number of different measurements considered in
our fits, nk stands for the number of data points in the kth mea-
surement, np corresponds to the number of free para-
meters, and y

exp
k;i (y th

k;i) represents the ith experimental
(theoretical) point of the kth set of data with standard deviation
σk;i . This definition of χ2 is also used in Refs. [10,13,16,17,19].
This is basically done to enhance the weight of the kaon
hydrogen data in the fits performed, because one assumes that
this is a high-quality data point. Nonetheless, we consider that
using the previous definition of χ2

d.o.f in Eq. (11) instead of
the standard one for a total set of

∑K
k=1 nK data points,

χ2
d.o.f = 1∑

k nk − np

K∑
k=1

χ2
k , (12)

is somewhat arbitrary. In this way, we also discuss the stability
of the fits by switching from Eq. (11) to Eq. (12).

Concerning the experimental data, the references for the
cross sections and event distributions are explained in Fig. 1,
while the remaining were already introduced above. For the
ratio γ measured at the K−p threshold in Eq. (7), we notice
that Ref. [41] reported the value 2.34 ± 0.08 and Ref. [42]
gave two values: 2.38 ± 0.04 and 2.35 ± 0.07. Another value,
γ = 2.15, can be also found in Ref. [48]. Hence in our current
work we decide to assign γ a conservative error band at the 5%
level, i.e., γ = 2.36 ± 0.12, instead of the γ = 2.36 ± 0.04
used in Refs. [9,13,17,18] and the γ = 2.38 ± 0.04 used in
Ref. [19]. A similar conservative error bar is also assigned for
Rc, namely, Rc = 0.664 ± 0.033. On the other hand, the figure
Rn = 0.189 ± 0.015 derived in Ref. [49] already contains
an error bar larger than our conservative 5% relative error.
In connection to this, we do not consider that we could
have phenomenology well under control within a precision
of 5% or better. As mentioned previously, to account for our
theoretical uncertainties, we assign large errors for the pion
nucleon isospin even S-wave scattering length a+

0+, nucleon σ
term σπN , and the masses of N,�,�, and �, whose central
values and ascribed error bars can be found in the second
column of Table II. For σπN one expects that it receives
sizable higher-order corrections from the mesonic cloud that
are expected to be positive and around 10 MeV [50]. On the
other hand, the precise value for this observable is still under
debate and one has the classic result, σπN = 45 ± 8 MeV [50],
and the one favored from more modern experimental πN data
bases, σπN = 59 ± 7 MeV [51]. This adds another 10 MeV of
uncertainty, so that in our fits employing an O(p2) calculation
for this quantity we take σπN = 30 ± 20 MeV. By including
such a large error bar the central value for σπN is not really
relevant and its inclusion in our study is useful only to discard
fits that would give rise to really awful σπN . Regarding

the isoscalar scalar πN scattering length its latest recent
determination from pionic atoms is a+

0+ = (7.6 ± 3.1) × 10−3

m−1
π [52]. Similarly as in Ref. [9] we expect a theoretical

error in our O(p2) calculation of around +1 × 10−2 m−1
π ,

estimated from theO(p3) unitarity corrections [53]. As a result
we take in our fits the value a+

0+ = (0 ± 1) × 10−2 m−1
π . For

the masses we include an error of 30% by considering a general
expectation for the breaking of an SU (3) prediction.

Now we are ready to present our fit results. The error
bars of the parameters in the fits represent only the statistical
uncertainty at the level of one standard deviation. For the χ2

definition Eq. (12), with a large number of d.o.f, we employ
the criteria

χ2 � χ2
0 + nσ

√
2χ2

0 (13)

to calculate the parameter intervals. In the previous equation,
nσ is the number of standard deviations, χ2

0 is the minimum χ2

calculated with the central values of the fit, and χ2 results by
taking a new configuration of free parameters. Equation (13)
was deduced in the Appendix of Ref. [54], making use of the
fact that the quantity (χ2 − ν)/(

√
2ν) is normally distributed

with the mean value 0 and standard deviation 1 in the limit of
a large number ν of d.o.f, i.e., the number of data points minus
the number of free parameters. For a good fit, the minimum
χ2, χ2

0 , should approach to the number of d.o.f ν.
For the definition of χ2 in Eq. (11), we note that the

effective number of data points is quite small and the criteria
given in Eq. (13) may not be appropriate. Therefore, we take
another strategy for the estimation of the parameter intervals
at a given confidence level, which was originally developed
in the astrophysical analysis [55]. The basic idea is that
�χ2 ≡ χ2 − χ2

0 obeys the χ2 distribution with np d.o.f, np

TABLE I. Parameters from the three fits with the χ2 defined in
Eq. (11). The way in which the error bars of parameters are calculated
is explained in the text.

Parameters Fit I Fit II O(p) Fit
χ 2

d.o.f = 0.85 χ 2
d.o.f = 0.96 χ 2

d.o.f = 1.87

f (MeV) 124.60+1.84
−1.58 Fixed 116.05+1.89

−1.59

b0 (GeV−1) −0.230+0.029
−0.026 −0.292+0.008

−0.007 0

bD (GeV−1) −0.027+0.025
−0.020 0.101+0.010

−0.008 0

bF (GeV−1) −0.183+0.094
−0.082 −0.200+0.011

−0.011 0

b1 (GeV−1) 0.714+0.011
−0.019 0.522+0.005

−0.006 0

b2 (GeV−1) 1.331+0.051
−0.048 1.015+0.024

−0.023 0

b3 (GeV−1) −0.696+0.078
−0.078 −0.306+0.015

−0.014 0

b4 (GeV−1) −0.889+0.037
−0.039 −0.899+0.010

−0.012 0

a1 2.587+0.962
−0.944 4.761+0.491

−0.397 −6.377+1.509
−1.288

a2 −0.830+0.134
−0.140 −0.447+0.168

−0.163 −1.772+0.236
−0.186

a5 −1.073+0.034
−0.030 −1.685+0.042

−0.041 −1.668+0.048
−0.042

a7 1.164+0.488
−0.355 1.401+0.185

−0.155 −2.215+0.180
−0.149

a8 −1.938+0.831
−1.400 −0.168+0.076

−0.050 −0.170+0.241
−0.239

a9 −2.161+0.035
−0.022 −2.406+0.038

−0.027 −2.223+0.101
−0.068

r (GeV−1) 24.28+4.78
−5.39 18.27+3.18

−4.95 11.20+4.14
−13.96

r ′ (GeV−1) 10.85+6.59
−6.72 17.65+12.26

−14.06 5.40+6.18
−18.94
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TABLE II. Results by using the fits in Table I. In the second column we give the values for the several observables as included in the fit.

Observable Input Fit I Fit II O(p) Fit

�E (eV) 283 ± 36 299+33
−41 276+48

−46 276+55
−46


 (eV) 541 ± 92 612+66
−66 608+50

−65 606+72
−72

γ 2.36 ± 0.12 2.36+0.17
−0.22 2.36+0.24

−0.23 2.36+0.27
−0.28

Rc 0.664 ± 0.033 0.662+0.008
−0.010 0.661+0.012

−0.011 0.647+0.006
−0.007

Rn 0.189 ± 0.015 0.192+0.025
−0.020 0.188+0.028

−0.029 0.188+0.033
−0.032

δπ� (degrees) 3.2 ± 5.3 −1.1+1.1
−1.7 −2.7+0.5

−0.4 −1.8+0.3
−0.4

a+
0+ (10−2 m−1

π ) 0 ± 1.0 0.08+0.23
−0.45 −0.46+0.22

−0.22 −0.66+0.02
−0.02

σπN (MeV) 30 ± 20 25.6+4.7
−6.0 26.0+1.0

−1.0 0

MN (GeV) 0.94 ± 0.28 1.00+0.23
−0.22 0.92+0.20

−0.20 m0

M� (GeV) 1.12 ± 0.34 1.17+0.21
−0.21 1.07+0.20

−0.20 m0

M� (GeV) 1.19 ± 0.36 1.14+0.20
−0.20 1.19+0.20

−0.20 m0

M� (GeV) 1.32 ± 0.40 1.33+0.22
−0.24 1.28+0.20

−0.20 m0

being the number of free parameters, because χ2 obeys a
chi-square distribution with N d.o.f, N being the number of
data points and the χ2

0 from a fit is distributed with N − np

d.o.f. Detailed discussions can be found in Ref. [55]. So in
summary, for the χ2 definition in Eq. (11), we use the criteria

χ2 � χ2
0 + �χ2 (14)

to estimate the parameter intervals, �χ2 being a χ2 distribution
with np d.o.f.

We point out that in both cases we calculate the correlated
error bars, instead of estimating the uncertainty of a single
parameter one by one, because we generate new parameter
configurations by randomly varying all the free parameters
around their central values through a Monte Carlo generator.
With these new configurations, we then calculate the new
values of χ2 and reject those configurations with a χ2 larger

than the upper limit given above, corresponding to a confidence
level of 1 σ . In the particular case of Eq. (13) one has to place
nσ = 1 and discount those fits with χ2 > χ2

0 +
√

2χ2
0 . The set

of parameter configurations with lower χ2 values will be kept
and used in later discussions for determining the uncertainty
in any observable considered. In such a way, our estimation
of the error bars implicitly takes into account the correlated
errors of all the free parameters.

A. Results using the χ 2 defined in Eq. (11)

We first discuss the results employing the definition for
the χ2 corresponding to Eq. (11), in which every set of data
corresponding to one observable is considered as an effective
data point. The fitted free parameters are given in Table I for
the different fits considered, namely, for the leading-order fit,

 100

 200

 300

 400

 500

 600

 700

-400 -350 -300 -250 -200 -150

SIDDHARTA

DEAR

KEK

Γ
(e

V
)

−ΔE (eV) (a)

O(p)-Fit
O(p)-Fit S

Fit II
Fit II S

Fit I
Fit I S

 100

 200

 300

 400

 500

 600

 700

-400 -350 -300 -250 -200 -150

SIDDHARTA

DEAR

KEK

Γ
(e

V
)

−ΔE (eV) (b)

IHW
MM

OURS
CS

FIG. 4. (Color online) Reversed sign energy shift −�E and width of the 1s state of kaonic hydrogen. The experimental data with errors
indicated by the sides of the rectangles correspond to the KEK [23], DEAR [22], and SIDDHARTA [24] data. (a) The empty square, empty
circle, and empty triangle are our results from Table II for Fit I, Fit II, and O(p) Fit, respectively, while the solid square, solid circle, and solid
triangle correspond to the results from Table V for Fit I, Fit II, and O(p) Fit, respectively. (b) We show our final weight-averaged results from
Table VII by the (red) empty circle (denoted as OURS) and those from Ref. [17] (denoted as IHW and a black plus symbol), Ref. [18] (denoted
as CS and a green solid triangle), and Ref. [19] (denoted as MM and a blue cross).
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FIG. 5. (Color online) We show from left to right γ , Rc, Rn, a+
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observable the left-most point corresponds to Fit I, next, going from
left to right, one has the experimental value and finally the result
for Fit II. For every one of the fits we show the results obtained by
employing each definition of χ 2, Eqs. (11) (empty symbols) and (12)
(solid symbols), as indicated in the figure. Notice we have rescaled
different observables to clearly show them in one plot. For the original
values, one should see the details in the text.

O(p) Fit, and for the NLO ones, Fit I and Fit II. From this
table we observe that the bi coefficients have natural values
that are quite similar between the Fit I and Fit II (of course
for the O(p) Fit they are fixed to zero). The largest differences
happen for the values of the subtraction constants, especially
for a1. Nonetheless, one has to stress that all the subtraction
constants in our fits have a natural size of O(1). The cross
sections and event distributions are shown by the (red) solid
lines in Figs. 1–3 for Fit I, Fit II, and O(p) Fit, in order.
The hatched area around each line is the estimated statistical
uncertainty at the level of 1 σ as explained above. In Table II
we give the reproduction for the rest of the observables fitted
and show separately the energy shift and width of the 1s state
of the kaonic hydrogen state in Fig. 4(a) by the empty symbols,
as indicated in the figure. The rest of the contents of Table II are
shown by the empty squares and circles in Fig. 5 for Fits I and
II, respectively. In this figure every observable is appropriately
rescaled so that all of them have similar size and the quality of
its reproduction can be easily appreciated.

As it is clear from Figs. 1 and 2 and Table II the reproduction
of data for Fits I and II is very good with a χ2

d.o.f lower than 1,
see the first line in Table I. The reproduction of the observables
is then consistent between each other. In this respect we find

that our results are compatible with the value of δπ� from
Ref. [29] and not with that from Ref. [28]. It is also remarkable
that the O(p) Fit, having six free parameters less than Fit II
and seven less than Fit I, is able to achieve a good reproduction
of data, with the important exception of the K−p → η� cross
section that it is not able to reproduce adequately. Indeed, this
is the reason why the χ2

d.o.f for the O(p) Fit is near 2. If the data
of the cross section for K−p → η� is removed the resulting
χ2

d.o.f is 1.23, a much lower value. It follows then that the O(p)
Fit can properly reproduce the lower-energy scattering data
as well as the SIDDHARTA measurement on the energy shift
and width of the 1s state of kaonic hydrogen. As a result, one
finds an indication towards convergence in the reproduction
of all these data since it can already be well reproduced by
the O(p) Fit (except the K−p → η� cross section) and the
description is improved when including O(p2) contributions
to the interacting kernel (in which case the K−p → η� can
also be accounted for). This indication of convergence in the
reproduction of data when passing from the leading to NLO
fits did not result when fitting the DEAR data [22] on the
energy width and shift of the 1s state of kaonic hydrogen [9].
We also find that the ratios in Eq. (7) are improved in Table II
compared to the results obtained in Ref. [9]. The masses of
the lightest baryon octet and σπN are satisfactorily reproduced
as well. Our results for �E and 
 in Eq. (9) are compatible
with the SIDDHARTA measurements within errors, though
our fits prefer somewhat larger central values for 
, as shown in
Table II and Fig. 4. It is clear from Fig. 4(b) that the results from
other recent studies [16–19] also prefer larger values for 
.

We also calculate the K−p scattering length aK−p, Eq. (10),
and those with I = 0 and I = 1 extracted from data and the
theoretical model. The results are shown in Table III. Our
values are compatible with the recent determinations from
Refs. [17,19]. In addition, we show in Fig. 6 the K−p → K−p
S-wave amplitude around the threshold region and below it,
panel (a) is for the real part and panel (b) is for the imaginary
part. The points with error bars in Fig. 6 correspond to aK−p

extracted directly from SIDDHARTA data by making use
of Eq. (9), aK−p = (−0.65 ± 0.10) + i (0.81 ± 0.15) fm. We
observe that this amplitude for Fits I and II is quite the same at
threshold and above it in the range shown in the figure; indeed
the threshold parameters from both fits perfectly agree with
each other in Table III. However, quite different behaviors
result in the energy region below threshold. The real parts
of the K−p → K−p scattering amplitudes from the two fits
become incompatible below 1.42 GeV and the imaginary parts
are also incompatible below 1.41 GeV. As a result, it is clear
that a precise knowledge of the aK−p scattering length, such
as that resulting from the SIDDHARTA data, cannot pin down

TABLE III. K−p scattering length, aK−p , and I = 0 and 1 K̄N scattering lengths, aI=0 and aI=1, in order, for Fit I, Fit II, and O(p) Fit
given in Table I.

Observable Fit I Fit II O(p) Fit

aK−p (fm) −0.67+0.13
−0.12 + i 0.92+0.07

−0.08 −0.61+0.13
−0.15 + i 0.89+0.07

−0.06 −0.61+0.15
−0.16 + i 0.89+0.11

−0.07

aI=0 (fm) −1.74+0.20
−0.17 + i 1.27+0.14

−0.12 −1.58+0.26
−0.31 + i 1.27+0.09

−0.09 −1.62+0.31
−0.33 + i 1.32+0.15

−0.12

aI=1 (fm) 0.39+0.12
−0.10 + i 0.56+0.09

−0.09 0.36+0.06
−0.06 + i 0.52+0.09

−0.09 0.40+0.05
−0.06 + i 0.45+0.10

−0.08
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FIG. 6. (Color online) Extrapolation of the K−p → K−p amplitude F(
√

s) in Eq. (10) to the subthreshold energy region for Fit I (red solid
line) and Fit II (dashed blue line) in Table I. The real part is shown in panel (a) and the imaginary part in panel (b). The shaded and hatched
areas surrounding the solid and dashed lines, respectively, correspond to the statistical error bands from the fit in Table I. The points with error
bars correspond to the scattering length directly obtained from the SIDDHARTA measurements and the modified Deser-type formula, Eq. (9).

in a precise manner the extrapolation of the K−p S-wave
amplitude below threshold. Indeed, the difference between
Fits I and II for the subthreshold extrapolation of the K−p
S-wave amplitude in Fig. 6 is much larger than the uncertainty
estimated in Refs. [16–19]. However, an O(p3) determination
of the interacting kernel N (W ) in UChPT, Eq. (3), could
reduce this uncertainty because then one is sensitive to the
change of the weak decay constants so that these changes
have to be compensated by new terms at O(p3). This is
certainly an interesting calculation to improve the accuracy
of our knowledge in this field of research.

B. Results using the χ 2 defined in Eq. (12)

Next, we consider the stability of our fits if χ2 is defined
according to the standard definition Eq. (12) instead of using
Eq. (11). If a big change is observed by doing this modification
in the outcome of a fit, then this clearly indicates that
arbitrariness in the way chosen to describe nature is affecting
our results. If this is the case such a fit should be discounted.
We conceive this check as a stability criterion. The fitted
parameters for these new fits are shown in Table IV. At the
semiquantitative level they are quite similar to those given
in Table I. The only exception is a1 for Fit I, although this
parameter appears unstable when changing from one fit to the
other within the same definition of χ2. This is already the
case in Table I. For the cross sections and event distributions
shown in Figs. 1–3, the new curves, given by the dashed
lines, differ very little from the solid lines obtained previously.
The uncertainty in the new curves is indicated by the shaded
band around each dashed line. Then, there is stability under
the change in the definition of χ2 for these observables. We
now consider those magnitudes given in Table II. The new
values employing the standard definition, Eq. (12), are given
in Table V and are shown pictorially in Figs. 4 and 5 by the
solid symbols (squares, circles, and triangles). Taking into
account the error bars the results are compatible between the
two definitions of χ2. The only exception happens for a+

0+ in
Fit II, for which the value obtained employing the definition
of χ2 in Eq. (12) is clearly different from the value obtained
previously. Nevertheless, since the systematic uncertainty for

our calculation of a+
0+ is big, as indicated by the large error bar

attached to the cross in Fig. 5, we consider that this deficiency
is not significant. Regarding the O(p) Fit, not shown in Fig. 5,
one can observe by comparing the fifth columns in Tables II
and V that the variation of all the quantities is within the 1-σ
range.

For the energy shift and width of the 1s state of kaonic
hydrogen we see clearly in the Fig. 4(a) that the new values,
given by the solid square (Fit I), solid circle (Fit II), and solid
triangle [O(p) Fit], are within the estimated errors compatible
with those obtained before employing the definition Eq. (11).
Nevertheless, the central values for each fit move around 1 σ
from each other when changing the definition of χ2. We also
give in Table VI the values of the scattering lengths aK−p, aI=0,
and aI=1 for these new fits employing the definition Eq. (12)

TABLE IV. Parameters from the three fits with the χ2 defined in
Eq. (12). The error bars are calculated as explained in the text.

Parameters Fit I Fit II O(p) Fit
χ 2

d.o.f = 1.87 χ 2
d.o.f = 1.93 χ 2

d.o.f = 2.71

f (MeV) 125.71+1.25
−0.94 Fixed 112.75+2.69

−2.14

b0 (GeV−1) −0.169+0.019
−0.018 −0.340+0.009

−0.009 0

bD (GeV−1) −0.108+0.016
−0.012 0.196+0.011

−0.008 0

bF (GeV−1) −0.183+0.038
−0.051 −0.265+0.010

−0.014 0

b1 (GeV−1) 0.856+0.006
−0.006 0.667+0.004

−0.007 0

b2 (GeV−1) 1.621+0.033
−0.027 1.193+0.019

−0.017 0

b3 (GeV−1) −0.501+0.043
−0.049 −0.504+0.013

−0.013 0

b4 (GeV−1) −1.177+0.026
−0.027 −1.082+0.012

−0.017 0

a1 −0.800+0.435
−0.384 3.241+0.391

−0.391 −5.083+0.668
−0.596

a2 −0.883+0.100
−0.086 −0.351+0.103

−0.102 −1.655+0.139
−0.135

a5 −0.961+0.038
−0.045 −1.558+0.071

−0.054 −1.610+0.086
−0.074

a7 0.651+0.217
−0.176 1.275+0.213

−0.259 −2.068+0.190
−0.195

a8 −5.250+1.047
−2.807 −0.168+0.064

−0.059 −0.495+0.233
−0.221

a9 −2.160+0.012
−0.013 −2.298+0.014

−0.012 −2.165+0.067
−0.060

r (GeV−1) 27.46+2.86
−3.60 19.78+1.83

−2.12 10.79+3.65
−5.16

r ′ (GeV−1) 11.84+1.77
−3.50 21.76+6.32

−6.48 7.02+3.89
−4.08
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TABLE V. Results obtained by using the fits in Table IV. In the second column we give the values for the several observables as included
in the fit.

Observable Input Fit I Fit II O(p) Fit

�E (eV) 283 ± 36 334+21
−25 324+28

−24 308+36
−28


 (eV) 541 ± 92 649+66
−50 606+68

−43 664+98
−79

γ 2.36 ± 0.12 2.21+0.40
−0.30 2.17+0.37

−0.37 2.00+0.47
−0.38

Rc 0.664 ± 0.033 0.652+0.007
−0.008 0.649+0.009

−0.011 0.640+0.007
−0.006

Rn 0.189 ± 0.015 0.227+0.038
−0.039 0.198+0.041

−0.029 0.207+0.052
−0.051

δπ� (degrees) 3.2 ± 5.3 −1.0+1.3
−1.1 −1.3+0.4

−0.4 −1.7+0.3
−0.3

a+
0+ (10−2 m−1

π ) 0 ± 1.0 0.10+0.21
−0.28 −1.33+0.16

−0.16 −0.70+0.03
−0.03

σπN (MeV) 30 ± 20 23.9+2.8
−2.6 28.5+1.0

−0.9 0

MN (GeV) 0.94 ± 0.28 1.01+0.21
−0.21 0.81+0.20

−0.20 m0

M� (GeV) 1.12 ± 0.34 1.21+0.20
−0.20 0.99+0.20

−0.20 m0

M� (GeV) 1.19 ± 0.36 1.08+0.20
−0.20 1.23+0.20

−0.20 m0

M� (GeV) 1.32 ± 0.40 1.34+0.21
−0.21 1.29+0.20

−0.20 m0

for χ2. They are perfectly compatible to those given before in
Table III. In summary, our stability criterion is well fulfilled.

From the discussion above, we take as resulting values
from our study for the K̄N scattering lengths, �E and 
, the
mean and variance calculated from the four NLO fits. That
is, Fit I and Fit II in Tables I and IV. For each quantity we
add in quadrature the variance obtained and the largest of the
statistical errors resulting from the χ2 definitions Eq. (12) and
Eq. (11); this gives our final estimate for the error bar. In this
way, the spread in the values by changing the χ2 definition is
taken into account as a source of systematic uncertainty in our
results given in Table VII. Our final values for �E and 
 are
also plotted in Fig. 4(b) by the empty circle. There we also
show some other recent determinations [16–19] that include
SIDDHARTA data [24] in their fits.

IV. ASSOCIATED SPECTROSCOPY

Now we analyze the spectroscopy by studying the pole
content of the S-wave meson-baryon scattering amplitudes
with strangeness −1 that result from Fits I and II. We discuss
only the results obtained from the NLO fits in Table I,
employing the definition Eq. (11), because those obtained from
the NLO fits in Table IV are almost coincident.3 To perform
this study, we need to extrapolate the meson-baryon scattering

3We have explicitly checked that for the O(p) Fit, except for the
�(1670) resonance that is not generated, the rest of the isoscalar and

amplitudes from the physical or first Riemann sheet to the
unphysical Riemann sheets in the complex energy plane. The
physical Riemann sheet is such that the imaginary part of
the modulus of the three-momentum associated with every
channel is positive. The other Riemann sheets are defined
depending on which three-momenta are evaluated in the other
sheet of the square root, with an additional minus sign. In
practice the change of sheet can be easily performed by adding
a new term to g(s)i , Eq. (4), so that this function in its second
Riemann sheet, g(s)i;II, is given by Ref. [39]

g(s)i;II = g(s)i + iρ(s), ρ(s) = q(s)i;I
4πW

, (15)

with q(s)i;I being the c.m. three-momentum of the ith
state calculated in its first Riemann sheet, with a positive
imaginary part. Notice that in this way along the real axis
and above the ith threshold the imaginary part of g(s)i;II
changes sign in the associated second Riemann sheet (denoted
by II) with respect to the first Riemann sheet. Let us
denote the physical sheet as (+,+,+,+, . . .), where we
have ten entries inside the bracket corresponding to the sign
of the imaginary part of every qi(s) function for the ten
coupled channels. Strictly speaking there are ten unphysical
Riemann sheets that are connected continuously with the
physical sheet by crossing from s + i0+ to s − i0+, which
can be symbolized as (−,+,+,+, . . .), (−,−,+,+, . . .),

isovector resonances are quite similar to those from the NLO fits and
no further insight results.

TABLE VI. K−p scattering length, aK−p , and I = 0 and 1 K̄N scattering lengths, aI=0 and aI=1, in order, for Fit I, Fit II, and O(p) Fit in
Table IV.

Observable Fit I Fit II O(p) Fit

aK−p (fm) −0.75+0.07
−0.08 + i 1.00+0.08

−0.08 −0.74+0.07
−0.08 + i 0.93+0.09

−0.08 −0.67+0.08
−0.09 + i 1.00+0.15

−0.12

aI=0 (fm) −1.86+0.14
−0.11 + i 1.35+0.17

−0.15 −1.79+0.13
−0.14 + i 1.36+0.18

−0.19 −1.72+0.18
−0.17 + i 1.47+0.30

−0.23

aI=1 (fm) 0.37+0.05
−0.04 + i 0.65+0.07

−0.06 0.31+0.05
−0.06 + i 0.50+0.05

−0.05 0.38+0.05
−0.07 + i 0.52+0.08

−0.11
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TABLE VII. Our final results for the quantities listed in the column heads. The error bars are calculated as explained in the text.

�E (eV) 
 (eV) aK−p (fm) aI=0 (fm) aI=1 (fm)

308 ± 56 619 ± 73 (−0.69 ± 0.16) + i (0.94 ± 0.11) (−1.74 ± 0.34) + i (1.31 ± 0.20) (0.36 ± 0.12) + i (0.56 ± 0.12)

(−,−,−,+, . . .), and so on, adding an additional minus sign
every time a threshold is passed over. Nevertheless, we notice
that the gaps between the three thresholds π0�0, π−�+, and
π+�− are quite narrow, and the same applies to the K−p,
K̄0n and K0�0, K+�− channels. Indeed, every of the sets
of thresholds indicated would be degenerate if the isospin
symmetry were not broken in the pseudoscalar and baryon
masses. In the following discussions, we do not distinguish
the small differences of thresholds inside the three clusters. In
such a way, we only have six unphysical Riemann sheets that
are directly connected to the first one. We denote the second
Riemann sheet as (−,+,+,+,+,+,+,+,+,+), meaning
that the sign of the imaginary part of q1 is changed and
becomes negative. The 3rd (3RS), 4th (4RS), 5th (5RS),
6th (6RS), and 7th (7RS) Riemann sheets correspond to
(−,−,−,−,+,+,+,+,+,+), (−,−,−,−,−,−,+,+,
+,+), (−,−,−,−,−,−,−,+,+,+), (−,−,−,−,−,−,
−,−,+,+), and (−,−,−,−,−,−,−,−,−,−), respec-
tively. Apart from the pole position sR in the complex energy
plane, the resonance R is also characterized by its couplings,
which correspond to the residues βi of the resonance pole and
are calculated by

Tij = − lim
s→sR

βiβj

s − sR

. (16)

We summarize the resonance pole positions and their
couplings in Table VIII for Fit I and Table IX for Fit II.

The two relevant resonances with I = 0, namely �(1405)
and �(1670), clearly show up in both fits. The two poles
corresponding to the �(1405) resonance are found in the
3RS for both Fit I and Fit II. The narrower poles, i.e., those
with small imaginary parts, from the two fits are perfectly
consistent, while the broader ones differ slightly (taking into
account errors) from the two fits. The narrower poles from our
study also agree well with the recent determinations from

Refs. [9,16,17]. While for the broader poles, our results from
Fit II are compatible with those in Refs. [16,17], which also
use the physical decay constants for π , K , and η as in our
Fit II. Concerning the broader pole, none of our results seem
compatible with those in Ref. [19], though we find that the real
part of the broader pole in the case of Fit I is slightly above
the K−p threshold. As pointed out in Ref. [13] the broader
pole is much more dependent on the details of the theoretical
approach than the narrower one. Our results for the broader
pole are well inside the interval of values obtained in the same
reference. Despite the fact that the broader pole changes its
pole position according to the fit considered, the π� and K̄N
amplitudes have their peak values at nearly the same energy.
This is due to the fact that the gradient of the modulus of
the amplitudes is tilted so that it is not perpendicular to the
real axis from the pole positions. This is clearly shown by the
contour plots in Fig. 7 where the modulus of the elastic I = 0
K̄N (blue dashed lines) and π� (red solid lines) S waves for
Fit I [panel (a)] and Fit II [panel (b)] are plotted. For Fit I
the gradient is tilted to the left from the broader pole position
while for Fit II it is tilted to the right from the analogous pole,
being always oriented towards the narrower pole. However,
the gradient is always tilted to the left of the narrower pole.
This figure also shows that for the π� state the two poles play
a role in its shape on the real axis while K̄N is dominated by
the narrower pole. In addition, the change in the position of
the broader pole has more influence below the K̄N threshold
and this is the origin of the differences between Fit I and Fit II
in Fig. 6, as can be easily inferred from Fig. 7 considering the
dashed lines.

In addition to the pole positions, we also calculate the
couplings of the resonances, see Tables VIII and IX. The first
conclusion we can make for the �(1405) resonance is that both
the narrower and broader poles couple mostly to the π� and
K̄N channels. For the broader poles, the coupling strength to

TABLE VIII. Resonances from Fit I in Table I. The positions of the resonance poles are in MeV and the moduli of their couplings are given
in GeV. The latter are represented by |βi |(I ), where the isospin label I is indicated when more than one isospin channel is possible.

Pole |βπ�| |βπ� |0 |βπ� |1 |βπ� |2 |βK̄N |0 |βK̄N |1 |βη�| |βη� | |βK�|0 |βK�|1
�(1405)

1436+14
−10 − i 126+24

−28 (3RS) 0.0+0.0
−0.0 8.8+0.9

−0.4 0.0+0.0
−0.0 0.0+0.0

−0.0 7.7+1.3
−0.7 0.0+0.1

−0.0 1.4+0.4
−0.3 0.0+0.1

−0.0 2.1+0.8
−0.7 0.0+0.0

−0.0

1417+4
−4 − i 24+7

−4 (3RS) 0.1+0.0
−0.0 5.0+1.5

−0.8 0.1+0.0
−0.0 0.0+0.0

−0.0 7.7+1.2
−0.6 0.1+0.0

−0.0 1.4+0.4
−0.3 0.1+0.0

−0.0 1.5+0.7
−0.5 0.1+0.0

−0.0

�(1670)

1674+3
−2 − i 8+6

−3 (4RS) 0.0+0.0
−0.0 0.8+0.4

−0.1 0.0+0.0
−0.0 0.0+0.0

−0.0 1.5+0.4
−0.2 0.0+0.0

−0.0 1.5+0.2
−0.2 0.0+0.0

−0.0 10.8+0.2
−0.2 0.1+0.0

−0.0

1674+3
−3 − i 11+7

−3 (5RS) 0.0+0.0
−0.0 0.9+0.4

−0.2 0.0+0.0
−0.0 0.0+0.0

−0.0 1.6+0.4
−0.2 0.0+0.0

−0.0 1.7+0.5
−0.3 0.0+0.0

−0.0 11.1+0.3
−0.3 0.1+0.0

−0.0

1673+3
−3 − i 11+7

−3 (6RS) 0.0+0.0
−0.0 0.9+0.4

−0.2 0.0+0.0
−0.0 0.0+0.0

−0.0 1.6+0.4
−0.2 0.0+0.0

−0.0 1.7+0.5
−0.3 0.0+0.0

−0.0 11.1+0.3
−0.3 0.1+0.0

−0.0

� I = 1

1646+30
−127 − i 160+78

−36 (4RS,5RS) 3.1+1.4
−0.5 0.0+0.0

−0.0 3.0+0.4
−0.5 0.0+0.0

−0.0 0.0+0.0
−0.0 2.9+0.4

−0.3 0.0+0.0
−0.0 7.9+1.1

−1.2 0.0+0.0
−0.0 6.4+1.4

−2.2

1878+48
−59 − i 169+27

−34 (6RS) 1.0+0.5
−0.4 0.0+0.0

−0.0 5.8+0.9
−0.6 0.0+0.0

−0.0 0.0+0.0
−0.0 3.7+0.4

−0.4 0.0+0.0
−0.0 3.9+1.1

−1.2 0.1+0.0
−0.0 16.1+2.4

−1.6
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TABLE IX. Resonances from Fit II in Table I. For notation see Table VIII.

Pole |βπ�| |βπ� |0 |βπ� |1 |βπ� |2 |βK̄N |0 |βK̄N |1 |βη�| |βη� | |βK�|0 |βK�|1
�(1405)

1388+9
−9 − i 114+24

−25 (3RS) 0.0+0.0
−0.0 8.2+0.8

−0.5 0.0+0.0
−0.0 0.0+0.0

−0.0 6.1+1.1
−0.6 0.1+0.0

−0.0 2.2+0.6
−0.3 0.0+0.0

−0.0 1.9+0.2
−0.1 0.1+0.0

−0.0

1421+3
−2 − i 19+8

−5 (3RS) 0.2+0.1
−0.1 4.2+1.5

−0.9 0.2+0.0
−0.0 0.0+0.0

−0.0 6.2+1.2
−0.5 0.3+0.1

−0.1 2.8+0.5
−0.3 0.4+0.2

−0.1 0.7+0.4
−0.3 0.4+0.1

−0.1

�(1670)

1676+5
−3 − i 7+5

−3 (4RS) 0.0+0.0
−0.0 0.9+0.1

−0.1 0.0+0.0
−0.0 0.0+0.0

−0.0 1.5+0.4
−0.4 0.1+0.0

−0.0 1.6+0.2
−0.2 0.1+0.0

−0.0 10.0+0.1
−0.1 0.1+0.0

−0.0

1677+5
−3 − i 11+5

−3 (5RS) 0.0+0.0
−0.0 0.8+0.1

−0.1 0.1+0.0
−0.0 0.0+0.0

−0.0 1.6+0.4
−0.4 0.1+0.0

−0.0 1.8+0.2
−0.2 0.1+0.0

−0.0 10.5+0.2
−0.2 0.1+0.0

−0.0

1677+5
−3 − i 11+5

−3 (6RS) 0.0+0.0
−0.0 0.8+0.1

−0.1 0.0+0.0
−0.0 0.0+0.0

−0.0 1.6+0.4
−0.4 0.0+0.0

−0.0 1.8+0.2
−0.2 0.1+0.0

−0.0 10.5+0.2
−0.2 0.0+0.0

−0.0

� I = 1

1376+3
−3 − i 33+5

−5 (3RS) 2.0+0.1
−0.1 0.0+0.0

−0.0 0.1+0.1
−0.1 0.0+0.0

−0.0 0.1+0.0
−0.0 2.1+0.5

−0.4 0.0+0.0
−0.0 4.0+0.5

−0.3 0.0+0.0
−0.0 6.3+0.2

−0.2

1414+2
−3 − i 12+1

−2 (3RS) 1.9+0.1
−0.1 0.3+0.1

−0.1 1.0+0.2
−0.1 0.0+0.0

−0.0 0.4+0.2
−0.1 2.5+0.3

−0.4 0.2+0.1
−0.1 3.3+0.4

−0.4 0.1+0.0
−0.0 3.3+0.3

−0.3

1686+18
−18 − i 101+9

−8 (5RS) 0.2+0.1
−0.1 0.0+0.0

−0.0 3.5+0.2
−0.2 0.0+0.0

−0.0 0.0+0.0
−0.0 3.5+0.1

−0.1 0.0+0.0
−0.0 3.9+0.3

−0.3 0.1+0.0
−0.0 10.9+0.2

−0.2

1741+12
−13 − i 94+3

−3 (6RS) 1.1+0.1
−0.1 0.0+0.0

−0.0 2.3+0.1
−0.1 0.0+0.0

−0.0 0.0+0.0
−0.0 2.8+0.1

−0.1 0.0+0.0
−0.0 3.7+0.2

−0.2 0.1+0.0
−0.0 7.9+0.3

−0.2

π� is around twice as large as that for the narrower pole, while
the coupling to K̄N for both the narrower and broader poles
is quite the same. Taking into account that the narrower pole
gives strength around the K̄N threshold it dominates a reaction
with production of K̄N , as pointed out above regarding Fig. 7.
In turn, the signal for π� is more dominated by the broader
pole that couples more strongly to this channel than the other
narrower and higher in mass pole (see also Fig. 7). Concerning
the channels with thresholds larger than the resonance masses,
such as η� and K�, the narrower and broader poles couple to
them weakly, much less than to π� and K̄N .

Next we consider the �(1670) resonance. The properties
of this resonance are mainly determined by the K−p → η�
reaction that is included in our fits [26], but not in the recent
studies of Refs. [16–19]. As a result these references do not
obtain any information about the �(1670) resonance. In our
case, Fit I and Fit II lead to quite similar, good reproductions
for the K−p → η� cross section, see the panel (h) in Figs. 1
and 2, respectively. As a result, the �(1670) pole positions

and couplings from both fits perfectly agree between each
other. They also agree with those of Refs. [9,62] and with
the PDG results [46]. Very similar poles in three different
Riemann sheets, namely, 3RS, 4RS, and 5RS, are found.
As explained in Refs. [9,63] all these poles reflect the same
underlying resonance because they are connected continuously
when changing the different Riemann sheets indicated in
a soft way via a continuous parameter. We conclude that
the �(1670) resonance is most strongly coupled to the K�
channel and has similar coupling strengths to π�, K̄N , and
η� channels. These couplings are also quite similar to those
found in Ref. [9].

Regarding the I = 1 poles the resonance content is less
clear since it depends on the details of the fits performed.
For both NLO fits one has broad poles with central value
masses of 1646 and 1686 MeV for Fits I and II, respectively,
that are in correspondence with the properties of the bumps
associated with the �(1620) resonance in the PDG results [46].
Additionally, Fit II shows a pole at the central value position of
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FIG. 7. (Color online) Contour plot for the modulus of the elastic I = 0 K̄N (blue dashed) and π� (red solid) S waves for Fit I (a) and
Fit II (b).

035202-13



ZHI-HUI GUO AND J. A. OLLER PHYSICAL REVIEW C 87, 035202 (2013)

1741 − i 94 MeV with mass and width in the range given by
the PDG [46] for the �(1750) resonance. From the residues
shown in Table IX its main decay channels are π�, K̄N ,
and η� as in Ref. [46]. Nonetheless, in our case the η� decay
width is smaller than the value suggested in Ref. [46] with large
errors. The two last poles in Table IX with I = 1 are connected
in a continuous way by changing from the 5RS to the 6RS with
a continuous parameter so that both poles correspond to the
same physical object seen in different Riemann sheets [9,63].
In Fit II we also have narrow poles near the K̄N threshold.
Similar poles were also reported in Refs. [7,9].

V. CONCLUSIONS

We have studied the strangeness −1 S-wave meson-baryon
scattering with ten coupled channels by applying UChPT
(a unitarization method based on an approximate algebraic
solution to the N/D method) with the interaction kernel
calculated up to O(p2). The latter then corresponds to the
NLO ChPT meson-baryon partial wave amplitudes. This study
is prompted by the new precise measurement of the energy
shift and width of the ground state of kaonic hydrogen. We
have successfully reproduced a large amount of experimental
data, which include the cross sections of K−p → {K−p,
K̄0n, π+�−, π−�+, π0�0, π0�, η�, π0π0�0}, π−�+ and
π0�0 event distributions, three branching ratios in Eq. (7)
measured at the K−p threshold, the π� phase shift measured
at the �− mass, and the new SIDDHARTA measurement
on the energy shift and width of the kaonic hydrogen 1s
state, Eq. (9). We constrain further the fits by including,
with rather large error bars, the pion-nucleon scalar-isoscalar
S-wave scattering length, the nucleon σ term, and the
masses of N , �, �, and �. We confirm the consistency
between scattering data and the SIDDHARTA measurement,
already highlighted in Refs. [16–19], although we consider
additional recent data from the reactions K−p → η� [26]
and K−p → π0π0�0 [27] not included in those references.
We have performed two types of fits. In Fit I we employ
a common pseudoscalar decay constant, while in Fit II we
distinguish the π , K , and η weak decay constants. These
two strategies are consistent with our O(p2) calculation of
the interaction kernel because the difference between weak
decay constants gives rise to higher orders in the counting. In
addition we have studied for every fit the two definitions for
χ2 typically used in the literature for the study of strangeness
−1 S-wave scattering. In one of them more weight is given
to the presumably precise measurements of the energy shift
and width of the 1s state of kaonic hydrogen. We observe
that the results are quite stable under the change of the
definition for χ2. On the other hand, despite the knowledge
that the K−p scattering length is an important ingredient to
constrain the subthreshold extrapolation of the K−p S-wave

scattering amplitude, it is not enough to determine it in a
precise manner. This is clear by the significant differences
in the subthreshold extrapolations resulting from Fit I and
Fit II. In this sense, the systematic uncertainty affecting
such extrapolation is larger than the statistical one reported
in Refs. [16–19]. The situation might be improved in the
future once the interaction kernel is calculated at O(p3) in
UChPT.

Discussions on the baryon resonance spectroscopy are
carried out as well, for which we calculate both the resonance
pole positions and their residues (or resonance couplings). We
find that the properties for the relevant isoscalar resonances
are quite robust from the two fits. The two-pole structure for
the �(1405) resonance is confirmed, in which the properties of
the narrower pole, close to the K̄N threshold, are quite stable.
Our results are consistent with those of Refs. [9,13,16,17]. For
the other broader poles, somewhat small differences from the
two fits are observed, with one pole above and the other below
the K−p threshold. These broader poles depend more on the
details of the theoretical approach and on the fit performed.
Despite that, the peak positions on the real energy axis for
the K̄N and π� amplitudes are quite the same in both fits,
because of the different orientation of the gradient of the
modulus of the amplitudes with respect to the broader pole
position. The gradients always point towards the position of
the narrower pole much closer to the energy axis. Nevertheless,
a precise knowledge of the pole position of the broader pole is
required to end with a precise extrapolation of the elastic K−p
scattering amplitude below the K̄N threshold. The positions
of the pole and couplings for the �(1670) resonance from
the two fits are nearly identical and in good agreement with
the properties reported by the PDG. The isovector resonances
depend more on the details of the fit. Nevertheless, in both
cases one observes broad poles in the region of the �(1620)
resonance. Fit II also reports a pole position that could be
identified with the resonance �(1750). This fit accumulates
strength around the K̄N threshold in I = 1 too, corresponding
to two relatively narrow poles in this energy region.
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