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We present a relativistic molecular dynamics approach based on the Nambu–Jona-Lasinio Lagrangian. We
derive the relativistic time evolution equations for an expanding plasma, discuss the hadronization cross section,
and explain how they act in such a scenario. We present in detail how one can transform the time evolution equation
to a simulation program and apply this program to study the expansion of a plasma created in experiments at the
Relativistic Heavy Ion Collider and the Large Hadron Collider. We present first results on the centrality dependence
of v2 and of the transverse momentum spectra of pions and kaons and discuss in detail the hadronization
mechanism.
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I. INTRODUCTION

The interpretation of the results of ultrarelativistic heavy ion
collisions is presently one of the most challenging problems in
theoretical nuclear physics. In these collisions, investigated at
the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory and at the Large Hadron Collider (LHC)
at CERN, more than a thousand particles are observed in
central collisions. Although the multiplicity and the single-
particle transverse momentum spectra at midrapidity of the
different particle species are of interest in their own right,
the purpose of the experiments is to find out whether during
the reaction the matter has made a transition toward a new state
of matter, a quark-gluon plasma (QGP). This information is not
directly visible in the measured hadron spectra and therefore
theoretical approaches have to be employed to verify whether
the measured observables are compatible with the existence of
such a QGP or, even more desired, whether they can even lead
to the conclusion that such a state is necessary to explain the
measured quantities.

State-of-the-art theoretical approaches aim at a complete
description of the heavy ion reaction, from the initial separation
of projectile and target up to the momenta of the finally
observed particles [1–8]. Almost all of the presently developed
models assume that the reaction can be subdivided into four
different phases, each of them described by a different model.
The transition between these phases is local in time. The first
phase is a fast local equilibration of the system. In view of the
magnitude of perturbative quantum chromodynamics (pQCD)
cross sections it is hard to understand how this can occur.
No detailed theory is available yet for this initial phase. The
second phase is the expansion of the plasma described by
hydrodynamical equations employing the equation of state,
calculated by lattice gauge calculations. Initial geometrical
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fluctuations are taken into account. This phase is followed
by a phase transition. The transition toward on-shell hadrons
which carry their free mass is described by the Cooper-Frye
formalism. Finally, the hadrons expand and interact among
each other by the measured free cross sections. Despite the
quite severe and differing assumptions of each of the models
for all of these phases these models have been quite successful
in describing many of the observables.

From data alone it is not possible to judge which of the
assumptions are justified. As an example of the ambiguity
of the theoretical interpretation of experimental results we
just mention the centrality dependence of the elliptical flow,
one of the key observables, which is equally well reproduced
in three quite different approaches. In approaches which use
viscous hydrodynamics [3] this centrality dependence serves
to determine the viscosity of the QGP and therefore of the
interaction among the constituents of the plasma, the quarks,
and the gluons. In ideal hydrodynamical approaches with
fluctuating initial conditions [2,9], in which only regions of
a high energy density form a QGP, this centrality dependence
is due to the impact parameter dependence of the relative
contributions of high energy density and of low energy
density regions. Finally, the centrality dependence is also well
described in the core-corona model [9], in which it is assumed
that nucleons which suffer from only one hard initial scattering
fragment like a proton in p-p collisions whereas the rest form
a QGP whose properties are impact parameter independent.

In order to check the assumptions and to calculate the
transport coefficients used in this these multiphase models
one needs models in which one does not assume right
from the beginning that a local equilibrium is established.
The microscopic color quark dynamics model [10] and the
parton hadron string dynamics (PHSD) model [11–13] are
such models which allow one to study the plasma evolution
by solving a Boltzmann-type equation. The former is a
nonrelativisitc approach with effective potentials. It allowed
for the first time the study of the expansion of a colored plasma.
In the latter the potentials among the plasma constituents are
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chosen in such a way that the equation of state from lattice
calculations is respected. Cross sections can be derived from
the spacelike part of the interaction and are employed for the
scattering interactions among the plasma constituents. In this
model gluons as well as quarks acquire a large mass when
approaching the phase transition. Therefore the prehadrons
which are created at the phase transition are rather heavy. Pions
and other light hadrons are produced by the decay of these
prehadrons. Another model which allows for these studies is
that of a gluonic cascade realized in the Boltzmann approach
to multiparton scattering (BAMPS) [14]. The gluon emissions
and interactions during the expansion of the QGP move the
system toward equilibrium.

A while ago a third approach has been advanced [15]
which is based on the Nambu–Jona-Lasinio (NJL) Lagrangian
[16,17]. This Lagrangian is an approximation to the QCD
Lagrangian which respects all its symmetries. In the version
which includes a Polyakov loop (PNJL) this approach also
describes the equation of state of the lattice QCD data [18]. It
has the advantage that all free parameters of the Lagrangian
can be determined by static meson properties, such as meson
masses and decay constants. It contains no explicit gluons
and the in-medium mass of the gluons is assumed to be large
as compared to the transferred momentum and therefore the
interaction of the quarks is effectively a contact interaction.
The quarks interact by scalar fields and by cross sections
which can be as well derived from the Lagrangian [19,20].
Mesons can be produced, even in the deconfined phase, but
they are unstable there and may decay. Only when the system
approaches the crossover does the finite width of the meson
mass disappear and can stable mesons emerge from the system
[but for low chemical potential the (P)NJL Lagragian shows
a crossover and not a phase transition]. The light mesons
are directly produced by qq̄ scattering. Similar to the PHSD
approach this Lagrangian offers therefore the opportunity
to study the evolution of the system from the creation of
a plasma up to the finally observed mesons. By using an
N -body molecular dynamics approach it is possible to study
correlations and fluctuations which are built up during the
expansion phase and to investigate whether observables can
be identified which are sensitive to them.

The cross sections calculated in this approach are quite
small deep inside the plasma phase but, due to s-channel
resonances, they are quite large close to the crossover [20]
where the system behaves like a liquid. Deep in the plasma
phase the particles have only their bare mass and move with
a velocity which is close to the velocity of light. In order to
study the time evolution of the N -body system with the NJL
Lagrangian we have therefore to develop a molecular dynamics
approach for interacting particles which move relativistically.
Such an approach was advanced in the original paper on
the relativistic quantum molecular dynamics (RQMD) [21]
approach but has never been used in practice because of
conceptual and numerical problems. Some of the conceptual
problems are related to the choice of constraints which one
has to impose to construct such a relativistic molecular
dynamics.

The papers which contain the mathematical tools to
develop a relativistic molecular dynamics approach are widely

scattered. Therefore, and in order to present a comprehensive
approach, we will start out in the next section with a presen-
tation of the formalism and its derivation. We will describe
how a relativistic molecular dynamics can be developed, how
one can avoid the no -nteraction theorem (NIT), and how the
Dirac approach for a Hamiltonian system with constraints is
of importance for the development of relativistic dynamics.
Finally, we present the formalism which is used. We discuss
the constraints and their consequences for the dynamics. The
third section presents the NJL model as far as it is necessary to
understand our approach; in particular we discuss how masses
and cross sections can be calculated. The fourth section is
devoted to the details of the numerical realization of the
approach. In the fifth section we present how we validated
the program and some results. Finally, in the sixth section, we
draw our conclusions.

II. RELATIVISTIC QUANTUM MOLECULAR DYNAMICS

A. Molecular dynamics

1. One-body classical molecular dynamics

In the classical molecular dynamics approach particles are
moving under the mutual influence of forces. The goal is
to describe the trajectories of these particles in phase space
(qi(t), pi(t)). Knowing the phase-space point for a given initial
condition (qi(0), pi(0)) and the Hamiltonian H we can predict
the phase-space points at any given moment t and can calculate
the value of each observable which is defined on the classical
phase space. The trajectory may depend in a very sensible way
on the initial condition and may therefore become chaotic.
Such systems are, however, not of interest here.

We start the discussion of the nonrelativistic approach by
providing the formalism. We employ the Hamilton-Jacobi
approach to formulate the motion of one particle in phase
space. The equation of motion for an observable A, defined
on the classical phase space, A(q, p, t), where q, p, t are the
independent variables, is given by

d

dt
A(q, p, t) = ∂A

∂t
+ ∂A

∂q
∂q
∂t

+ ∂A

∂p
∂p
∂t

. (1)

The Hamilton-Jacobi equations, which present the equations
of motion of the phase-space coordinates q and p in time can
be obtained by a variational principle

dq
dt

= ∂H
∂p

,
dp
dt

= −∂H
∂q

, (2)

where H(q, p) is the Hamiltonian of the system. We can bring
Eq. (1) into the form

dA

dt
= ∂A

∂t
+ {A,H}. (3)

{A,B} is the Poisson’s bracket of A and B defined for N
particles as

{A,B} =
N∑
k

∂A

∂qk

∂B

∂pk

− ∂A

∂pk

∂B

∂qk

. (4)
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In the special case where A does not explicitly depend on time
we find

dA

dt
= {A,H}. (5)

If we replace A by either q or p we recover the Hamilton-Jacobi
equations, Eq. (2),

dq
dt

= {q,H} = ∂H
∂p

,
dp
dt

= {p,H} = −∂H
∂q

. (6)

For a given initial condition (q0, p0) these equations can be
solved, analytically or at least numerically, and we obtain
the desired trajectory of the particle in phase space. For the
later discussion it is important to note that Eqs. (6) are the
differential equations for the trajectory on which the energy H
is conserved.

2. N-body (quantum) molecular dynamics

This approach can be easily extended toward several mutu-
ally interacting particles and also toward quantum mechanics.
The starting point for finding the time evolution of a classical
N -body system is the N -body Hamiltonian

H =
N∑
i

p2
i

2m
+

N∑
i �=j

V (qi , pi , qj , pj ), (7)

where V (qi , pi , qj , pj ) is the two-body potential between
particles i and j . For a given initial conditions (qi(t = 0),
pi(t = 0)) the Hamilton-Jacobi equations (2) can be solved
analytically or numerically. This approach has been extended
in the 1980s toward the quantum molecular dynamics (QMD)
approach, a theory which has been successfully applied to sim-
ulate heavy ion reactions in the energy range of 50 A MeV �
Ekin � 2 A GeV [22]. This approach allowed clarification
of the origin of multifragmentation [23], the production of
mesons close to threshold [24], and the equation of state
of hadronic matter [25] well above normal nuclear matter
density. It is based on a time-dependent version of the Ritz
variational principle and starts out from a trial wave function
of Gaussian form. The Wigner density of this trial wave
function is defined on the phase space and has the form

f (qi , pi , t) ∝ exp

(
−
[
qi − q0

i (t)
]2

L

)

× exp
(−[pi − p0

i (t)
]2

L
)
. (8)

By assuming now that the wave function of the N -body
system is a product of the single-particle wave functions and
that the centroids q0

i (t) and p0
i (t) of the Gaussians depend on

time whereas the width is constant, the variational principle
gives the following equations of motion:

dq0
i

dt
= ∂〈H〉

∂p0
i

,
dp0

i

dt
= −∂〈H〉

∂q0
i

, (9)

with 〈H〉 being the expectation value of the Hamiltonian
with respect to the trial wave function. For details we refer to
Ref. [22].

B. Relativistic phase space and transformations
between inertial systems

1. Minkowski phase space

One may have the idea that the equations of motion for
relativistic particles can be obtained by replacing in Eq. (6)
the three-dimensional vectors r and p by four-dimensional
vectors qμ and pμ. This is, however, not true for the following
reasons:

(i) Replacing in Eq. (2) q by qμ and p by pμ one finds an
equation which is not covariant because H is the zero
component of the energy-momentum four-vector.

(ii) Equation (2) contains a derivative with respect to the
time t . In a relativistic theory the time is just the
zero component of the space-time four-vector. For N
particles we have furthermore N different times and it
is not evident how these times are related to the variable
t of Eq. (2).

(iii) These equations describe the motion of particles in an
eight-dimensional phase space in which neither is the
energy conserved nor are the times of the different par-
ticles synchronized. In a molecular dynamics approach
we are interested in obtaining physical trajectories in a
(6N + 1)-dimensional phase space (qi(τ ), pi(τ )), i.e.,
world lines of the particles, and we want to know at
which position in coordinate and momentum space the
particle is located for a given value of the time evolution
parameter τ (whose nature will be discussed later).

Thus a Hamiltonian in a nonrelativistic sense (the total
energy of the system) has no place in a relativistic approach.
If we talk later of a “Hamiltonian” in relativistic dynamics
and of time evolution equations which have a form similar to
Eq. (2) the meaning of the different terms in this equation will
be completely different compared to that in a nonrelativistic
theory.

The starting point is the definition of the four-position and
four-momentum coordinates (qμ

k , p
μ
k ) as canonical variables

which obey{
qμ

a , qν
b

} = {
pμ

a , pν
b

} = 0,
{
qμ

a , pν
b

} = δab gμν, (10)

with gμν being the Minkowski metric with the diagonal
{1,−1,−1,−1} and zero otherwise. Here we have introduced
the Poisson brackets for four-vectors:

{A,B} =
N∑

k=1

∂A

∂q
μ
k

∂B

∂pkμ

− ∂A

∂p
μ
k

∂B

∂qkμ

. (11)

Because in a dynamical system qμ and pμ depend on the time
evolution parameters τ , these quantities have to be taken at
equal τ .

2. Poincaré group and algebra

Relativistic theories have to be invariant under Lorentz
transformations � and space-time translations a. Both trans-
formations form the Poincaré group with the group element
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R(�, a). It consists of all transformations of the form

R(�, a) : qμ → q ′μ = R(�, a)qμ; q ′μ = �μ
ν qν + aμ,

(12)

which leave the scalar product between two four-vectors
unchanged:

q ′
μq ′μ = qμqμ, (13)

with qμ = (t, q) and qμ = gμνq
ν .

The algebra associated with the continuous symmetry group
is given by the algebra of the generators of infinitesimal
transformations. Finite transformations can be built with help
of the infinitesimal ones. To determine the algebra of the
Poincaré group we start from a Lorentz transformation which
differs only infinitesimally from the neutral element R(1, 0):

�μ
ν = δμ

ν + �ωμ
ν (14)

with �ω being small. The invariance of the scalar product of
four-vectors under a Lorentz transformation can be expressed
as

q ′
μq ′μ = q ′μgμνq

′ν = �μ
σ qσ gμν�

ν
ρq

ρ

= qμgμνq
ν = qμqμ (15)

and hence

gσρ = �μ
σ gμν�

ν
ρ

= gμν

(
δμ
σ + �ωμ

σ

)(
δν
ρ + �ων

ρ

)
= gσρ + �ωσρ + �ωρσ + O(�ω2). (16)

Consequently �ωμν has to be antisymmetric. There are six
independent elements which satisfy

�ωσρ = −�ωρσ . (17)

In matrix form we can write the infinitesimal Lorentz trans-
formation as

�(�ωμν) = 1 − i

2
�ωμνM̂

μν

= 1 + 1

2
�ωμν(qμ∂ν − qν∂μ) (18)

(where the factor 1
2 is convention in order to obtain the standard

definition of the angular momentum Ji = 1
2εijkMjk), where

M̂μν = −M̂νμ are the generators of the Lorentz group, and we
find [compare Eq. (14)]

�(�ωμν)qσ = qσ + 1
2 (�ωμσ − �ωσμ)qμ

= qσ + �ωσ
μqμ. (19)

Similarly for the infinitesimal translation

T (�a) = 1 + i�aμPμ = 1 + �aμ∂μ (20)

we find

q ′ν = T (�a)qν = qν + �aν. (21)

If the system is composed of several particles we find for the
generators for the translation group

P μ =
N∑
k

p
μ
k , (22)

and for the Lorentz group [SL(n = 2, C) → dim = 2(n2 −
1) = 6]

Mμν =
N∑

k=1

q
μ
k pν

k − qν
k p

μ
k . (23)

These 10 generators respect the algebra of the group, which is
called Poincaré algebra:

[Pμ, Pν] = 0, [Mμν, Pρ] = gμρPν − gνρPμ,
(24)

[Mμν,Mρσ ] = gμρMνσ − gμσMνρ − gνρMμσ + gνσMμρ.

This can be directly verified by going back to the definition,
Eqs. (18) and (20), and calculating the brackets. The generators
Mμν and Pμ do not commute. Physically, this comes from the
fact that there is a length contraction in the Lorentz boost (and
a time dilatation).

The generator of a Poincaré transformation is given by the
combination of that of the Lorentz transformation and of a
translation:

G = 1
2ωμνMμν − aμPμ. (25)

If two inertial frames O and O′ are connected by an
infinitesimal element of the Poincaré group, R(�, a), then
the space-time coordinates of the same event in O and O′ are
related by

q ′μ = qμ + {q,G} = qμ + ωμ
ν qν + aμ = �μ

ν qν + aμ.

(26)

3. Reduction of the dimension of the phase space

Relativistic theories are based on four-vectors whose trans-
formation between two inertial systems is given by elements
of the Poincaré group. As a consequence the phase space
of an N -particle system no longer has 6N dimensions as in
nonrelativistic dynamics but 8N . World lines are given by
(qi(τ ), pi(τ )) and therefore physical trajectories (position and
momentum of the particles as a function of the time τ ) have
6N + 1 dimensions. Thus we need constraints to reduce the
number of degrees of freedom in the relativistic phase space.
After an introduction to the 8N -dimensional phase space and to
the Poincaré group and algebra we will illustrate the reduction
of the degrees of freedom first for the example of one free
particle and then we extend systematically the approach to N
interacting particles.

C. From one- to N-body relativistic systems

1. The case of one free particle

We start with the most simple case of one free particle
[26]. The Hamilton equations for the time evolution of a
nonrelativistic particle determine the trajectory in phase space
for which energy is conserved. This suggests defining a
constraint, the mass shell constraint, which for a noninteracting
particle is

K = pμpμ − m2 = 0. (27)

034912-4



MOLECULAR DYNAMICS DESCRIPTION OF AN . . . PHYSICAL REVIEW C 87, 034912 (2013)

This constraint reduces the phase space from eight to seven
dimensions by relating the energy of the particle with its
three-momentum (and also with its position if we include a
potential). It defines therefore the seven-dimensional subspace
� of the eight-dimensional phase space on which this condi-
tion is fulfilled. Because K is a Poincaré invariant quantity, we
find

{K,Mμν} = 0, {K,Pμ} = 0. (28)

Of course the seven-dimensional phase space region � is also
Poincaré invariant:

R(�, a)� = �. (29)

The trajectory in phase space on which this constraint is
satisfied is given by the solution of

dqμ(τ )

dτ
= λ{qμ(τ ),K},

dpμ(τ )

dτ
= λ{pmu(τ ),K},

(30)

with the initial condition q(0) = q0 and p(0) = p0. λ is a free
parameter. In order to associate to each value of τ one point
in phase space (q(τ ), p(τ )) or, in other words, in order to
create a world line a second constraint, χ (qμ, pμ, τ ) = 0, has
to be employed to fix λ. It relates the time q0 of the particle
with a Lorentz-invariant system time τ . This time constraint
χ has been chosen quite differently in the literature, giving
quite different time evolution equations. The subspace we are
interested in is determined by a conserved χ and K constraint.
This is expressed by

dχ

dτ
= ∂χ

∂τ
+ λ{χ (τ ),K} = 0. (31)

This equation determines λ as

λ = −∂χ

∂τ
{χ,K}−1. (32)

λ depends therefore on the choice of the constraint χ . Formally,
we can define

Z = λK = −∂χ

∂τ
{χ,K}−1K (33)

and obtain a time evolution equation for a phase-space function
f ,

df

dτ
= ∂f

∂τ
+ λ{f,K} = ∂f

∂τ
+ {f,Z}, (34)

an equation which is formally identical with the nonrelativistic
evolution equation (3) but Z is not the classical Hamiltonian
but given by Eq. (33).

How to treat a Hamilton system with constraints has been
developed by Dirac [27]. To determine the time evolution for
any function of the phase-space variables along the trajectory
determined by the two constraints φ1 = K and φ2 = χ is given
by the Dirac bracket, which is defined as

{A,B}D = {A,B} − {A,φi}Cij {φj , B}, (35)

with the matrix of these constraints

C−1
ij = {φi, φj }. (36)

On the hypersurface where the constraints are fulfilled, Dirac
brackets and Poisson brackets agree. Dirac introduced the
symbol ≈ to describe two functions that are identical at the
subspace defined by the constraints: {A,B}D ≈ {A,B}. For
our example we find

{A,B}D = {A,B} − {A,K}{χ,B}
{K,χ} − {A,χ}{K,B}

{χ,K} . (37)

The Dirac brackets of the 10 generators of the Poincaré
group yield the same result as the Poisson brackets, Eq. (24),
because K commutes with them. Therefore we can use also
the Dirac brackets to construct a transformation between the
two inertial systems O and O′. This transformation we call
R∗(�, a). Both transformations, R(�, a) as well as R∗(�, a),
therefore map � to � but R∗(�, a) and R(�, a) map the same
point in O to different points in O′. Because {G,χ}D = 0,
χ is unchanged under a transformation R∗(�, a) and the
Dirac brackets transform a phase-space point on O to a
phase-space point on O′ which has the same value of τ . For
the transformation using Poisson brackets this is generally not
the case. Therefore the Dirac brackets are the proper tool to
determine world lines in the two inertial frames [28]. Using
Eq. (26) and replacing the Poisson bracket {·, ·} by the Dirac
bracket {·, ·}D we find the canonical transformation between
two inertial systems:

q ′μ(τ ) = qμ(τ ) + {qμ(τ ),G}D, (38)

where G is given by Eq. (25). If we use the Poisson brackets
for the transformation between the two inertial systems we
obtain the geometrical transformation

q ′μ(τ ) = qμ(τ + �τ ) + {qμ(τ + �τ ),G}
≈ qμ(τ ) + dqμ

dτ
�τ + {qμ(τ ),G}. (39)

Applying the general equation (37) we can relate {qμ,G}D
and {qμ,G} ({K,G} = 0):

{qμ,G}D = {qμ,G} − {qμ,K}{χ,G}
{K,χ} . (40)

Using furthermore the time evolution equation (34) we find

dqμ

dτ
= −∂χ

∂τ

{qμ,K}
{χ,K} (41)

and therefore Eq. (40) can be rewritten in the form

{qμ,G}D = {qμ,G} − {χ,G}
(

∂χ

∂τ

)−1
dqμ

dτ
. (42)

Consequently, if we can ensure that

{χ,G}
(

∂χ

∂τ

)−1

= �τ (43)

the transformation between two inertial systems using Dirac
brackets [the canonical transformation, Eq. (38)] becomes
identical to that using Poisson brackets [the geometrical
transformation, Eq. (39)]. If the condition (43) is fulfilled
the world lines of particles remain the same under the two
transformations. They are therefore frame independent. This
requirement of frame independence of the trajectories is called
the world line condition (WLC).
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The constraint χ determines the time evolution of the
system and therefore whether the world line condition is
fulfilled. If we impose the constraint χ = q0 − τ = 0 [26]
we find for the time evolution of qμ Eq. (41)

dqμ

dτ
= λ{qμ,K} = pμ

p0
, (44)

whereas for the condition χ = xμpμ − mτ = 0 [29] we obtain

dqμ

dτ
= λ{qμ,K} = pμ

m
. (45)

In both cases we have dpμ/dτ = 0 compatible with the fact
that we have a single free particle. The different time evolution
equations remind us that τ is a parameter introduced by the
constraint χ and not an independently defined time. Thus the
time evolution of a relativistic system is only determined after
the constraint χ is imposed. Different choices of the constraint
yield different time evolutions of the system.

2. Extension to two interacting particles

The above discussed construction of world lines on which
a particle moves independent of the chosen reference system
has been extended to a larger number of particles in Refs. [26,
29,30]. For a system with two interacting particles [28] the
mass shell constraints [Eq. (27)] have the form

K1 = p
μ
1 p1μ − m2 + V = 0,

K2 = p
μ
2 p2μ − m2 + V = 0

(46)

in order to have reference-frame-independent world lines. In
addition, they have to be first-class constraints in the notation
of Dirac [27]:

{K1,K2} = 2

(
p

μ
1

∂

∂q
μ
1

− p
μ
2

∂

∂q
μ
2

)
V = 0, (47)

a condition which can be fulfilled if the potential V depends on
q

μ
T [26], which is the part of qμ = q

μ
1 − q

μ
2 which is transverse

with respect to the center-of-mass motion P μ = p
μ
1 + p

μ
2 , and

which is defined as

q
μ
T = qμ − qνP

ν

P 2
P μ. (48)

Poincaré transformations map the 7N -dimensional phase
space, on which the constraints [Eqs. (46)] are fulfilled, on
itself. The evolution equations can be extended to

dq
μ
i

dτ
= v1

{
q

μ
i ,K1

}+ v2
{
q

μ
i ,K2

}
,

dp
μ
i

dτ
= v1

{
p

μ
i ,K1

}+ v2
{
p

μ
i ,K2

} (49)

with arbitrary parameters v1 and v2. For an interacting system
the time components of particles q0

i become connected by the
potential term and consequently the spatial position of each
particle qk

i depends on both times q0
1 and q0

2 . This does not
correspond to a world line but to a sheet. To obtain a world
line we have to synchronize first the times of both particles by
a constraint without any parameter,

χ1(q1, q2, p1, p2) = 0, (50)

and finally to connect the synchronized times to a clock
time τ ,

χ2(q1, q2, p1, p2, τ ) = 0, (51)

with the property det{Ki, χj } �= 0. If {Ki, χj } = 0 we cannot
assign to each point on the trajectory uniquely a value of
the parameter τ . These two additional constraints reduce the
7N -dimensional phase space to a 6N -dimensional phase space
with a parameter τ so effectively to a (6N + 1)-dimensional
phase space [31]). Condition (51) allows for fixing the free
parameters vi of Eq. (49) [see Eq. (34)]:

dχ2(τ )

dτ
= ∂χ2(τ )

∂τ
+ {χ2(τ ),Ki}vi = 0 (52)

yields

vi = −{χ2(τ ),Ki}−1 ∂χ2(τ )

∂τ
. (53)

Consequently, the general evolution equation for a phase-space
function f is

df

dτ
= ∂f

∂τ
− Si2

∂χ2

∂τ
{f,Ki}, (54)

with

Sij = {χj ,Ki}−1. (55)

As in the one-particle case the WLC requires that the
two transformations between the inertial systems, the one
expressed by Dirac brackets [Eq. (37) (canonical transforma-
tion)],

q ′μ
i (τ ) = q

μ
i (τ ) + {

q
μ
i (τ ),G

}
D
, (56)

and the one expressed by Poisson brackets (geometrical
transformation),

q ′μ
i (τ ) = q

μ
i (τ + �τi) + {qμ(τ + �τi),G}

≈ q
μ
i (τ ) + dq

μ
i

dτ
�τi + {

q
μ
i (τ ),G

}
, (57)

lead to points on the same world lines. Employing the Dirac
brackets with Eq. (55) and taking advantage of {Ki,G} = 0
we find

dq
μ
i (τ )

dτ
�τi = {

q
μ
i (τ ),Kj

}
Slj {χl,G}

= {
q

μ
i (τ ),Kj

}
Slj

dχl

dτ
�τi, (58)

or, with help of Eqs. (49) and (53) if {qμ
i (τ ),Kj } �= 0 and

Slj �= 0,

{χl,G} = dχl

dτ
�τi. (59)

In reality the last equation poses two conditions: �τ1 = �τ2

and that χ1, which does not depend on τ , is Poincaré invariant
to fulfill {χ1,G} = 0. These conditions cannot be fulfilled by
every choice of χi . Indeed, if we relate the τ to the fourth
component of qμ, the instant form of Dirac [27],

χ1 = 1
2

(
q0

1 − q0
2

) = 0, χ2 = 1
2

(
q0

1 + q0
2

)− τ = 0, (60)

we recover {χ1,G} �= 0 and hence the no-interaction theorem
stating that relativistic molecular dynamics can only be
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formulated for noninteracting particles [26]. If, on the other
hand, the χi are defined kinematically as

χ1 = 1
2qμUμ = 0, χ2 = 1

2

(
q

μ
1 + q

μ
2

)
Uμ − τ = 0, (61)

with Uμ = Pμ/
√

P 2, which gives Uμ = (1, �0) in the center
of mass of two particles, the world line condition can be
fulfilled [26] by setting �τi = −{χ2,G}. With the latter time
constraints, Eqs. (61), we can compute the vi [Eq. (53)]. We
start out from the matrix of constraints,

S−1
ij =

(
{χ1, K1} {χ1, K2}
{χ2, K1} {χ2, K2}

)

=
(

p
μ
1 Uμ −p

μ
2 Uμ

p
μ
1 Uμ p

μ
2 Uμ

)
, (62)

which can be inverted to get

Sij =
( (

2 p
μ
1 Uμ

)−1 (
2 p

μ
1 Uμ

)−1

−(2 p
μ
2 Uμ

)−1 (
2 p

μ
2 Uμ

)−1

)
, (63)

and the parameters vi become

v1 = (
2 p

μ
1 Uμ

)−1 cms= 1

2E1
,

v2 = (
2 p

μ
2 Uμ

)−1 cms= 1

2E2
.

(64)

We obtain then the equations of motion for two interacting
particles in their center of mass:

dq
μ
i

dτ
= p

μ
i

Ei

,
dp

μ
i

dτ
= −

2∑
k=1

1

2Ek

∂V (qT )

∂qiμ

. (65)

We can easily see that the classical nonrelativistic limit of these
equations gives the same result as QMD by taking p � m.

In this example of two interacting particles we can also
address another problem: the separability of clusters. In con-
tradiction to nonrelativistic dynamics this separability is not
trivially fulfilled by taking a potential which vanishes for large
distances because the potential enters the constraint matrix
which determines the time evolution. Cluster separability
means that we have the equations of motion of two free
particles if the distance between them is large.

3. Extension of the formalism

For the two-body case, for which {Ki,Kj } = 0, the formal-
ism has been developed in the last section. Here we extend the
formalism to N > 2, where {Ki,Kj } may be different from 0.
In this case the time evolution equations for the 2N constraints
are

dφi

dτ
= ∂φi

∂τ
+

2N∑
k

λk{φi, φk} = 0

= ∂φi

∂τ
+

2N∑
k

C−1
ik λk = 0, (66)

with

φk =

⎧⎪⎨
⎪⎩

Kk(qμ, pμ) = 0 for 1 < k < N,

χk(qμ, pμ) = 0 for N + 1 < k < 2N − 1,

χN (qμ, pμ, τ ) = 0.

(67)

Only the constraint i = 2N depends on τ . Rewriting the last
line of Eq. (66) as

2N∑
k

C−1
ik λk = −ai (68)

with ai being ∂φi

∂τ
and hence a vector in which only the 2N th

component is different from zero we find

λk = −
2N∑
i

Ckiai = −Ck2N

∂φN

∂τ
. (69)

Also this equation shows that different choices of constraints
will yield different values of λk and different λk will give a
different time evolution. Therefore the relativistic kinematics
is only defined after the constraints are defined. By defining

Z =
2N∑
k

λkφk (70)

the trajectory in phase space for which the constraints are
fulfilled is given by

dq
μ
i

dτ
= {

q
μ
i (τ ),Z}, dp

μ
i

dτ
= {

p
μ
i (τ ),Z} (71)

and therefore have a form which reminds us of the Hamilton-
Jacobi equations. This similarity can be easily understood by
recalling that this is the genuine form of trajectories under the
conditions that constraints are conserved. The nonrelativistic
equations of motion lead to trajectories on which the total
energy of the system is conserved whereas Eqs. (71) lead to
trajectories on which the constraints φk are conserved.

4. N-particle system

The N -body system is actually a trivial generalization of the
three-body problem. Therefore we will discuss here the three-
body case, which was studied in detail in Refs. [21,26,30].
As compared to the two-body case we are confronted here
with the new feature that the commutation of the on-shell
mass constraints {Ki,Kj }, which is easily fulfilled in the two-
particle case [Eq. (47)], and which avoids that χ constraints
that appear explicitly in the equations of motion, is not
necessarily fulfilled for more than two particles.

We start out with the definition of the projector to the
two-body center-of-mass system (called the frame projector
in Ref. [32]),

u
μ
ij = p

μ
ij√
p2

ij

cms= (1, 0, 0, 0), (72)

where p
μ
ij = p

μ
i + p

μ
j and to the overall center-of-mass sys-

tem,

Uμ = P μ

√
P 2

lab= (1, 0, 0, 0), (73)
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where P μ is the Poincaré generator (22). We call the latter
system the laboratory system (to avoid confusion with the
two-body center-of-mass system) because in collider physics
the total center-of-mass system is identical to the laboratory
system. Then

∂u
μ
ij

∂qν
k

= 0,
∂u

μ
ij

∂pν
k

= 1√
p2

ij

(
gμν − u

μ
iju

ν
ij

)
(δik + δjk) (74)

and

∂Uμ

∂qν
k

= 0,
∂Uμ

∂pν
k

= 1√
P 2

(gμν − UμUν) . (75)

We define as well the projector to the transverse distances as

θμν = (
gμν − u

μ
iju

ν
ij

) cms=

⎛
⎜⎜⎝

0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ (76)

and

�μν = (gμν − UμUν)
lab=

⎛
⎜⎜⎝

0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠, (77)

with

qT
μ
ij = qσ

ij θσμ = q
μ
ij − [

(qij )σ uσ
ij

]
u

μ
ij ,

(78)
qT

2
ij = q2

ij − [
(qij )σ uσ

ij

]2

and

q ′
T

μ

ij = qσ
ij�σμ = q

μ
ij − [(qij )σUσ ]Uμ,

(79)
q ′

T
2
ij = q2

ij − [(qij )σUσ ]2.

We notice the following properties:

(qT ij )μu
μ
ij = 0, (qT ij )μθμν = qT

ν
ij (80)

and

(q ′
T ij )μUμ = 0, (q ′

T ij )μ�μν = q ′
T

ν

ij . (81)

The derivatives of these transverse distances are relegated to
the Appendix.

We start the discussion of three-particle dynamics with
the constraints used in the RQMD approach of Ref. [21].
In this paper the authors extend the previously discussed
two-body system to an N -body system and employ as mass
shell constraints for an interacting system

Ki = pν
i piν − m2

i + Vi

(
qT

2
ij

) = 0, (82)

whereas the time constraints are defined by

χi =
∑

j �=i qν
ij

N
(uij )ν = 0, 1 � i � N − 1. (83)

and

χN =
∑

j qν
j

N
Uν − τ = 0. (84)

The last constraint ensures that all times q0
j are related to the

time evolution parameter τ .
All these constraints fulfill the WLC [21]. In order to ensure

the separability of clusters two-particle distances are weighted
in RQMD with the weight function

gij = L

qT
2
ij

exp

(
qT

2
ij

L

)
. (85)

There are several problems with this approach. The first is
that the Komar-Todorov (KT) [32] condition, {Ki,Kj } = 0,
is not fulfilled. This means that the mass shell constraints of
different particles are not independent:

{Ki,Kj } = 2p
μ
j

∂Vi

∂q
μ
j

− 2p
μ
i

∂Vj

∂q
μ
i

+ {Vi, Vj }

= 2p
μ
ij

∂Vi

∂q
μ
j

+ {Vi, Vj } �= 0
(86)

using the fact that ∂Vi/∂q
μ
j = −∂Vj/∂q

μ
i . We notice that

neither V (qT ) nor V (q ′
T ) can fulfill this condition. In the

RQMD paper [21] it is assumed that {Ki,Kj } remains
negligible and consequently the time constraints do not appear
in the full equations of motion based on Eqs. (71):

dq
μ
i

dτ
=

N∑
k=1

λk

∂Kk

∂piμ

+
2N∑

k=N+1

λk

∂χk

∂piμ

,

dp
μ
i

dτ
= −

N∑
k=1

λk

∂Kk

∂qiμ

−
2N∑

k=N+1

λk

∂χk

∂qiμ

(87)

because if we assume {Ki,Kj } = 0, then λk = 0 for N + 1 <
k < 2N [see Eq. (69)]. With this assumption and the time
constraint equations (83) and (84) the parameter λ becomes

λk = SkN, (88)

where SNk is defined in Eq. (55). The equations of motion of
Ref. [21] are then given by

dq
μ
i

dτ
= 2piμSiN ,

dp
μ
i

dτ
= −

N∑
k=1

SkN

∂V (qT )

∂qiμ

. (89)

Even if we deal with three free particles and therefore the KT
condition is trivially fulfilled, the RQMD approach of Ref. [21]
poses problems. The mass shell

K1 = p1
2 − m1

2 = 0,

K2 = p2
2 − m2

2 = 0,

K3 = p3
2 − m3

2 = 0

(90)

and time constraints

χ1 = (
q

μ
12u12μ + q

μ
13u13μ

)
/3 = 0,

χ2 = (
q

μ
21u21μ + q

μ
23u23μ

)
/3 = 0,

χ3 = (
q1 + q2 + q3

)μ
Uμ/3 − τ = 0

(91)
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give the matrix of constraints,

S−1
ij =

⎛
⎜⎝4/3 p

μ
1 (u12 + u13)μ −2/3 p

μ
2 u12μ −2/3 p

μ
3 u13μ

−2/3 p
μ
1 u12μ 4/3 p

μ
2 (u21 + u23)μ −2/3 p

μ
3 u23μ

2/3 p
μ
1 Uμ 2/3 p

μ
2 Uμ 2/3 p

μ
3 Uμ

⎞
⎟⎠, (92)

whose inverse is highly nontrivial. The numerical calculation
of λk gives nonphysical trajectories with velocities above the
speed of light. Moreover, if we include the weight function,
Eq. (85), for the separability of clusters we encounter another
numerical problem: the matrix inversion fails because the
numerical values of the matrix elements cover many orders
of magnitude [33].

Last but not least the energy is not conserved locally in
time (but is conserved on average over a long time). This
is because qT is used as a variable of the potential. This
choice forces us to compute the forces in each two-body
center-of-masses system. Subsequently, an inverse Lorentz
boost has to be applied to transform all forces into the same
common frame. This transformation is ill defined because the
Lorentz transformation is not valid when we study accelerated
particles and indeed this transformations creates fluctuations of
the energy of the system. This has been discussed in Ref. [33]
without a solution being offered.

To avoid these problems we made a different choice of
constraints. Instead of formulating the constraints in the two-
body systems we define them in the common center-of-mass
system. These means that we have to replace the u

μ
ij by Uμ in

the constraint formulas, which then read as

Ki = pν
i piν − m2

i + Vi

(
q ′

T
2) = 0,

(93)

χi =
∑

j �=i q
ν
ij

N
Uν = 0, χN =

∑
j qν

j

N
Uν − τ = 0.

We cannot fulfill the KT condition using q ′
T (see the Ap-

pendix), but the weaker condition {Ki,
∑

i �=j Kj } = 0 holds.
This means that the mass shell constraint of particle i
commutes with the sum of those of all other particles, which
is not the case in the approach of Ref. [21]. As in Ref. [21] we
assume that {Ki,Kj } is negligible.

Our choice of constraints avoids all the other problems of
the approach of Ref. [21]. We can check that by using the
previous example of three free particles. Changing the time
constraints to

χ1 = (q12 + q13)μUμ/3 = 0,

χ2 = (q21 + q23)μUμ/3 = 0
(94)

we obtain

S−1
ij =

⎛
⎜⎝ 4/3 p

μ
1 Uμ −2/3 p

μ
2 Uμ −2/3 p

μ
3 Uμ

−2/3 p
μ
1 Uμ 4/3 p

μ
2 Uμ −2/3 p

μ
3 Uμ

2/3 p
μ
1 Uμ 2/3 p

μ
2 Uμ 2/3 p

μ
3 Uμ

⎞
⎟⎠, (95)

with the solution

Sij =

⎛
⎜⎝
(
2 p

μ
1 Uμ

)−1
0

(
2 p

μ
1 Uμ

)−1

0
(
2 p

μ
2 Uμ

)−1 (
2 p

μ
2 Uμ

)−1

−(2 p
μ
3 Uμ

)−1 −(2 p
μ
3 Uμ

)−1 (
2 p

μ
3 Uμ

)−1

⎞
⎟⎠. (96)

The last column is the λ parameter, which has an analytical
and trivial solution

λk = (
2 p

μ
k Uμ

)−1 lab= 1

2Ek

, (97)

which is in perfect agreement with the solution we found for
the two-particle case. The equations of motion in the global
(laboratory) frame, where

∑N
i pi = 0, are then

dq
μ
i

dτ
= p

μ
i

Ei

,
dp

μ
i

dτ
= −

N∑
k=1

1

Ei

∂Vk(q ′
T )

∂qiμ

. (98)

These equations conserve energy and ensure physical trajec-
tories with velocities below the speed of light. Moreover, the
analytical solution for the λk is useful to avoid the numerical
inversion of the matrix of constraints at each time step of
the evolution, which is not possible with presently available
computers. The equations of motion of Eqs. (98) are finally
identical to the relativistic equations which are currently used
in other approaches [34].

Our approach also avoids the problem of cluster separabil-
ity. This can easily be seen by dividing the system into two
subsystems a and b with

P μ = P μ
a + P

μ
b . (99)

If we calculate the time evolution equations for the partons in
each subsystem separately we obtain the same result as if we
calculate them for the full system. This means that one cluster
does not influence the motion of the other.

III. NAMBU–JONA-LASINIO MODEL

In this paper we study the expansion of a q/q̄ plasma
employing the Nambu–Jona-Lasinio (NJL) model. The NJL
model is the simplest low-energy approximation of QCD.
It describes the interaction between two quark currents as a
pointlike exchange of a perturbative gluon [35]. By assuming
that the mass of the gluon is large compared to its momentum
the interaction reduces to an effective four-point interaction
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and is given by

Lint = κ

N2
c −1∑

c=1

3∑
i,j

(q̄i,α[γμλc]αδqi,δ)(q̄j,γ [γ μλc]γβqj,β),

(100)

where we have explicitly shown the color Dirac α, β, γ, δ

and flavor i, j indices. We normalize
∑8

i=0 λi
αβλi

βα = 2.
By applying a Fierz transformation in color space to this
interaction the Lagrangian separates into two pieces [36]: an
attractive color singlet interaction between a quark and an
antiquark (L(qq̄)) and a repulsive color antitriplet interaction
between two quarks (L(qq)), which disappears in the large-Nc

limit. Usually a six-point interaction in the form of the ’t
Hooft determinant is added (LA) to break the unwanted UA(1)
symmetry of the Lagrangian. For this study we are only
interested in the color singlet channel:

L = L0 + L(qq̄) + LA. (101)

(The color octet channel gives diquarks and can be used to
study baryons [37,38].) L0 is the Lagrangian for a particle
without interaction. Concentrating on the dominant scalar and
pseudoscalar part in Dirac space we find the following explicit
form of the Lagrangian:

L =
∑

f ={u,d,s}

[
q̄f

(
i∂/ − m0

f

)
qf + GS

8∑
a=0

[(
q̄f λa

F qf

)2

+(q̄f iγ5λ
a
F qf

)2]]− GD{det[q̄f (1 − γ5)qf ]

+ det[q̄f (1 + γ5)qf ]}. (102)

The first term is the free kinetic part, including the
flavor-dependent current quark masses m0

f , which break
explicitly the chiral symmetry of the Lagrangian. The
second part is the scalar-pseudoscalar interaction in the
mesonic channel, invariant under SUA(3) ⊗ UA(1). It is
diagonal in color as is the third part, the ’t Hooft de-
terminant. The det runs over the flavor degrees of free-
dom. Consequently, the flavors become connected. GS is
the qq̄ coupling constant and GD is the coupling constant
of the ’t Hooft term. The quarks in the NJL Lagrangian
have four-point interactions (with a coupling constant GS)
and six-point interactions (with a coupling constant GD).

The thermodynamic properties of this Lagragian are sum-
marized in Ref. [17]. The NJL Lagrangian has been discussed
in many review articles [35,39,40], where all details of this
model can be found. We concentrate here on those quantities
which enter directly in our calculation, the quark and meson
masses as well as the cross sections.

A. Quark masses

In the NJL model the mass of a free quark of flavor i is
given by Ref. [35]

mi = m0
i + GS(4Nc)(iTr Si)

−GD

(
2N2

c + 3Nc + 1
)
(iTr Sj )(iTr Sk), (103)

where m0
i is the bare quark mass, Nc is the number of colors,

with i �= j �= k, and

Tr Sk = Tr Sk(x = 0) =
∫ � d4p

(2π )4
Tr Sk(p)

=
∫ � d4p

(2π )4
Tr

1

p/ − mk + iε
= 2

i

∫ � d3p

(2π )3

mk

Ep

,

(104)

with Ep =
√

p2 + m2
k . We use here a three-momentum cutoff

to regularize the integrals. If the quark is brought into matter
with a finite baryon density μ and a finite temperature T ,
thermal field theory has to be employed and we have to replace

p = (p0, p) → pn = (iωn ± μ, p),
(105)

i

∫ � d4p

(2π )4
→ −T

∑
n

∫ � d3p

(2π )3
,

where ωn = (2n + 1)πT with n = 1, 2, . . . are the Matsubara
frequencies for fermions. Hence we find for the propagator

S(p) → S(ωn, p) = 1

p/n − m + γ 0μ

= p/ + m

2Ep

1

iωn − (Ep − μ)

+ p/′ − m

2Ep

1

iωn + (Ep + μ)
, (106)

with

p/ = γ 0Ep − γ p and p/′ = γ 0Ep + γ p. (107)

This yields [35]

Tr Sk = 2

i

∫ � d3p

(2π )3

m

Ep

[1 − f (Ep − μ) − f (Ep + μ)],

(108)

with the Fermi-Dirac distribution

f (Ep ± μ) = {1 + exp[(Ep ± μ)/T ]}−1. (109)

Equation (103) allows us to calculate the quark masses which
are displayed on Fig. 1.

FIG. 1. (Color online) Masses of u and s quarks as a function of T .
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FIG. 2. Effective interaction between two quarks in the random phase approximation (RPA).

B. Meson masses and coupling constants

How do mesons appear in a theory whose Lagrangian has
only quarks as degrees of freedom? This is shown in Fig. 2,
which displays the scattering of a quark and an antiquark
in our theory with four-point interactions. The left-hand side
displays the series of exchange terms which appear in the
random phase approximation. This series can be summed. The
sum is formally displayed on the right-hand side of this figure.
This sum corresponds in leading order of Nc to the propagator
of a meson with the proper quantum numbers.

The central building block for the random phase approxi-
mation is the quark-antiquark polarization propagator (Fig. 3)

1

i
[�P/S(q2,m1,m2)]ij

= −Nc

∑
f,f ′

∫
d4p

(2π )4
Tr γ5(Ti)ff ′Sf

×
(

p + 1

2
q

)
γ5(Tj )f ′f Sf ′

(
p − 1

2
q

)
, (110)

where f and f ′ are the explicit flavor indices and Tr refers
therefore to the spinor trace only. Ti and Tj select the
appropriate flavor channel:

Ti =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ3 for π0,
1√
2
(λ1 ± iλ2) for π+, π−,

1√
2
(λ6 ± iλ7) for K0, K̄0,

1√
2
(λ4 ± iλ5) for K+,K−.

(111)

For the more complicated η and η′, where �P/S is not diagonal,
we refer to Ref. [35] where this is treated in detail. After the
traces and sums of the polarization propagator [Eq. (110)] are
carried out one arrives at

1

i
�P/S(q2,m1,m2) = 4NcI1(m1) + 4NcI1(m2)

− 4Ncq
2I2(q2,m1,m2), (112)

FIG. 3. The quark-antiquark polarization propagator for pseu-
doscalar coupling [41].

with

I1(m) =
∫

d4p

(2π )4

1

p2 − m2
,

(113)

I2(q2,m1,m2) =
∫

d4p

(2π )4

1

p2 − m2

1

(p + q)2 − m2
.

Having the polarization propagator we can sum up the terms
of Fig. 2. The interactions among a quark and an antiquark with
pseudoscalar coupling in the random phase approximation can
be written as

iγ5Tk

[
2iGS + 2iGS

1

i
�P/S2iGS + . . .

]
iγ5Tl

= iγ5Tk

2iGS

1 − 2GS�P/S
iγ5Tl. (114)

If a pseudoscalar meson with a mass M is exchanged between
the quarks, Fig. 4, we find for the interaction

iγ5Tk

−ig2
πqq̄(M)

k2 − M2
iγ5Tl. (115)

Equations (114) and (115) have the same structure and
therefore we can identify the exchange of a pseudoscalar
meson with the RPA summation of qq̄ exchanges:

2iGS

1 − 2GS�P/S
= −ig2

πqq̄

k2 − M2
. (116)

The mass of the meson can be obtained by solving the equation

1 − 2GS�
P/S
∣∣
k2=M2 = 0 (117)

while the coupling constant gπqq̄ can be related to the residue
of the pole. Expanding Eq. (114) around its pole k2 = M2 we
find

2iGS

1 − 2GS�P/S
= −i

(
∂�P/S

∂k2

)−1∣∣
k2=M2

k2 − M2
, (118)

FIG. 4. The meson propagator corresponding to the RPA sum.
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and therefore we can identify(
∂�P/S

∂k2

)−1 ∣∣∣∣
k2=M2

= g2
πqq̄ . (119)

For finite temperature and finite chemical potential we have
to replace in Eq. (110) the propagators S by imaginary time
propagators S:

�P/S(iνn, q) = NcT
∑

ω

∑
f,f ′

∫
d3p

(2π )3
Tr γ5(Ti)ff ′Sf (ωl, p)

× γ5(Tj )f ′fSf ′
(ωl + νn, p + q). (120)

The boson frequencies νn are even: νn = ±2nπT , n =
0, 1, 2, 3, . . . , while the fermion frequencies ωl can take odd
values only: ωm = ±(2m + 1)πT , m = 0, 1, 2, 3, . . . . So in
order to find the pole mass of the pseudoscalar mesons one
has to calculate Eq. (120) and then solve Eq. (117). The
mass obtained by this procedure does not have to be real.
Indeed, when the mass of the meson is larger than that of its
constituents the meson can decay into its constituents

After carrying out the frequency sum �P/S(iνn, q) can be
brought as well into the form of Eq. (113) with I1 and I2 given
by

I1(m) = −i

∫ � d3p

(2π )3

1

2Ep

[1 − f (Ep − μ) − f (Ep + μ)],

I2(m1,m2) = i

∫ � d3p

(2π )3

1

2Ep2Ep+q

f (Ep + μ) + f (Ep − μ) − f (Ep+q + μ) − f (Ep+q − μ)

ω + Ep − Ep+q + iε

+ i

∫ � d3p

(2π )3

1 − f (Ep − μ) − f (Ep+q + μ)

2Ep2Ep+q

[
1

ω + Ep + Ep+q + iε
− 1

ω − Ep − Ep+q + iε

]
, (121)

with Ep =
√

m2
1 + p2 and Ep+q =

√
m2

2 + (p + q)2. In the
present approach we limit our mesons to the pseudoscalar
mesons.

The model contains five parameters: the current mass
of the light and strange quarks, the coupling constants GD

and GS , and the momentum cutoff �. These are fixed by
physical observables: the pion and kaon masses, the pion
decay constant, the scalar quark condensate 〈q̄q〉, and the
mass difference between η and η′. We will employ the
parameter set m0

q = 5.5 MeV, m0
s = 140.7 MeV, GS/�

2 =
1.835, GD/�5 = 12.36, and � = 602.3 MeV. The masses for
up and strange quarks, as well as for π and K for this parameter
set [17,38], are displayed in Fig. 5. We see that for small μ
and T the meson masses are smaller than the masses of their
constituents. For large μ and T the opposite is true. If the

mass of the constituents become smaller than the meson mass
the meson mass becomes complex and the mesons become
quasiparticles. They exist in the plasma but with a lifetime
which decreases with increasing μ and/or T (where the width
� = 2GS��P/S is displayed by the yellow band in Fig. 5).

C. Cross sections

If created in heavy ion collisions the QGP will expand
rapidly. Therefore, the cross sections between constituents
become dominant over the static properties of the theory. In the
NJL model these cross sections can be calculated via a 1/Nc

expansion [42]. All the details can be found in Refs. [19,41,42].
Therefore we mention here only the essential facts.

FIG. 5. (Color online) Masses of π (a) and K (b) mesons as a function of T with the NJL model.
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FIG. 6. Feynman diagrams for elastic qq̄ scattering.

1. Elastic collisions

The Feynman diagrams for the qq̄ → qq̄ cross sections are
displayed in Fig. 6. We see contributions from the s channel
and from the t channel. The matrix elements are given by
Ref. [19]

−iMt = δc1,c3δc2,c4 ū(p3)T u(p1)

× [
iDS

t (p1 − p3)
]
v(p4)T v̄(p2)

+ δc1,c3δc2,c4 ū(p3)(iγ5T )u(p1)

× [
iDP

t (p1 − p3)
]
v(p4)(iγ5T )v̄(p2) (122)

and

−iMs = δc1,c2δc3,c4 v̄(p2)T u(p1)

× [
iDS

s (p1 + p2)
]
v(p4)T ū(p3)

+ δc1,c2δc3,c4 v̄(p2)(iγ5T )u(p1)

× [
iDP

u (p1 + p2)
]
v(p4)(iγ5T )ū(p3), (123)

where p1 (p2) is the momentum of the incoming q (q̄) and
p3 (p4) that from the outgoing q (q̄). The ci are the color
indices and T are the isospin projections on the mesons. DS

and DP are the meson propagators of the form

DS/P = 2GS

1 − 2GS�P/S
, (124)

with �P/S being the polarization tensor in the pseudoscalar-
scalar channel. This cross section is displayed in Fig. 7. We
see that for most of the center-of-mass energies this cross
section is of the order of several millibarns. Close to the Mott
transition the cross section increases dramatically to more than
a hundred millibarns, because the incoming quarks in the s
channel become resonant with the intermediate meson [20].
This increase is observed for all reactions which have a

FIG. 7. Elastic cross section for the different channels as a
function of

√
s for a temperature close to TMott and at μ = 0 [41].

FIG. 8. Feynman diagrams for hadronization.

s channel (see Fig. 7). This means that at the end of the
expansion of the plasma, shortly before the Mott temperature
TMott is reached, the system comes almost certainly to a local
equilibrium. Whether at temperatures much higher than TMott

local equilibrium can be established or maintained is, in view
of the size of the cross section, not evident. The elastic qq and
q̄q̄ cross sections are of the order of a couple of millibarns.
Because they do not have an s channel they do not increase
close to TMott

2. Hadronization cross section

The 1/Nc expansion provides as well the hadronization
cross sections in which a qq̄ pair creates two pseudoscalar
mesons. The Feynman diagrams are displayed in Fig. 8.
For the details of the calculation we refer to Refs. [19,43].
Figure 9 displays the cross section uū → π+π− as a function
of

√
s for different temperatures. We observe that the cross

section increases close to the kinematical threshold. Close the
Mott transition the cross section can reach 100 mb. Although
the NJL model has no confinement this large cross section
means that close to the crossover qq̄ pairs create mesons very
effectively (the cross section for the backward reaction being
kinematically suppressed) and therefore most of the quarks

FIG. 9. Example of an inelastic (right) [20] qq̄ cross section as a
function of

√
s.
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are converted into mesons when the system reaches the Mott
transition.

We created tables of all elastic and inelastic cross sections
for our simulations.

IV. SIMULATION PROGRAM

In this section we discuss how the results of the previous
sections are used to formulate a molecular dynamics approach
to describe the expanding q/q̄ plasma. The expansion of such
a plasma, which is presumably created in the reaction between
two heavy ions at ultrarelativisitc energies (at

√
s well above

10 GeV), is presently highly debated.
We describe the expansion in a relativistic quantum molec-

ular dynamic approach, discussed in Sec. II, which is based
on the NJL Lagrangian, discussed in Sec. III. We assume
that the system remains sufficiently close to a local thermal
equilibrium that we can parametrize the masses of the quarks
and mesons by a local temperature and a local chemical
potential. The quarks interact in two ways: First, they change
the mass of fellow quarks by their contribution to the chemical
potential and to the local temperature; second, they interact
with their fellow quarks by elastic and inelastic scattering.
This transport approach is called INTEGRAL (INTEractive
Generalized Relativistic ALgorithms).

The basic structure of a molecular dynamics program is
described in Fig. 10. We discuss in the following each of these
steps.

A. Initial conditions

Principally any phase-space distribution of partons can be
taken as an initial condition for our calculations. In these first
studies we assume a quite smooth initial distribution which is
determined as follows. In a first step we calculate the radius of
the colliding (identical) nuclei by

R = r0 A1/3 (125)

FIG. 10. (Color online) Standard algorithm for molecular dynam-
ics calculations.

with r0 = 1.25. For a finite impact parameter b we approximate
the overlap region by an ellipse with the axes xE and yE :

xE = R − b/2, yE =
√

(R − b/2)(R + b/2). (126)

The extension in the third dimension is assumed to be
proportional to the creation time of the QGP. We take

zE = 2τ0 = 2 fm. (127)

Knowing the atomic number of the colliding nuclei, A, and
the impact parameter, b, we can construct the overlap zone in
coordinate space.

In the present study we assume that the system is close to
local equilibrium. The mass of the partons and, consequently,
their energy depends then on the local (T ,μ), which depend
on the initial T0 and μ0 for the center of the collision. The
initial local temperature depends on the position of the parton.
At a point (x, y) with r =

√
x2 + y2 the local temperature is

a function of r/r0, where the vector r0 points in the direction
of r and r0 =

√
x2

E + y2
E . The initial temperature is given by

T (r) = T0

1 + exp[10 (r/r0 − 0.8)]
. (128)

The central initial temperature T0 can be parametrized as

T0(MeV) = 68
log[

√
sNN (GeV) + 1]

1 + exp[1.5 (1 − xE)]
. (129)

Figure 11 shows the initial temperature as a function of
r/r0. Figure 12 is a contour plot of the initial temperature.
For RHIC energies this parametrization corresponds to the
initial temperature of hydrodynamical calculations. By know-
ing the critical temperature Tc = 165 MeV, this equation
gives us for RHIC (

√
sNN = 200 A GeV) T0 � 2.2Tc and for

LHC (
√

sNN = 2760 A GeV) T0 � 3.5Tc. The calculations we
present here are calculated with μ0 = μ(r) = 0.

Knowing (T (r), μ = 0) we can determine the mass and the
initial density of quarks and antiquarks:

ρ = N

V
= g

∫
f ±(p)

d3p

(2π )3(h̄c)3
, (130)

FIG. 11. (Color online) Distribution of temperature T as a
function of the normalized radius r/r0 for T0 = 350 MeV.
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FIG. 12. (Color online) Distribution of temperature T (in MeV)
in the transverse plane x, y.

where f ± is the Fermi-Dirac distribution [Eq. (109)],

f ±(p,m(T )) = 1 + exp
√

p2 + m2 ± μ/T −1, (131)

g is the degeneracy of the considered parton, N is the quark
number, and V is the volume in the center-of-mass system of
the reaction (an ellipse with constant thickness),

V = π xEyEzE. (132)

Knowing density and volume of a slice with a given
temperature we determine the local number of partons with
the help of Eq. (128). The partons are then placed randomly in
this slice. The initial momentum p of each parton is obtained
by applying a Monte Carlo procedure which models the local
Fermi-Dirac distribution with (T ,μ). In the spirit of the core
corona model close to the surface we assume thermalization
only in the longitudinal z direction and limit the transverse
momentum in the outward direction by limiting the azimuthal
angle φ. This procedure ensures that fast partons in the corona
are comovers and can hadronize easily. The spatial distribution
of these partons is quite smooth. That is why we call this initial
conditions model the hot pancake model (HPM).

B. Transport model

The partons in the expanding system are described by their
positions and their momenta. The equations of motion of the
particles are given by Eqs. (98):

dq
μ
i

dτ
= p

μ
i

Ei

,
dp

μ
i

dτ
= −

N∑
k=1

1

2Ek

∂Vk(q ′
T )

∂qiμ

. (133)

In the NJL model the potential between the particles is a scalar
interaction. This interaction acts like a mass which depends
in our local equilibrium assumption on the temperature and
chemical potential of the environment. Therefore we can
reformulate our energy constraints, Eq. (93), by

Ki = pi
μpiμ − m∗2

i (T ,μ) = 0. (134)

This modifies the equation we have to solve

dp
μ
i

dτ
= −

N∑
k=1

m∗
k

Ek

∂m∗
k

∂qiμ

, (135)

with

∂m∗
k

∂qiμ

= ∂m∗
k

∂Tk

∂Tk

∂qiμ

+ ∂m∗
k

∂μk

∂μk

∂qiμ

(136)

and with Tk(μk) being the local temperature (chemical poten-
tial) of the environment of particle k. The mass dependence
of the partons as well as that of π ’s and K’s on the chemical
potential and on the temperature is displayed in Fig. 13. Here
we assume that the chemical potentials of up, down, and
strange quarks are identical. The masses show the expected
behavior of a crossover at high T and μ � 0.

At high (T ,μ) we see the bare mass of the partons.
When approaching low (T ,μ) we observe a steep rise of the
mass due to the scalar potential, which becomes finite. At
(T = 0, μ = 0) the light partons have a constituent mass of
around 370 MeV. The ’t Hooft term connects up and down
quarks with strange quarks. Therefore the dependence of the
strange quark mass on temperature and chemical potential
becomes more complex. We see a first steep rise of the mass
when the chemical potential arrives from above the transition
temperature of the light quarks u and d and a second rise when
the genuine transition of the s quark takes place.

To solve Eqs. (98), the differential equations are converted
into finite-difference equations with a variable time step. Its
definition will be discussed in Sec. IV E. For the solution
we employ an adaptive method, depending on the time
step size, with either an Euler algorithm or a Runge-Kutta
algorithm of second order (RK2) or of fourth order (RK4).
The cross sections and masses which have been calculated
in Refs. [38,44,45] have been tabulated as a function of
(T ,μ,

√
s) and a linear interpolation has been applied to

accelerate the calculations.

C. Thermodynamical medium

In our local equilibrium approximation the effective mass
m∗ of the partons depends on the temperature and chemical
potential of the local environment. Therefore we have to con-
struct these two quantities from the information on the system
which is available, the four-positions and four-momenta of
all particles. For this we define two densities, the fermionic
density ρF and the baryonic density ρB :

ρF (T ,μ) = Nq

V
+ Nq̄

V
= g

∫ ∞

0

d3p

(2π )3(h̄c)3

× [2(f +(p,mu) + f −(p,mu))

+ (f +(p,ms) + f −(p,ms))], (137)

ρB(T ,μ) = Nq

V
− Nq̄

V
= g

∫ ∞

0

d3p

(2π )3(h̄c)3

× [2(f +(p,mu) − f −(p,mu))

+ (f +(p,ms) − f −(p,ms))], (138)
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FIG. 13. (Color online) Dependence of the masses on the temperature and on the chemical potential of the environment in the NJL model.
We display the masses of u (a) and s (b) quarks, as well as those of π (c) and K (d) mesons.

with the degeneracy factor g = 2 × 3 = 6, and f ± defined in
Eq. (131). Neither ρF nor ρB are Lorentz invariants. In order to
express Ti and μi as a function of the phase-space coordinates
(qμ

j , p
μ
j ) the following procedure is applied: we introduce a

Lorentz-invariant Gaussian function Rij (q ′
T ) inspired from the

Wigner density equation (8),

Rij (q ′
T ) =

(
1

L
√

π

)3

exp

(
q ′

T
2
ij

L2

)
, (139)

to calculate the contribution of a neighboring parton j to the
density of parton i. For the width we take L = 0.5 fm, which
is about the electromagnetic radius of known hadrons. This
allows us to rewrite the density as

ρFi =
∑
j �=i

Rij , ρBi =
∑
j �=i

Rij Sign(j ), (140)

with

Sign(j ) =
{

1 for fermions,

−1 for antifermions.
(141)

For μ = 0 only one of these densities is necessary to determine
the temperature. We use for this the Fermi density. Our
approach corresponds to a Gaussian smearing of the density of
a particle. These formulas apply to free quarks and antiquarks.
We also have to consider the partons which are bound in
hadrons. For practical reasons, especially to avoid a sudden

increase of the density and hence the temperature when mesons
are produced, we consider mesons like one parton.

By knowing ρFi and ρBi , Eqs. (137) and (138) allow us
to determine Ti and μi . For μ = 0 and T � m the relation
between Ti and ρFi is analytical (see the Appendix):

ρF = �
g

π2

(
T

h̄c

)3

, (142)

where � = 0.90154 is a normalization factor for the Fermi
integral and the degeneracy factor becomes g = 2 × 2 × 2 ×
3 × 3 = 36. Then we find

Ti = (h̄c)

(
π2

� g

)1/3
⎛
⎝∑

j �=i

Rij

⎞
⎠1/3

. (143)

In the general case Eqs. (137) and (138) have to be solved
numerically. Ti and μi vary from time step to time step and
therefore the mass has to be also updated in each time step for
each routine (collision, decay, and motion).

How the distance between particles is related to the
temperature can be demonstrated by assuming that there are
one, two, or three particles which have an identical distance r
to the considered particle. This is shown in Fig. 14. The
derivatives of the temperature with respect to the phase-space
variables, necessary to solve Eqs. (133), are developed in detail
in the Appendix.
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FIG. 14. (Color online) Local temperature at r = 0 as a function
of the distance r and for a different number of fellow particles which
all have a distance r to the considered particle.

D. Cross sections and decays

In addition to the potential interaction, which generates the
mass of the partons, the partons interact also by collisions.
Collisions are characterized by cross sections. As in all
transport theories these cross sections are converted into a
geometrical concept which allows us to decide which and
when particles collide [22]. If two particles come closer than
�r = √

σ/π a collision between the particles takes place. In
the program the collision is executed at that time point at which
the distance between the particles is minimal.

In the present approach we have four types of processes:

qq → qq,

qq̄ → qq̄,

qq̄ → M M (and backward process),

and

M → qq̄,

where quarks are characterized by q, antiquarks by q̄, and
mesons by M . These collisions increase the number of partons
because for an expanding plasma qq̄ → M M , in which
two partons are produced, is dominating over the backward
reaction. Elastic collisions are primarily responsible for the
thermalization of the plasma whereas inelastic collisions are
responsible for the hadronization. Both cross sections are small
at temperatures well above the Mott temperature and therefore
thermalization should occur only at the last stage of the
expansion of the plasma shortly before the system hadronizes.

Figures 15 and 16 show schemas of a binary collision and a
decay. The environment of the two particles which enter a col-
lision may be different and therefore we do not expect them to
have the same T and μ. In order to determine the cross section,
which depends on T and μ, we average over both particles.

In the NJL approach quarks are not confined. Nothing
prevents them from expanding into the vacuum. Nevertheless,
applying our cross sections to the expanding system we find
that at the end of the expansion almost all partons are bound in
hadrons. The reason for this is the very large cross section for

FIG. 15. (Color online) Collision between two particles in a
medium.

hadronization close to Tc. Hence, when the system expands,
close to Tc hadron production becomes important. Hadrons
formed slightly above Tc live sufficiently long to survive until
the system has passed Tc and they become stable.

E. Mean free path and time interval

The geometrical interpretation of the cross section requires
a careful study of the time step of the simulation. This can
be seen by performing calculations in a box with periodic
boundary conditions. As shown in Fig. 17 for the same initial
condition (box size of a = 3 fm, filled with 30 free particles, for
a duration of 10 fm/c) the total number of collisions depends
on the chosen time step. In Fig. 17(a) [17(b)] we see the total
number of collisions performed in the simulation program for
the same initial condition as a function of the time step �τ
and for a total cross section of 1 (5) mb. We miss collisions if
the time step is above a critical value of �τ .

The reason for this observation is that, if the mean free path
is smaller than the time step, it is possible to have more than one
collision per time step for the same particle, but numerically
we only apply the first collision. Therefore the time step must
be smaller than the mean free path. In our simulations the time
between two collisions is given by the mean free path �,

�τ = � = (σ ρ)−1 , (144)

which yields

�τ = 10 fm/c for σ = 1 mb

and

�τ = 2 fm/c for σ = 5 mb.

Figure 17 show that in order to have the correct number of
collisions the time step has to be much smaller than �. We need

�τopt = 5 × 10−2 fm for σ = 1 mb,

�τopt = 10−2 fm for σ = 5 mb.

To be on the safe side in our simulations we use

�τopt = (1000〈vrel.〉〈σ 〉〈ρ〉)−1 , (145)

FIG. 16. (Color online) Decay of a meson in a medium.
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FIG. 17. Total number of collisions for the same initial condition in a box simulation as a function of the time step �τ for constant cross
sections of 1 mb (a) and 5 mb (b).

with the mean cross section 〈σ 〉 calculated from the collisions
during the previous time step, and the mean relative velocity
〈vrel.〉 and the mean scalar density 〈ρ〉 calculated for each time
step.

V. RESULTS

A. Setup of the simulations

The results we present here are obtained for simulations of
Au-Au collisions at RHIC energies,

√
sNN = 200 A GeV, or

for Pb-Pb collisions at LHC energies,
√

sNN = 2760 A GeV.
We use the HPM (see Sec. IV A) for the initial condition.

Figure 18 displays the initial mass, momentum, tempera-
ture, and density of the light (u and d) and heavy (s) quarks
for RHIC and LHC initial conditions as a function of the
position of the quarks measured with respect to the center of
the collision. In the center the quark mass is close to the bare
mass. The more the surface is approached, where the density
is smaller and the temperature is lower, the more the mass
increases, and close to the surface we approach the constituent

FIG. 18. (Color online) Distributions of the mass (a), momentum (b), temperature (c), and scalar density (d) for light and strange quarks as
a function of the distance r from the center and for central collisions.
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FIG. 19. (Color online) Energy density distribution (in GeV/fm3)
in the transverse plane x, y for EPOS [47] for a RHIC collision at
b = 6 fm. Colored areas are QGP bubbles.

quark mass. The decreasing temperature is also responsible
for the decrease of the average momentum.

We haven chosen the smooth initial condition (Fig. 12) to
show in a simple and controlled way how the expansion takes
place. For a quantitative comparison with experiments one has
to include initial energy fluctuations, as shown in Fig. 19 [46].
Such fluctuations are visible in the final spectra of the mesons
and can therefore not be neglected. We leave calculations with
such more realistic initial conditions to future investigations.

Figure 20 shows the number of initial partons and final
particles (partons or hadrons) as a function of the impact
parameter. (The number of partons can increase due to the
decay of mesons.) The number of particles increases strongly
with the centrality of the collisions and therefore also the
computing time, which depends quadratically on the number
of particles. In order to provide sufficient statistics the program
has to be parallelized on modern computing architecture such
as graphic cards.

FIG. 20. (Color online) Number of initial and final particles as a
function of the impact parameter b.

FIG. 21. (Color online) Evolution of the total energy, mass, and
momentum of the system (a), and the variation of the total energy (b)
for a central RHIC collision as a function of time.

B. Check of the algorithm

The most important check for the consistency of the deriva-
tion and its numerical realization is for energy conservation.
In a molecular dynamics calculation it has to be strictly
conserved. Figure 21(b) displays the variation of the total
energy of the system as a function of time for a simulation of
a central RHIC collision. Such a simulation contains a couple
of thousand partons. We see that the energy varies by less
than 0.2%. The small variation of the total energy does not
come from the solution of the differential equation (Euler or
Runge-Kutta), but from the local density jump when a meson
decay appears in a “low”-density area.

C. First results

In this section we present some preliminary results which
we have obtained for initial conditions adapted from RHIC and
LHC heavy ion experiments. They show that basic observables
are well reproduced in our approach. In Fig. 22 we display
the elliptic flow, v2, as a function of the impact parameter.
These results are compared with the experimental data from
the PHOBOS Collaboration [48]. We see that the results of our
approach agree quantitatively quite well with the experimental
finding. In this plot error bars come from the variations of the
mean value after N simulations.
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FIG. 22. (Color online) v2 compared to experimental data
from the PHOBOS experiment [48] as a function of the impact
parameter b.

Figure 23 displays how the elliptic flow develops as a
function of time. In Fig. 23(a) we display our results; those of
PHSD calculations [49] are shown in Fig. 23(b). By definition
initially there is no elliptic flow (under the assumption of
thermal equilibrium). In the two calculations the flow develops
very similarly and both calculations agree also on the final
value. In our case, despite the small cross section of about
4–6 mb, we observe initially many collisions due to the high
density. These collisions thermalize the plasma rapidly and

FIG. 23. (Color online) Time evolution of the elliptic flow v2 for
b = 6 fm (a), and the comparison with PHSD calculations for similar
initial conditions [49] (b).

FIG. 24. (Color online) The dN/2πpTdpT spectrum for b =
4 fm, and the results of a hydrodynamical calculation and of the
experiment for similar conditions (centrality 0%–5%) [51].

lead to an elliptic flow in less than 1 fm/c. The flow is lowered
later by the change of the masses in NJL [see Fig. 21(a)].

Experimentally it has been found that the transverse
momentum spectra of π and K have a different shape [50]. This
can be seen in Fig. 24 where we compare the experimental data
with results from hydrodynamical calculations [51] and our
results. We observe the same difference of the slopes as seen in
experiments, which is usually attributed to the hydrodynamical
evolution of the system.

Figure 25 displays a contour plot of the number of collisions
as a function of the distance to the center of the initial ellipse

FIG. 25. (Color online) (t, r) distributions for inelastic (a) and
elastic (b) collisions at b = 0 fm for RHIC conditions.
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FIG. 26. (Color online) (t, r) distributions for inelastic collisions
at b = 9 fm for LHC conditions.

r and time t for inelastic collisions [Fig. 25(a)] and elastic
collisions [Fig. 25(b)].

Initially we have a very high density zone where elastic
and inelastic collisions take place frequently because the
mean free path is small despite the small cross section.
When the system expands the density becomes lower but
the cross section does not increase. Therefore we observe
fewer collisions. When the system approaches the critical
temperature the cross sections becomes very large; this largely
compensates for the decrease of the density and there the
collision rate becomes large again for elastic as well as for
inelastic collisions. Here the hadrons are created which finally
survive.

For the LHC initial condition, Fig. 26, we see the same
phenomenon but a longer lifetime of the plasma. In contradis-
tinction to the simulation for RHIC energies the corona partons
do not hadronize early but the stream of partons from the
interior heats up the surface. So the system expands in the
quark phase and hadronization takes place only much later
over a large space-time area.

Figure 27 shows the distribution of
√

s and of T at which the
final hadrons are produced. We see a broad distribution around
the critical temperature and not a single freeze-out temperature
as assumed in the Cooper-Frye formula [52], which is used
to create hadrons in hydrodynamical calculations [51]. The
temperature at the K production points is slightly lower than
that for the π production points, as expected by the NJL cross
sections.

Figure 28 compares the hadronization in our approach
[Figs. 28(a) and 28(b)] with the results of PHSD calcula-
tions [Fig. 28(c)] [49]. We observe in both calculations a
hadronization time of around 5 fm/c for the RHIC conditions.
The difference between the particle numbers from PHSD and
those in our model comes from the fact that we have different
initial conditions. The hadronization time is longer for the
LHC initial condition [Fig. 28(b)] due to the higher density
of partons.

FIG. 27. (Color online)
√

s distribution for inelastic collisions
(a), and the distribution of the temperature at the production points,
T , for pions and kaons (b).

VI. SUMMARY

We have presented in this paper a relativistic molecular
dynamics approach. We have shown that for a specific choice
of constraints it is possible to recover the classical relativistic
equations of motion. These constraints give us physical
trajectories with causal motion and conservation of energy of
a strongly interacting system. Using the Nambu–Jona-Lasinio
Lagrangian to describe the potential interactions and the
scattering among the partons we find that is it is possible
to model the expansion of a quark-antiquark plasma. Close
to the crossover the elastic as well as the hadronization cross
sections increase very rapidly. The large hadronization cross
section is the reason why the large majority of quarks form
mesons, which can finally be observed.

Our results show that a approach which does not enforce
thermal equilibrium like hydrodynamics and in which the
transition to the hadronic world is not sudden, as in the
Cooper-Frye approach used frequently in hydrodynamical
calculations, gives qualitative agreement with some key
observables. Further studies involving an in-depth comparison
with existing models will be the subject of a future publication.

The approach is in spirit close to the PHSD approach
but differs completely as far as the temperature and density
dependence of the mass of the quarks is concerned. Therefore
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FIG. 28. (Color online) dN/dt for our simulations at b = 0 fm and RHIC conditions (a) and b = 9 and LHC conditions (b) and for PHSD
for b = 0 fm and RHIC conditions (c) [49].

it will be fruitful to compare the observables obtained in both
approaches for the same initial condition.
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APPENDIX

1. Relativistic calculations

a. Derivatives of transverse distances

The calculation of the derivatives for transverse distances
can be done rigorously as follows:

∂qT
2
ij

∂qkν

= 2qT ijμ

∂qT
μ
ij

∂qkν

= 2qT ijμ

∂

∂qkν

[
qij

μ − (
qijσ uσ

ij

)
u

μ
ij

]
= 2qT ijμ

[
(δik − δjk)ημν

− ∂
(
qijσ uσ

ij

)
∂qkν

u
μ
ij − (

qijσ uσ
ij

) ∂u
μ
ij

∂qkν

]
, (A1)

∂qT
2
ij

∂pkν

= 2qT ijμ

∂qT
μ
ij

∂pkν

= 2qT ijμ

∂

∂pkν

[
qij

μ − (
qijσ uσ

ij

)
u

μ
ij

]
= 2qT ijμ

[
0 − ∂

(
qijσ uσ

ij

)
∂pkν

u
μ
ij − (

qijσ uσ
ij

) ∂u
μ
ij

∂pkν

]
,

∂qT
2
ij

∂pkν

= −2qT
ν
ij (δik + δjk)

(
qijσ uσ

ij

)
√

p2
ij

(A2)

and the same kind of derivatives can be found for q ′
T :

∂q ′
T

2
ij

∂qkν

= 2q ′
T ijμ

∂q ′
T

μ
ij

∂qkν

= 2q ′
T ijμ

∂

∂qkν

[
qij

μ − (qijσUσ )Uμ
]

= 2q ′
T ijμ

[
(δik − δjk)ημν

− ∂(qijσUσ )

∂qkν

Uμ − (qijσUσ )
∂Uμ

∂qkν

]
,

∂q ′
T

2
ij

∂qkν

= 2q ′
T

ν

ij (δik − δjk), (A3)

∂q ′
T

2
ij

∂pkν

= 2q ′
T ijμ

∂q ′
T

μ
ij

∂pkν

= 2q ′
T ijμ

∂

∂pkν

[
qij

μ − (qijσUσ )Uμ
]
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= 2q ′
T ijμ

[
0 − ∂(qijσUσ )

∂pkν

Uμ − (qijσUσ )
∂Uμ

∂pkν

]
,

∂q ′
T

2
ij

∂pkν

= −2q ′
T

ν

ij

(qijσUσ )√
P 2

lab= 0. (A4)

b. Matrix of constraints

We present the full calculation of the matrix of constraints
and the full expression of the equations of motion for the case
in which the KT [32] condition is not fulfilled. We start with
the calculation of the derivative of the first constraints:

∂Ki

∂q
μ
k

= ∂Vi

∂q
μ
k

,
∂Ki

∂p
μ
k

= 2piμδik + ∂Vi

∂p
μ
k

. (A5)

Then for the time constraint we have
∂χi

∂q
μ
k

=
∑
j �=i

(δik − δjk)
Uμ

N
,

∂χi

∂p
μ
k

= 1

N
√

P 2

∑
j �=i

qν
ij�νμ,

(A6)

and
∂χN

∂q
μ
k

= Uμ

N
,

∂χN

∂p
μ
k

= 1

N
√

P 2

∑
j

qν
j .�νμ. (A7)

We notice that, except for ∂χi/∂q
μ
k , the derivatives of χ do not

depend on k. For the full matrix of constraints we find

{Ki, χj } =
∑

k

⎡
⎣( ∂Vi

∂q
μ
k

)⎛⎝ 1

N
√

P 2

∑
l �=j

q ′
T jlμ

⎞
⎠−

(
2p

μ
i δik + ∂Vi

∂p
μ
k

)⎛⎝∑
l �=j

(δjk − δlk)
Uμ

N

⎞
⎠
⎤
⎦

=
(∑

k

∂Vi

∂q
μ
k

)
︸ ︷︷ ︸

=0

⎛
⎝ 1

N
√

P 2

∑
l �=j

q ′
T jlμ

⎞
⎠−

(
N

∂Vi

∂p
μ
j

−
∑

l

∂Vi

∂p
μ
l

)
Uμ

N
−
⎛
⎝2p

μ
i Uμ

N

∑
l �=j

(δji − δli)

⎞
⎠ , (A8)

{Ki, χj } = −
(

N
∂Vi

∂p
μ
j

−
∑

l

∂Vi

∂p
μ
l

)
Uμ

N
−
⎛
⎝2p

μ
i Uμ

N

∑
l �=j

(δji − δli)

⎞
⎠ ,

{Ki, χN } =
∑

k

[(
∂Vi

∂q
μ
k

)(
1

N
√

P 2

∑
l

q ′
T lμ

)
−
(

2p
μ
i δik + ∂Vi

∂p
μ
k

)(
Uμ

N
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=
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k

∂Vi

∂q
μ
k

)
︸ ︷︷ ︸
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(
1

N
√

P 2

∑
l

q ′
T lμ

)
−
(∑

k

∂Vi

∂p
μ
k

)
Uμ

N
−
(
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μ
i Uμ

N

)
, (A9)

{Ki, χN } = −
(∑

k

∂Vi

∂p
μ
k

)
Uμ

N
−
(

2p
μ
i Uμ

N

)
.

Using Eq. (81), we can write

{χi, χj } =
∑

k

⎛
⎝∑

l �=i

(δik − δlk)
Uμ

N

1

N
√

P 2

∑
m�=j

q ′
T jmμ − 1

N
√

P 2

∑
l �=i

q ′
T

μ

il

∑
l �=j

(δjk − δlk)
Uμ

N

⎞
⎠ = 0, (A10)

{χi, χN } =
∑

k

⎛
⎝∑

l �=i

(δik − δlk)
Uμ

N

1

N
√

P 2

∑
m

q ′
T mμ − 1

N
√

P 2

∑
l �=i

q ′
T

μ

il

Uμ

N

⎞
⎠ = 0, (A11)

{χN, χN } = 0. (A12)

We can summarize these results by presenting the complete matrix of constraint:

C−1
ij = {φi, φj } =

(
{Ki,Kj } {Ki, χj }
{χi,Kj } {χi, χj }

)
(A13)

with

A−1
ij = {Ki,Kj } �= 0, B−1

ij = {χi, χj } = 0, S−1
ij = {χi,Kj } �= 0. (A14)
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That gives us the following relativistic factor [Eq. (69)]:

λk = Ck2N, 1 < k < 2N. (A15)

The final expression for the equations of motion is

dq
μ
i

dτ
= 2λip

μ
i +

N∑
k=1

λk

∂Vk(q ′
T )

∂piμ

+ 1

N
√

P 2

⎡
⎣
⎛
⎝∑

j �=i

q ′
T ijμ

⎞
⎠ 2N−1∑

k=N+1

λk +
⎛
⎝∑

j

q ′
T jμ

⎞
⎠ λ2N

⎤
⎦ ,

(A16)
dp

μ
i

dτ
= −

N∑
k=1

λk

∂Vk(q ′
T )

∂qiμ

− Uμ

N

⎡
⎣ 2N−1∑

k=N+1

λk

⎛
⎝∑

j �=i

(δik − δjk)

⎞
⎠+ λ2N

⎤
⎦ .

We can write these equations in a simplified form using q ′
T and the global reference frame (Uμ = (1, 0, 0, 0)):

dq
μ
i

dτ
= p

μ
i

Ei

+ 1

N
√

P 2

⎡
⎣
⎛
⎝∑

j �=i

q ′
T ijμ

⎞
⎠ 2N−1∑

k=N+1

λk +
⎛
⎝∑

j

q ′
T jμ

⎞
⎠ λ2N

⎤
⎦,

dp
μ
i

dτ
= −

N∑
k=1

1

2Ek

∂Vk

∂qiμ

. (A17)

(Notice that we only use the three-vector part of these equations.) The second term of dq
μ
i /dτ is embarrassing. For N = 2

particles this term is vanishing. Unfortunately, for a large number of particles (2 < N ) it does not disappear. To avoid this the
KT condition must be fulfilled.

2. Thermodynamical densities

Equation (137) can be calculated analytically for μ → 0
and m � T (including a factor of 2 in g):

ρF = 4π

(2π )3(h̄c)3
g

∫ ∞

0
(f + + f −)p2dp

= 4π

(2π )3(h̄c)3
g m2T � K2

(
m

T

)
(A18)

= 4π

(2π )3(h̄c)3
g m2T �

�(2)

2

(
2

m/T

)2

,

ρF = � g

π2

(
T

h̄c

)3

.

Then we find

Ti = (h̄c)

(
π2

� g

)1/3

ρ
1/3
F . (A19)

For the baryonic density, Eq. (138), we have

ρB = 4π

(2π )3(h̄c)3
g

∫ ∞

0
(f + − f −)p2dp

= 4π

(2π )3(h̄c)3
g

π2

3
T 3

(
μ

T
+
(

μ

T

)3 1

π2

)

= 4π

(2π )3(h̄c)3
g

π2

3

⎛
⎝ T 2μ︸︷︷︸

loworder

+μ3

π2

⎞
⎠ ,

ρB ≈ g

6π2

(
μ

h̄c

)3

, (A20)

and finally

μi = (h̄c)

(
6π2

g

)1/3

ρ
1/3
B . (A21)

The degeneracy factor for the spin, the parity, the color, and
the flavor is g = 2 × 2 × 3 × 3 = 36.

3. Derivation of the potential

The forces coming from the derivative of the potential are

∂Vi

∂qkν

= ∂m2
i

∂qkν

= 2mi

∂mi

∂qkν

= 2mi

∂mi

∂Ti

∂Ti

∂qkν

,

∂Vi

∂pkν

= ∂m2
i

∂pkν

= 2mi

∂mi

∂pkν

= 2mi

∂mi

∂Ti

∂Ti

∂pkν

.

(A22)

The local temperature is defined as

Ti = (h̄c)

(
π2

� g

)1/3

ρ
1/3
F = �

⎛
⎝∑

l �=i

Ril

⎞
⎠1/3

(A23)

with Rij = exp(q ′
T

2
ij /L

2), where L is a weighting factor, and

� = (h̄c)

(
π2

� g

)1/3

� 190 MeV. (A24)

Its derivatives are

∂Ti

∂qkν
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1

3

1(∑
l �=i Ril
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∑
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Ril

1
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(A25)
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l �=i Ril
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∑
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,

which can be rewritten as

∂Ti
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= 2�3

3L2T 2
i

∑
l �=i

Rilq
′
T

ν
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(A26)
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