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Low-energy fusion caused by an interference
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Fusion of two deuterons at room-temperature energy is studied. The nuclei are in vacuum with no connection to
any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate
them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier.
The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a
form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the
incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and
various directions; for example, a convergent conical wave. As a result of interference, the wave function close
to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux
gets away from the cusp and moves to the Coulomb center providing a not negligible probability of fusion (cusp
driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.
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I. INTRODUCTION

The aspects of nuclear fusion are discussed, for instance, in
Refs. [1–10] and references therein. Here we outline principal
phenomena associated with nuclear fusion. The main difficulty
is getting the nuclei close enough to fuse since they should
overcome a high Coulomb barrier.

There are two ways to pass the Coulomb barrier: to
accelerate the nuclei up to a high energy comparable with
the barrier height (of the order of 1 MeV) or to pass the
barrier via quantum tunneling. When the energy is not high,
the probability of tunneling of the nuclei through the Coulomb
barrier is extremely small according to the theory of Wentzel,
Kramers, and Brillouin (WKB) [11]. So only high-energy
nuclei can fuse.

Therefore, use of high-energy nuclei is the leading idea
of fusion technique. We mention an acceleration of initially
cold deuterons by a strong electric field using a pyroelectric
crystal [5].

It is surprising to claim that two bare deuterons, that are
isolated from everything, of room-temperature energy are able,
in principle, to penetrate the Coulomb barrier with a not
small probability and to subsequently fuse. This statement is
counterintuitive. A tennis ball cannot penetrate through a brick
wall. This correlates with the usual underbarrier physics led by
the philosophy of addition of probabilities but not amplitudes.
The proposed phenomenon of barrier penetration is based
ultimately on interference that is on addition of amplitudes.
The related nuclear reaction can be called coherent fusion.

We really deal with two low-energy nuclei in vacuum. There
are no external sources (electric or magnetic field, illumination,
surrounding matter, traps, etc.) which may accelerate them.
The energy of the two nuclei, in the system of center of mass,
is conserved and remains small during the motion through the
Coulomb barrier. This is a substantial difference from usual
schemes to push in action a mechanism of low-energy fusion
by some local heating or acceleration of nuclei.

The conventional scattering problem is a study of reflection
of the incident flux which is a plane wave coming from
large distances [11]. Coulomb field scattering relates to the

Rutherford formula and the wave function is exponentially
small at the center.

What happens when the incident flux at large distances is
not just a single plane wave?

The wave function close to the Coulomb center can be
substantially modified when the incident flux is a superposition
of plane waves with the same energy in various directions;
for example, a convergent conical wave. In this case classical
trajectories are reflected, due to Coulomb forces, from a certain
surface surrounding the cone axis. This surface is called
caustic [12] and it is terminated by the cusp directed to the
center. Classical trajectories fill out the space restricted by
the caustic surface. Each incident trajectory reflects from the
caustic surface, continues inside, and pierces its opposite part.
So the space outside the caustic is not an absolute shadow from
the classical standpoint.

Classical trajectories, which pierce the surface of the cusp
caustic, do not reach the Coulomb center since they are
reflected from another caustic closer to the center. So the
Coulomb center is in the absolute shadow from the classical
standpoint. Otherwise it would be strange to have the center
be reachable within classical physics.

Unlike classical physics, a caustic shadow is not completely
“empty” due to an exponential decay of the wave function
outside the caustic surface [12]. The proper outer flux of the
cusp caustic is directed along it. When the flux reaches the cusp
it gets away from it and moves towards the center. It pierces the
caustic which reflects the above classical flux propagated after
piercing the cusp caustic. Then it reaches the Coulomb center
providing a not exponentially small probability of tunneling.
The cusp driven flux does not exist in classical physics. The
analogous flux, getting away from a caustic cusp, is also
formed in optics and acoustics. See also Refs. [13,14].

In this paper the exact solution of the Coulomb problem
is used. In the Coulomb field the variables are separated in
parabolic coordinates [11] and the solution is a product of
two wave functions. They depend on an arbitrary parameter β
indicating a redistribution of the total constant energy between
two subsystems. Therefore the wave function is an infinite
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superposition of such products with different β corresponding
to an integration along some path in the plane of complex β.

The result is determined by analytical properties in the
β plane where the certain points relate to saddle point
integrations. Each saddle point corresponds to a solution of the
Hamilton-Jacobi equation [11,15]. But not every solution of
this equation is physical. The exact analytical solution allows
us to establish whether a particular saddle contributes to the
total integration. Some saddles are irrelevant since they are
masked by other branches of larger amplitude.

The phenomenon of interference in tunneling was already
proposed in Refs. [16–18]. Multidimensional tunneling was
studied, in particular, in Refs. [19–27]. Influence of interfer-
ence on tunneling through nonstationary barriers was studied
in Refs. [28,29]. The role of interference in α decay was studied
in Ref. [30].

Experimental conditions to form the required incident flux
are briefly discussed in Sec. XI.

Let us summarize what is proposed in this paper. We assume
(i) there is a conical convergent flux of particles (not a plane
wave) on the static repulsive Coulomb center, (ii) the Coulomb
field is the only interaction, (iii) the particle energy is fixed
and low resulting in an exponentially small WKB probability
to reach the Coulomb center. We conclude that (i) the cusp
caustic is formed, (ii) the flux gets away from the cusp and
moves along the narrow channel toward the Coulomb center,
and (iii) the probability to reach the center is not exponentially
small.

II. GENERAL VIEW

Two examples of nuclear fusion are below. The deuterium-
deuterium fusion occurs by the scheme

2
1H + 2

1H → 3
2He + n + 3.27 Mev. (1)

The deuterium-tritium fusion releases more energy,

2
1H + 3

1H → 4
2He + n + 17.59 Mev. (2)

The problem of nuclear fusion can be separated by two
steps. The first step is overcoming the Coulomb barrier by
two nuclei with masses M1 and M2. When the inter-nuclear
distance is larger than R0 ∼ 10−13 cm one can ignore nuclear
forces, considering only tunneling through the Coulomb
barrier. This process determines the local nuclear densty on
the outer border of the region R < R0. The second step is a
subsequent nuclear fusion on the short distance R0. When the
above nuclear density is not small the probability of the fusion
is also not small. Our goal is not to calculate the exact fusion
probability but to show that it is not exponentially small. For
this purpose, the consideration of the Coulomb tunneling is
sufficient.

The Coulomb process is a motion of a particle with
the reduced mass M = M1M2/(M1 + M2) described by the
Schrödinger equation

− h̄2

2M

∂2ψ

∂ �R2
+ e2

R
ψ = Eψ, (3)

where R is the internuclear distance [11]. Below we measure
length in the units of 2e2/E. The wave function can be written
in the form

ψ = exp(iBσ ), (4)

where σ satisfies the equation

1

4

(
∂σ

∂ �R

)2

+ 1

2R
− i

4B

∂2σ

∂ �R2
= 1. (5)

The parameter

B = e2

h̄c

√
2Mc2

E
(6)

is supposed to be large, which corresponds to semiclassical
approximation. In this case one can ignore the last term in
Eq. (5) and it becomes the Hamilton-Jacobi equation when σ
is the classical action divided by h̄B [11,15].

In a spherically symmetric case the first term in Eq. (5)
is just (∂σ/∂R)2/4. The wave function exponentially decays
inside the Coulomb barrier. Accordingly, the imaginary part
of σ , related to a motion under the barrier, is

σ = i
√

2
∫ 1/2

R0

dR

√
1

R
− 2 � iπ

2
, (7)

where we ignore the distance R0 which is short compared
to scales of the Coulomb motion. Equation (7) follows from
the WKB approximation The probability of fusion is the
probability of overcoming the Coulomb barrier,

w =
∣∣∣∣ψ(R0)

ψ(∞)

∣∣∣∣
2

∼ exp(−πB). (8)

One can estimate the fusion probability (8), for example, for
the reaction (1). In this case the reduced mass is M = MD/2
where the deuteron mass is defined as MDc2 � 1.87 × 109 eV.
The nuclear Bohr radius is h̄2/Me2 � 2.88 × 10−12 cm. At the
energy of two deuterons E = T , where T = 300 K � 2.58 ×
10−2 eV relates to room temperature, and the de Broglie
wavelength is λ = 2πh̄/

√
2MDE � 1.26 Å. Two deuterons

enter the Coulomb barrier at the distance e2/E � 557 Å
between them. With these parameters one can estimate πB �
6174.9. This corresponds to the probability w ∼ 10−2682

which is in accordance with usual estimates for low-energy
fusion.

III. SCATTERING BY THE COULOMB CENTER

The above estimate of nonphysically small probability of
low-energy fusion corresponds to the usual WKB approxima-
tion. For a spherically symmetric incident flux the problem is a
generic one-dimensional case since radial and spherical parts
of the wave function are separated.

There is another remarkable case of variables separation in
the Coulomb field. It occurs in parabolic coordinates

ξ =
√

r2 + z2 + z, η =
√

r2 + z2 − z. (9)

In this case the total wave function has the form

ψ(ξ, η) = f (ξ )ϕ(η) exp(imΦ), (10)
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where Φ is the azimuthal angle and m is the magnetic quantum
number. The use of spherical coordinates is less convenient
for our purposes due to the discrete summation on azimuthal
quantum number l as in the problem of Regge poles [31].
Below we consider an axially symmetric case when m = 0
and the Schrödinger equation has the form

− 1

4B2r

∂

∂r

(
r
∂ψ

∂r

)
− 1

4B2

∂2ψ

∂z2
+ ψ

2
√

r2 + z2
= ψ. (11)

In the parabolic coordinates the Schrödinger equation reads

− 1

B2(ξ + η)

[
∂

∂ξ

(
ξ
∂ψ

∂ξ

)
+ ∂

∂η

(
η
∂ψ

∂η

)]
+ ψ

ξ + η
= ψ.

(12)

If we express the wave function as ψ = exp(iBσ ), one can
obtain from Eq. (12)

ξ

(
∂σ

∂ξ

)2

− i

B

∂

∂ξ

(
ξ
∂σ

∂ξ

)
+ η

(
∂σ

∂η

)2

− i

B

∂

∂η

(
η
∂σ

∂η

)
+ 1 = ξ + η. (13)

After separation of variables the parts f and ϕ in Eq. (10) obey
the equations [11]

− 1

B2ξ

∂

∂ξ

(
ξ
∂f

∂ξ

)
+ 1 + β

ξ
f = f, (14)

− 1

B2η

∂

∂η

(
η
∂ϕ

∂η

)
− β

η
ϕ = ϕ, (15)

where β is a constant connected with the variable separation.
Each of Eqs. (14) and (15) has two independent solutions.

The WKB limits of these solutions are [11]

ϕ∓(η, β) = [η(η + β)]−1/4

2
√∓iπB

exp

(
∓ iB

∫ η

0
dη1

√
1 + β

η1

)
(16)

and analogously

f∓(ξ, β) = [ξ (ξ − 1 − β)]−1/4

2
√∓iπB

× exp

(
∓ iB

∫ ξ

1+β

dξ1

√
1 − 1 + β

ξ1

)
. (17)

Equations (16) and (17) are valid when the phases are not
small.

The velocity field can be studied by Newtonian trajectories.
According to classical mechanics [15], velocities in the ξ and η
directions are proportional to

√
1 − (1 + β)/ξ and

√
1 + β/η

respectively. This sets a velocity field in the plane {ξ, η}. Each
point in the plane {ξ, η} belongs to one or a few classical
trajectories η(ξ ).

In the usual scattering problem the incident flux is solely a
plane wave from large positive z. This situation corresponds
to β = −i/B (β � 0 in the semiclassical approximation)
when the exact solution of Eq. (15) is ϕ+ = exp(iBη) [11].
The combination f−(ξ )ϕ+(η) results in the incident plane
wave ψ ∼ exp(−2iBz) at large positive z. Analogously, the

shadow

0
z

x

y

FIG. 1. The flux on the Coulomb center (zero coordinates) is
reflected from the caustic surface defined by Eq. (18). Four trajectories
from the infinite set are shown.

combination f+(ξ )ϕ+(η) leads to the scattered wave ψ ∼
exp(2iB

√
r2 + z2 ) far from the center.

Classical trajectories are shown in Fig. 1. They are reflected
from the caustic surface where the velocity ∂ξ/∂t = 0 [12].
This happens at ξ = 1 + β � 1. See also Refs. [32,33] where
properties of the caustic in Fig. 1 and associated wave functions
are discussed. The caustic surface in Fig. 1 is axially symmet-
ric, since m = 0, and, as follows from Eq. (9), is given by

2z = 1 − r2. (18)

Along the caustic the normal momentum is zero. The tangent
momentum is real and is determined by

√
1 + β/η � 1. The

wave function exponentially decays inside the shadow region
in Fig. 1.

IV. FORMULATION OF THE PROBLEM

A. Exact wave functions

Below we explore superpositions of functions with different
β:

ψI (ξ, η) =
∫

dβ exp(−iBαβ)f (ξ, β)ϕ(η, β), (19)

ψII (ξ, η) =
∫

dβ exp(iBαβ)f (η,−1 − β)ϕ(ξ,−1 − β),

(20)

where α is a fixed positive parameter. In these equations

f (ξ, β) = i exp(−iBξ − iπb)F (b, 1, 2iBξ ), (21)

where 2b = 1 − iB(1 + β), and

ϕ(η, β) = i exp(−iBη)F (a, 1, 2iBη), (22)

where 2a = 1 + iBβ. The confluent hypergeometric function
[11] is given by the series

F (a, 1, s) = 1 + a

(1!)2
s + a(a + 1)

(2!)2
s2

+ a(a + 1)(a + 2)

(3!)2
s3 + · · · . (23)

The total wave function is

ψ(ξ, η) = ψI (ξ, η) + ψII (ξ, η). (24)

As shown below, the function ψI is exponentially small at
z < 0 and the function ψII is exponentially small at 0 < z.
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At large ξ and η the functions (21) and (22) have their WKB
forms,

f (ξ, β) � f−(ξ, β) + f+(ξ, β), (25)

ϕ(η, β) � ϕ−(η, β) + ϕ+(η, β). (26)

The wave function (26) corresponds to incident and reflected
waves in the classically allowed region. In the classically
forbidden region, smaller η, this wave function exponentially
decays with the decrease of η. There is also the part
exponentially increasing with the decrease of η. Both are
of the same order at small η. This reminds us of a usual
one-dimensional problem of reflection from a barrier where,
as known, the Stokes phenomena are involved [34]. The same
is valid for the wave function (25).

The wave function (22) is not singular at small η. At
some fixed negative β the function ϕ(η, β) has two branches,
exponentially increasing and decreasing from the point η = 0.

B. Semiclassical approximation

According to Eqs. (17) and (16), there are four (i = 1, 2,
3, 4) branches of the wave function ψI (analogously,
of ψII ),

ψi =
∫

ai exp(iBσi)dβ, (27)

where the preexponential factors ai are not important for the
semiclassical approach used. σi are defined by the following:

σ2,3 = ∓
∫ ξ

1+β

√
1 − 1 + β

ξ1
dξ1 +

∫ η

0

√
1 + β

η1
dη1 − iαβ

(28)
and σ1,4 + iαβ = −(σ3,2 + iαβ).

The large parameter B provides validity of the semiclassical
approximation, and the β integration can be done by the saddle
method. This means that for each ξ and η one can determine
a certain β(ξ, η) from the condition ∂σi/∂β = 0. For σ1 this
condition reads√

ξ

1 + β
+

√
ξ

1 + β
− 1 =

(√
η

β
+ 1 +

√
η

β

)
exp(α).

(29)

The analogous condition for σ2 differs from Eq. (29) by the
sign at

√
η/β. The condition for σ3 differs from Eq. (29) by

the sign of α. The condition for σ4 is obtained to make both
changes in Eq. (29).

The above semiclassical solutions also follow from the
Hamilton-Jacobi equation. Equation (13) becomes this equa-
tion if we drop the second derivatives. The Hamilton-Jacobi
equation in parabolic coordinates,

ξ

ξ + η

(
∂σ

∂ξ

)2

+ η

ξ + η

(
∂σ

∂η

)2

+ 1

ξ + η
= 1 (30)

allows separation of the variables used above. Equations (28)
for σi with the conditions (29) are equivalent to a general
integral of the Hamilton-Jacobi equation (30) [15].

To obtain derivatives ∂σi/∂ξ and ∂σi/∂η one should
differentiate in Eq. (28) with respect to the upper integration
limits only. For σ1, for example, we have

∂σ1(ξ, η)

∂ξ
= −

√
1 − 1 + β(ξ, η)

ξ
, (31)

∂σ1(ξ, η)

∂η
= −

√
1 + β(ξ, η)

η
. (32)

The Cartesian derivatives

∂σi

∂z
= 2

ξ + η

(
ξ
∂σi

∂ξ
− η

∂σi

∂η

)
(33)

and

∂σi

∂r
= 2

√
ξη

ξ + η

(
∂σi

∂ξ
+ ∂σi

∂η

)
(34)

are proportional to classical velocities.
Now one can outline the problem. From Eq. (29) and its

analogs one has to determine β(ξ, η) and to insert it into
Eq. (28) and its analogs. A semiclassical solution will be found.

V. CAUSTICS

A condition of applicability of the semiclassical approxima-
tion is well known. A wavelength should be a smooth function
of coordinates [11]. In other words, quantum corrections to the
Hamilton-Jacobi equation (30), which contain (1/B)∂2σ/∂ξ 2

and (1/B)∂2σ/∂η2, should be small. There are various situa-
tions when those derivative are not small. First, it happens near
a classical turning point where classical momenta (∼∂σ/∂ξ )
are proportional to the square root of the distance to this point.

In addition to that, the classical momentum can be nonzero
but nevertheless its spatial derivative becomes infinite. As
follows from Eqs. (31) and (32), this may happen when ∂β/∂ξ
or ∂β/∂η become large. This condition specifies a certain
surface, called caustic, in the three-dimensional space where
classical trajectories are tangent to it [12]. In our case caustic
surfaces have axial symmetry with respect to the z axis and
one can study just caustic curves in the {r, z} plane. The
caustic condition can be obtained from Eq. (29) by the formal
condition ∂ξ/∂β = 0 at a fixed η. After a little algebra the
caustic condition reads

2ξ

1 + β
= 2(1 + β) cosh2 α − sinh2 α

± sinh α

√
sinh2 α + 4β(1 + β) cosh2 α,

2η

β
= 2β cosh2 α + sinh2 α

∓ sinh α

√
sinh2 α + 4β(1 + β) cosh2 α, (35)

which determines the caustic form η(ξ ) to exclude β in these
equations.

The upper sign in Eq. (35) relates to the branch σ1 and
produces the caustics D1 and B1 in Fig. 2. The lower sign in
Eq. (35) relates to the branch σ3 and results in the caustics D3

and B3 in Fig. 2.
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x

y

13

1b

B3 B

2

1a

z

R

D D1

FIG. 2. Distribution of the particle flux associated with the wave
function ψI . Caustic surfaces are axially symmetric with respect to
the z axis. The curves represent intersection of caustics and the {x, z}
plane. The caustic D1 touches the z axis at the point zs . The caustic
B3 intersects the z axis at the point z = 1/2. On the dashed caustics
ψI is exponentially small. On the curve R the branch ψ2 is converted
into ψ3.

The caustic D1 at small r corresponds to small β and to
large β at large r . One can easily obtain the shape of the
caustic D1 in limiting cases,

r = 4
√

2

sinh 2α

(
z − zs

3

)3/2

, (z − zs) 	 zs, (36)

r = z

sinh α

(
1 −

√
2zs

z tanh α

)
, zs 	 z, (37)

where 2zs = cosh2 α. The caustic B1 corresponds to β < −1.
At small r it should be (−1 − β) 	 1 and at large r the
parameter (−β) is large. The form of the caustic B1 in limiting
cases is

r = sinh α
√

1 + 2z, (2z + 1) 	 1, (38)

r = z

sinh α

(
1 +

√
2zs

z tanh α

)
, 1 	 z. (39)

The pair of caustics {D3, B3} is a mirror reflection of the pair
{D1, B1} with respect to the x axis as shown in Fig. 2. The
caustics D1 and D3 have a cusp shape close to the points
z = ±zs .

Along caustics Im σ = const and the momentum is tangent
to the caustic; that is, along each caustic(

∂Reσ

∂r

)
=

(
∂Reσ

∂z

)
∂r

∂z
. (40)

The incident flux at large distances from the Coulomb center
determines a form of the cusp caustic which can be of the type
x2 + y2 ∼ (z − zs)k+1 [35]. In our case k = 2. It is interesting
to use other types of incident flux to obtain higher k, which
promises to yield an enhanced effect. Also it is likely that each
of the caustic pairs, {D1, B1} and {D3, B3}, originates from a
common source. This research is outside the framework of this
paper and will be done in the near future.

VI. CLASSICAL FLUX ASSOCIATED WITH ψI

In this section we specify the velocity field associated
with the wave function ψI . First, we focus on the region

(z − zs), r 	 1 where the caustic D1 in Fig. 2 is about to
touch the z axis. In this case the parameter β is small and
Eq. (29) can be written in the form

β
3/2
1 + zs − z

zs

√
β1 + r

√
2

zs

tanh α = 0, (41)

which is cubic with respect to
√

β1. We ascribe the index “1”
to β to emphasize its connection to the branch σ1.

Two physical solutions of Eq. (41) at (z − zs) 	 1 are

β1a,b = z − zs

3zs

[
1 ∓

√
1

3
−

(
3r sinh 2α

4
√

2

)2 (
1

z − zs

)3 ]
(42)

which are valid close to the caustic D1; that is, when the
square root in Eq. (42) is small. Two signs of the square root
provide two opposite velocities normal to the caustic D1 from
the classical side. Close to the z axis

β1a =
(

r sinh α

z − zs

)2

, β1b = z − zs

zs

, r2 	 (z − zs)
3 	 1

(43)

Now it easily follows from Eq. (29) that

β1a = r2

8z

(√
2z sinh α + √

2z − 1 cosh α

z − zs

)2

,

(44)

β1b = z − zs

zs

− rz
√

2 tanh α

zs

√
z − zs

, r2 	 (z − zs)
3.

As one can see, Eqs. (44) turn into Eqs. (43) when z is close
to zs .

A. Incident flux

Now one can analyze what happens to the incident flux
(from the right in Fig. 2). It is described by the action σ1a

where the index a means that one has to substitute β1a in
Eq. (28) for σ1. As follows from Eqs. (29), (33), and (34), at z
not too close to zs

∂σ1a

∂z
= −2

√
1 − 1

2z
, r 	 1, zs < z (45)

∂σ1a

∂r
= − r

z

[√
1 − 1

2z

+
√

1 +
(√

2z sinh α + √
1 − 2z cosh α

2(z − zs)

)2 ]
.

(46)

It is instructive to consider σ1 on a classical trajectory which
is just a curve in the entire space. The trajectory 1a, associated
with the branch σ1a , is shown in Fig. 2. Trajectories of the type
1a do not intersect the z axis since, according to Eq. (46), the
momentum normal to this axis becomes zero on it.
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B. Flux associated with the caustic D1

The trajectory 1a is reflected from the caustic D1 and after
reflection becomes the trajectory 1b as shown in Fig. 2. The
related branch is σ1b; that is, σ1 with the above β1b. As follows
from Eqs. (29), (33), and (34), at zs < z

∂σ1b

∂z
= −2 tanh α − r

z

√
zs

2z(z − zs)
, r 	 1,

∂σ1b

∂r
= −

√
2(z − zs)

zzs

+ rzs tanh α

z(z − zs)
.

(47)

If we ignore a narrow region close to the z axis where the
semiclassical approach is not valid, one can say that the
trajectory 1b intersects the z axis since the momentum, normal
to this axis, is finite.

After intersection of the z axis, the trajectory 1b turns into
the trajectory 2 marked in Fig. 2. The related ∂σ2/∂z and
∂σ2/∂r differ from Eq. (47) by the sign of the square roots.
This description of the branch 2 is valid for r 	 1 and zs < z.
At 1/2 < z < zs and r 	 1, ∂σ2/∂z has the same form (45)
but ∂σ2/∂r differs from Eq. (46) by the sign of the second
square root. Since ∂σ2/∂r is zero at r = 0, the part σ2 behaves
as a one-dimensional one on the z axis. Namely, it is related
to the classical turning point z = 1/2 where the caustic B3

intersects the z axis.

C. Branch conversion

Let us consider one of the functions ψI (19) which contains
f−(ξ )[ϕ−(η) + ϕ+(η)]. The sum of two ϕ functions has no
logarithmic singularity at small η. In terms of the notation (27),
this function is ψ1 + ψ2. As follows from Sec. VI, the
branch ψ2 can be calculated by the saddle point β integration
(semiclassical approximation) to the right of a certain curve
R in Fig. 2 where two branches, ψ2 and ψ3, merge due to the
condition ∂σ2,3/∂ξ = 0.

The condition of the curve R, ξ = 1 + β, and equations
of the type (29) but for i = 2, 3 yield β = η/ sinh2 α. As a
result, the curve R in Fig. 2 is determined by the form ξR(η) =
1 + η/ sinh2 α or

rR(z) = sinh α

sinh2 α − 1

√
(1 − 2z)(sinh2 α − 2z). (48)

We consider 1 < sinh α. Close to the curve R, tangent
derivatives are ∂σ2,3/∂η = 1/ tanh α. The derivative ∂σ/∂ξ ∼
(ξ − ξR) corresponds to ψ2 to the right of the curve R (ξR < ξ )
and to ψ3 to the left of the curve R (ξ < ξR).

In other words, Eq. (29) for ψ2 does not have a solution
to the left from the curve R (no saddle point). From the
semiclassical standpoint, ψ2 disappears to the left from the
curve R turning into ψ3. Note that the curve R is not a caustic.

VII. CHANNEL FORMATION

The flux, considered in Sec. VI, exists in the classical limit.
But there is also a specific flux which disappears in classical
mechanics. This flux is collected from the thin layer on the

outer surface of the caustic D1. In classical physics such a
layer does not exist. Then the flux gets away from the cusp
and moves toward the Coulomb center along a certain channel.
In this section we study how the channel is formed.

A. Semiclassical description of the channel

At zs > z ∼ 1 equations can be formally obtained from
Eq. (47),

∂σ1

∂z
= −2 tanh α − ir

z

√
zs

2z(zs − z)
, r 	 1

∂σ1

∂r
= i

√
2(zs − z)

zzs

− rzs tanh α

z(zs − z)
.

(49)

Outside the caustic D1 one can drop the index b. At small r
and z close to the cusp point zs the action (49) can be written
in the form

σ1 = −2z tanh α + ir

zs

√
2(zs − z). (50)

We see that the branch ψ1 decays inside the shadow of
the caustic D1 and also decays away from the z axis. So
Eqs. (49) and (50) describe the particle flux propagated toward
the Coulomb center along a narrow channel. The channel
exists even in the classically forbidden region close to the
Coulomb center. This conclusion is based on the semiclassical
approximation and requires a more rigorous justification.
Indeed, formally also another branch exists which differs from
Eqs. (49) and (50) by the sign of the imaginary part in the
action. This branch would destroy the construction of the
channel. What happens to this branch?

B. Solution for the channel

The flux to the left from the cusp in Fig. 2 is described by
the wave function (19) when in Eq. (25) only the part f− is
chosen:

ψI (ξ, η) =
∫

C

dβf−(ξ, β) exp [−iB (αβ + η)]

×F

(
1 + iBβ

2
, 1, 2iBη

)
. (51)

Equation (51) corresponds to the form ψ1 + ψ2 according to
the definition (27).

1. Integration contour

In the formula (19) the integration contour C should be
properly chosen. This can be done on the basis of analytical
properties of the integrand in Eq. (19) as a function of
complex β.

Analytical properties can be obtained from the semiclas-
sical form (25) and (17) which establishes the asymptote of
the total wave function at large β, which is independent on ξ
and η. This asymptote is the same for f− and f+ since they
coincide in the classically forbidden region. The contour C
can be chosen in a way to get at large β an exponentially

034619-6



LOW-ENERGY FUSION CAUSED BY AN INTERFERENCE PHYSICAL REVIEW C 87, 034619 (2013)

0

φ

C

β

FIG. 3. The contour of integration C in the complex plane of β.
The far ends of C are at the hatched regions where the wave function
is exponentially small and vanishes.

small wave function. At large β the border, where the phase is
real, corresponds to the condition Re β(−π/2 − iα) = 0. As
a result, the far ends of the contour C should be at the hatched
region in Fig. 3 that is to the right of the dashed line. The angle
φ is given by

φ = arctan
2α

π
. (52)

2. Small r < 1/B

At small r and a finite z one can expand the function ϕ(η, β)
with respect to small η � r2/2z. After that one can obtain from
Eq. (19)

ψI

(
2z,

r2

2z

)
=

∫
C

dβ

(
1 − B2β

2z
r2

)
f (ξ, β). (53)

To perform the β integration in Eq. (53) one should know
analytical properties of the confluent hypergeometric func-
tion (23) in the entire plane of complex a. We postpone this
problem for the future.

3. Large r > 1/B

Saddle points in the complex plane of β are characteristics
of the function exp(−iBαβ)f−(ξ, β)ϕ−(η, β) [Fig. 4(a)] and
exp(−iBαβ)f−(ξ, β)ϕ+(η, β) [Fig. 4(b)]. The positions of
these saddle points and directions of steepest descents, shown
in Fig. 4, can be easily obtained from Sec. IV, and we omit
details.

In Fig. 4(a) the saddle point is in the lower half-plane of
β where f−(ξ, β), as a function of β, dominates f+(ξ, β)
[11,34]. In Fig. 4(a) the integration path naturally matches the
direction of steepest descent. This results in the saddle point
contribution. The related part of the wave function decreases
from the z axis according to the semiclassical approach
developed above.

A different scenario takes place in Fig. 4(b) where the
saddle point is in the upper half-plane of the complex β. In
this half-plane f−(ξ, β), as a function of β, is subdominant
with respect to f+(ξ, β) [11,34]. For this reason, the wave
function in the upper half-plane of β is determined by

0
0

C C

β β

(a) (b)

FIG. 4. The case of 1/B < r . The saddle points are indicated by
circles and the steepest descents are in the hatched parts. (a) The
integration path for f−ϕ−. (b) The integration path for f−ϕ+.

exp(−iBαβ)f+(ξ, β)ϕ(η, β) and the f− part is irrelevant. The
corresponding contribution is collected not from a saddle point
but from a path with a strongly oscillating wave function
leading to an exponentially small result.

One can note that the saddle point contribution in Fig. 4(b),
which is not realized, would give a wave function which
exponentially increases from the z axis that is related to the
opposite sign of the second term in Eq. (50).

4. Intermediate r ∼ 1/B

The shift of the saddle point due to finite r , as in Fig. 4,
is within the semiclassical accuracy at r ∼ 1/B. The same is
valid for rotation of the steepest descent direction. This means
that the both parts in Eq. (25) are of the same order with the
exponential accuracy. The sum of these contributions turns to
zero at some points in the {r, z} plane. These point can be
treated as vortex cores similar to vortices in superconductors
when the phase is changed by 2π after circulation around the
core [36]. According to the axial symmetry of the problem,
vortices have the form of rings around the z axis.

The modulus of the wave function in the {r, z} plane has
a set of zeros separated by the distance of the order of 1/B,
which is the de Broglie wave length in ordinary units.

5. Summary

The true wave function has no singularity on the z axis
and is not semiclassical close to it, at r < 1/B. At larger
r it becomes semiclassical and has a tendency to form two
branches, increasing and decreasing with r . It was shown that
the increasing branch is irrelevant since it is dominated by the
wave function strongly oscillating as a function of β. Due to the
mutual interference of contributions with different β, in place
of the increasing branch there is an exponentially small result.
But the decreasing branch survives. As a result, the true wave
function is localized near the z axis. In Appendix B a simple
model is considered where vanishing, due to interference,
of the increasing branch under the barrier is shown in a
straightforward manner.

At the region z < zs features of the wave function can be
summarized in the following way. At r < 1/B it is given by
Eq. (53). At r ∼ 1/B the wave function is characterized by
the set of vortex rings around the z axis. At 1/B < r there
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is the exponential decay from the z axis corresponding to the
semiclassical approximation.

One can emphasize that these conclusions are drawn on the
basis of exact analytical properties of the wave function. The
semiclassical approach is used close to the saddles only.

C. Crossing the plane {z = 0} by the flux ψI

Another region, where there is no flux in the classical
limit, is a vicinity of the Coulomb center at z = 0. As follows
from Eq. (29), on the plane {z = 0}, that is at ξ = η = r , the
parameter β satisfies the equation

r[1 + 2
√

β(1 + β) sinh α] = −β(1 + β) cosh2 α (54)

and, according to Eqs. (31)–(34),

∂σ1

∂z
= − tanh α − i√

r
, z = 0, r 	 1,

∂σ1

∂r
= − tanh α + i√

r
.

(55)

We see that the wave function ψI increases with z near the line
z = 0. Close to the left cusp, {z = −zs, r = 0}, the parameter
β = −1 and, as follows from the relation (28) for σ1,

|ψI (z = −zs, r = 0)| ∼ |ψI (z = zs, r = 0)| exp

(
−πB

2

)
.

(56)

The exponential comes from the η integration from 0 to 1.
The caustics D1 and B3 are connected by classical paths,

as shown in Fig. 2. For this reason |ψI | is the same (with
the exponential accuracy) on these caustics. The analogous
statement is valid for caustics D3 and B1, indicated in Fig. 2 by
the dashed curves, where |ψI | is exponentially small according
to Eq. (56). So |ψI | exponentially decays at negative z.

VIII. DISTRIBUTION OF THE FLUX ψI I

The branch ψII is determined by Eq. (20). We do not
analyze here all details of ψII , which is similar to ψI .

The caustics for the function ψII are shown in Fig. 5 where
ones with exponentially small ψII are related to dashed curves.
The caustics are of the same form as in Fig. 2. The analog of

x

y

13
B3 B

z

1D D

FIG. 5. Distribution of the particle flux associated with the wave
function ψII . On the dashed caustics ψII is exponentially small.

the curve R of Fig. 2 exists in Fig. 5 in a symmetric way
at negative z (not shown in Fig. 5). For the branch 1b of ψI

at zs < z currents jz and jr are negative. For the analogous
branch of ψII at z < −zs the current jz is also negative but
jr is positive. This is indicated in Figs. 2 and 5. For both
cases the function β(ξ, η) is the same. The relation, analogous
to Eq. (56), for the branch ψII contains the opposite sign of
the exponential. So the branch ψII exponentially decreases at
positive z.

The branch ψI is exponentially small on the dashed caustics
in Fig. 2. The same is true for the branch ψII on the dashed
caustics in Fig. 5. The sum of the two functions provides the
same (with exponential accuracy) modulus of the total wave
function on all caustics. This corresponds to experimental
conditions when the far incident flux is separated due to
Coulomb forces by two regions restricted by caustics D1 and
B1. The flux is the same (with the exponential accuracy) at
these regions.

IX. HOW THE PARTICLE APPROACHES
THE COULOMB CENTER

The flux on the Coulomb center comes from the right (ψI )
and goes to the left (ψII ). The modulus of the total wave
function (24) is a constant (with the exponential accuracy)
on all caustics in Figs. 2 and 5, as stated in Sec. VIII. The
curves of classical velocities in these figures are symmetric
with respect to the x axis. The wave function exponentially
decays inside the shadow sides of caustics. The shadow side
of the caustics D1 and B1 is between them. The same is valid
for the caustics D3 and B3. The branches σ1,2,3 describe the
whole flux distribution. The branch σ4 does not contribute to
the semiclassical wave function since a proper saddle point
is absent. In other words, all classical paths, described by σ4,
interfere down to zero not very close to the z axis.

Since we are interested in the region close to the Coulomb
center, details of the flux, reflected from the caustics B1 and
B3, are not important for this purpose. Therefore we focus on
σ1 at small r .

At r ∼ z 	 1 Eq. (29) can be easily solved since in this
case the parameter 1 + β is small. The result is

∂σ1

∂z
= − 2ξ

ξ + η
tanh α − 2i

√
η

ξ + η
, r ∼ z 	 1,

∂σ1

∂r
= −2

√
ξη

ξ + η
tanh α + 2i

√
ξ

ξ + η
, (57)

which also corresponds to decrease of the wave function inside
the shadow region. The continuity equation div �j = 0 in the
semiclassical approximation is equivalent to Ref. [11]

(∇ Im σ ) (∇ Re σ ) = 0, (58)

that is, the momentum ∇ Re σ is directed along a curve of
constant |ψ | as in Fig. 6. One can check that expressions (49)
and (57) satisfy the condition (58).

In Fig. 6 the local angle χ between the tangent direction
of the curves c1,2 (see Fig. 6) and the z axis is given by the
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r1

0

r0

c 2

z

r

c 1

2c

x

z

D1

FIG. 6. Curves c1, c2, and others of constant |ψ | are also
directions of momenta. The semiclassical approximation is not valid
below the dashed curve described in the text. The left part of the
interrupted plot is related to small z. The inset shows in the {x, z}
plane how the flux gets away from the cusp and moves to the Coulomb
center (cusp driven tunneling).

relation

∂ Im σ

∂r
tan χ = −∂ Im σ

∂z
. (59)

As follows from Eqs. (49) and (57), at r 	 1

tan χ = rzs

2z(zs − z)
, r 	 z < zs,

tan χ =
(√

r2 + z2 − z√
r2 + z2 + z

)1/2

, r ∼ z 	 1.

(60)

According to these equations, the curves c1, c2, and others in
Fig. 6 are directed by 45◦ with respect to the r axis at z = 0.
At z ∼ 1 these curves are almost parallel to the z axis.

Another important aspect is a border of applicability of the
semiclassical approximation used. This approximation holds
when the terms with quantum corrections [ones with second
derivatives in Eq. (13)] to the Hamilton-Jacobi equation are
small. Substituting expressions (49) and (57) into Eq. (13),
one can approximately conclude that the semiclassical ap-
proximation is violated below the dashed curve in Fig. 6,
which is r ∼ 1/B2 at z < 1/B, r ∼ √

z/B at 1/B2 < z < 1/2,
and r ∼ 1/B at larger z. In physical units the scale 1/B
corresponds to the de Broglie wavelength defined in Sec. II.
The scale 1/B2 is the Bohr radius (Sec. II) which is the shortest
spatial scale of the Coulomb problem. As it should be, the
semiclassical approximation is not valid too close to the z
axis [11].

We make a remark on validity of the semiclassical approxi-
mation. Strictly speaking, this approach is valid at 1/B < z and
1/B < r where β fluctuations around the saddles are Gaussian
and small. When z < 1/B, fluctuations of β become large, of
the order of 1 + β; that is, non-Gaussian. According to this, at
z = 0 the first two terms (classical and quantum) in Eq. (13)
become of the same order ∼1/B2r . The third term (classical) is
of the order of unity and the forth one (quantum) is proportional
to 1/B

√
r .

One can say that the total energy is redistributed in such
a way as to be mainly defined by the momentum in the
η direction. For this reason, at 1/B < r one can apply the

semiclassical approach in the η subsystem which determines
the wave function with exponential accuracy. Non-Gaussian
fluctuations in the ξ subsystem influence a preexponential
factor only. Details of these calculations will be published
elsewhere.

The inset in Fig. 6 shows the flux flow in the shadow region
of the caustic D1. According to general properties of caustics,
|ψ1| decays on the shadow side away from D1. Arrowed curves
close to the caustic D1 in the inset in Fig. 6 relate to constant
|ψ1|. The closer the curve is to D1 the larger |ψ1| is. The same
is valid approaching the z axis in the region left from the cusp,
where the modulus of the wave function reaches its maximal
value close to the z axis. That value is kept along the whole
segment of the z axis, from the cusp to the center.

The caustic D1 in Fig. 6 is associated with branch 1 of
ψI . The analogous branch (related to ψII ) is connected with
the caustic D3 in Fig. 5 and supplements Fig. 2 by the mirror
reflection. In this way, the flux is continued from positive to
negative z. So the particle flux in Fig. 2, from the caustic D1 to
D3, is localized at the narrow channel around the z axis. This
can be called cusp driven tunneling.

The same type of channel, analogous to the wave ψ1 to
the left from the cusp, is associated with a cusp caustic in
optics and acoustics. It coexists with the wave, analogous
to ψ2, which escapes from the cusp caustic piercing it. In
Appendix A both types of rays in optics are demonstrated.
This correlates with numerical studies done in Ref. [37] where
interference oscillations in the total amplitude of ψ1 + ψ2

are extended far to the left from the cusp. These oscillations
are unavoidable since they result from topological properties;
namely, dislocations in the spatial distribution of the total light
amplitude [37]. Without the channel it would be solely the
wave, analogous to ψ2, which does not lead to the interference
oscillations. At large distances from the cusp, the channel is
smeared out in space due to non-semiclassical effects. In our
case such distances are not involved since the center is close
to the cusp.

The tunneling probability can be defined with exponential
accuracy as the ratio of densities at the center and at large
distances,

w ∼
∣∣∣∣ ψ(r0, 0)

ψ(r1,∞)

∣∣∣∣
2

. (61)

The parameters r0 and r1 are indicated in Fig. 6. The point
{r0, 0} is not exactly at the center but when r0 ∼ 1/B2 the
expression (61) does not differ from the exact probability in
the exponential approximation. The tunneling probability has
the form

w ∼ exp {−2B Im [σ1(r0, 0) − σ1(r1,∞)]} . (62)

The infinity point can be substituted by one on the caustic D1

as shown in Fig. 6 since σ is real to the right from the caustic.
If in the expression (62) 1/B2 < r0 < r1 and 1/B < r1

then one can use the semiclassical approximation along the
path (two thick lines) between the two dots in Fig. 6. For
convenience, we take in addition r1 	 1. Then the first
equation (57) simply gives

Im [σ1(r1,∞) − σ1(r1, 0)] = −2
√

r1. (63)
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The second equation (57) produces

Im [σ1(r1, 0) − σ1(r0, 0)] = 2
√

r1 − 2
√

r0. (64)

By means of Eqs. (62)–(64) the ratio of densities at points
{r0, 0} and {r1,∞} in Eq. (61) can be written in the form

w ∼ exp (−4B
√

r0). (65)

Equation (65) holds when 1/B2 < r0, and formally that
expression is exponentially small. It is clear that one can
continue r0 down to the border of applicability of the
result (65), namely to put r0 ∼ 1/B2. One can conclude from
here that tunneling probability is not exponentially small.

It is shown in this section that the semiclassical solution
may be tracked along some paths in Fig. 6 from the classically
allowed region to one close to the Coulomb center. Formally,
the semiclassical wave function remains exponentially small
on those paths. It corresponds to the true wave function
outside the nuclear Bohr radius. Below the Bohr radius the
semiclassical approach is not valid and the wave function is
not exponentially small. But the Bohr radius is only a few times
larger than the region of nuclear forces 4.256 × 10−13 cm [38],
and therefore the wave function does not substantially differ
between these distances.

According to Sec. IV, the wave function in the classically
allowed region is inversely proportional to the radius, pro-
viding conservation of the total incident flux. Since close to
the cusp the channel radius is ∼1/B, the fraction 1/B2 of
the total incident flux gets away from the cusp and moves
along the channel. This fraction reaches the vicinity of the
Coulomb center where the channel radius becomes of the Bohr
radius. So the probability w ∼ 1/B2 substitutes the WKB one,
exp(−πB), related to the case of a plane incident wave.

X. INCIDENT FLUX FAR FROM THE COULOMB CENTER

In the absence of the Coulomb potential the flux from the
left to the right relates to σ = −2z and consequently to the
plane wave ψ = exp(−2iBz) in the whole space. If we add
the Coulomb potential that plane wave is hardly influenced far
to the right but becomes strongly violated at finite distances.
In particular, the caustic is formed as shown in Fig. 1. This
situation corresponds to β = −i/B as mentioned in Sec. III.

Suppose again that the Coulomb potential is absent but the
incident flux from the right is not a plane wave but one related
to σ = −z tanh α ± r/ cosh α. The corresponding exact wave
function is expressed through the Bessel function

ψ = exp(−2iBz tanh α)J0

(
2Br

cosh α

)
. (66)

In this case the velocity distribution is shown in Fig. 7(a).
If we add the Coulomb potential the velocity field becomes

strongly deformed. The new velocity distribution is illustrated
in Fig. 7(b) where

cot θ0 = sinh α. (67)

It is easy to qualitatively understand the features of that
distribution. The flux, locally parallel as in Fig. 7(a), is
reflected by the Coulomb force upward when the polar angle

y

B

B

1

1

1(b)

z

(a)

y

x

2θ

x

0

0
z

θ

D

D 1

FIG. 7. (a) Conical particle flux from the right in the absence
of the Coulomb potential. (b) Split of the conical flux by the
Coulomb field at large z. Trajectories are reflected from caustics
which are continuations of ones in Fig. 2. The dashed parts are caustic
shadows.

θ (tan θ = r/z) exceeds θ0. This flux is reflected downward
when θ is less than θ0. The shadow region is between these
limits as in Fig. 7(b).

If n is a direction normal to a caustic surface then the wave
function decays inside the shadow region as

ψ ∼ exp[−(n/l)3/2], (68)

where l ∼ (λ2z)1/3 in physical units. Here λ is the wavelength
defined in Sec. II. Equation (68) is a usual form for caustics
[12]. As follows from Eqs. (37) and (39), the distance between
caustics D1 and B1 at large z is proportional, in physical units,
to

√
ze2/E which is larger than l. So there is a real shadow

between the caustics.
We see that properties of the incident flux at large distances

strongly determine the wave function at the Coulomb center.

XI. DISCUSSIONS

Probability of tunneling across a one-dimensional static
potential barrier is exponentially small when the barrier is
almost classic. The wave function decays inside the barrier
since in the classically forbidden region the wave vector is
imaginary.

Below some nonrigorous arguments are given. When
dimensionality of a problem is higher than 1 the situation
can be more complicated since the wave vector has more than
one components in space. The sum of squared components,
which is a kinetic energy, is negative under the barrier. In the
classical manner this can be written in the form [compare with
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Eq. (11)]

k2
r + k2

z + 1

2
√

r2 + z2
= 1. (69)

In our case the z axis is the tunneling direction and tunneling
probability is determined by Im kz. The smaller is this value
the larger is the probability. Equation (69) formally says that
a reduction of Im kz is connected with increasing of Im kr .

A localization near the z axis is equivalent to a large Im kr

at that region and therefore leads to increase of tunneling rate
along the z direction. A localization of the density around the z
axis is possible but, as a “payment” for this, the wave function
has a nonphysical singularity on that line. Therefore one has to
add the second branch to compensate the singularity. But the
second branch exponentially increases away from the z axis,
which violates, at the first sight, the construction.

The above statement holds when some particular value of kr

is chosen. If we consider a continuous set of waves with various
kr , properties of the resulting wave function can be completely
different. This is exactly our case. Due to an interference in the
set of second branches, they compensate each other at finite r ,
except in a narrow (non-semiclassical) region in the vicinity of
the z axis. As a result, only the state decaying from the z axis
(channel) survives. A simple example of this phenomenon is
considered in Appendix B. An analogous channel is associated
with a cusp caustic in optics and acoustics due to the similar
phenomenon of getting away from a caustic cusp. Some details
are in Appendix A.

The method used in this paper is based on analytical
properties of the wave function in the β complex plane.
The semiclassical approximation for the wave function is
applied in vicinities of the saddle points only. Exact analytical
properties allow us to select solely the saddles contributing to
the integration.

To get a cusp caustic one should have a convergent incident
wave at large distances. In our case the cusp position on the z
axis, e2/(E sin2 θ0), is determined by the characteristic angle
θ0 of the incident conical flux. When the incident flux is just
a plane wave, as in the conventional scattering problem, there
is no cusp caustic. In this case only the usual one exists, as in
Fig. 1.

An origin of the cusp is based on global properties of
the flux. The Coulomb field separates the incident conical
flux, with the characteristic angle θ0 in Fig. 7(a), according
to geometrical rules. Namely, all rays with larger angles
are turned upward and ones with smaller angles are turned
downward. This is equivalent to a separation of the two streams
by caustics. In continuation toward the Coulomb center, the
internal caustic shrinks to a cusp point on the z axis before
the center. Otherwise the flux classically reaches the Coulomb
center. The flux gets away from the cusp and moves to the
center along the above channel containing the z axis. Not too
close to the center the radius of the channel is proportional to
de Broglie wavelength.

This is cusp driven tunneling when the cusp forms the
flux on the Coulomb center. In the vicinity of the center the
flux passes the bottleneck of the size of the nuclear Bohr
radius. This happens since close to the center the de Broglie
wavelength is no longer a relevant spatial scale which becomes

the Bohr radius. Then at negative z the flux moves to the
left. Since interference effects are essential the proper nuclear
reaction can be called coherent fusion.

The fusion probability is proportional to a neutron yield.
The neutron yield of the process depends on the weight
function cI (β) (19) and, therefore, on details of the incident
flux. With the choice (20) the yield is not exponentially small
as exp(−6174.9) (Sec. II) but it can be “normally” small due
to a preexponential factor in the tunneling probability. One can
increase this factor by variation of a prefactor in the weight
function (20).

We consider in the text the axially symmetric wave function
of two deuterons related to the magnetic quantum number
m = 0. A finite m reduces the effect due to formation of a
centrifugal repulsive barrier.

In this paper we briefly mention experimental schemes for
formation of a particle flux resulting in the cusp phenomenon.

One of experimental ways to produce the conical flux of
deuterons (66), shown in Fig. 4(a), is to confine them in a long
tube with rigid walls; for example, in a nanotube. Another way
is to push deuterons (atoms) to pass through a diffraction grid
of a conical shape. Since the de Broglie wavelength is of the
order of 1 Å, one can use a natural crystal lattice. A setup with
slits also can be used. This is a case of a quantum lens. We
will discuss the details elsewhere.

Above, two bare deuterons are considered. From a practical
standpoint it can be more convenient to deal with a substance
(heavy water, for example) consisting of molecules with
deuterium. Inside a single molecule of heavy water the
deuterons are in the well with vibration energy levels. An
external laser radiation can influence a quantum state of
deuterons in the well. One can pose the question whether the
radiation is able to create something like a cusp state in the
well and which pulse shape should be used for this purpose.

Formation of a required particle flux in experiments requires
a detailed study, which is outside the scope this paper.

XII. CONCLUSIONS

Fusion of two bare (supposedly isolated from everything)
deuterons of room-temperature energy is possible. The pene-
tration across the Coulomb barrier, which is the main obstacle
for low-energy fusion, strongly depends on a form of the
incident flux on the center at large distances from it. In contrast
to the usual scattering, the incident wave is not a single plane
wave but a superposition of plane waves of the same energy
and various directions; for example, a convergent conical flux.
As a result of interference, the wave function close to the
Coulomb center is determined by the cusp caustic which is
probed by de Broglie waves. The particle flux gets away from
the caustic cusp and moves to the Coulomb center providing a
not small probability of fusion (cusp driven tunneling).
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APPENDIX A: CHANNEL FORMATION IN OPTICS

A cusp caustic is possible also in optics. See, for example,
Ref [37]. Rays get away from the cusp as in Fig. 6 and
propagate to the left within a narrow channel. Below, this
phenomenon is studied. We consider for simplicity a two-
dimensional problem described by the dimensionless equation

1

B2

(
∂2ψ

∂z2
+ ∂2ψ

∂x2

)
+ ψ = 0, (A1)

where ψ denotes a component of an electromagnetic field and
the scale 1/B corresponds to the de Broglie wavelength.

A solution at positive x can be written in the form

ψ(z, x) =
∫

C

dk exp

(
− iBz

√
1 − k2 − iB

4
k4

)
× [exp(iBkx) + exp(−iBkx)], (A2)

where C is the contour in the complex plane of k shown in
Fig. 8. Equation (A2) is an exact solution of Eq. (A1). It
was numerically analyzed in Ref. [37]. Here we emphasize
important features of the solution.

Small z and x are considered below. Accordingly, the
saddle point in Eq. (A2) relates to small k. The saddle point,
corresponding to exp(−iBkx) in Eq. (A2), is determined by
the equation

k3 − zk + x = 0. (A3)

A branch point of the solution defines the caustic

x = 2

3

(
z

3

)3/2

, (A4)

which is analogous to Eq. (36). See also Fig. 6. At negative z
and small x the saddle points are (see Fig. 8)

ks1 = −i
√−z − x

2z
, ks2 = x

z
. (A5)

k

0

1

2

C

FIG. 8. Far ends of the integration contour C in Eq. (A2) are in
the dashed regions where the wave function exponentially decreases.
The dashed line is tilted by an angle of 45◦. The contour passes along
steepest descents of the saddles which are at the dashed regions close
to the saddle points 1 and 2. The thick lines are cuts connected to the
function

√
1 − k2.

There is also the saddle point which is the complex conjugation
of ks1 but it does not contribute to the integration along C.

If to take exp(−iBkx) in Eq. (A2) there are also two saddles
contributing to the integration along C. The saddle points are
−ks1 and −ks2. The total result is a sum of two branches
ψ1 + ψ2 where, at negative z and small α,

ψ1(z, x) ∼ exp(−iBz − B|x|√−z) (A6)

and

ψ2(z, x) ∼ exp

(
− iBz − iBx2

z

)
. (A7)

Eq. (A6) is valid at 1/B < |x|. The exact solution does not
have the singularity at x = 0. The branch (A6) is analogous
to Eq. (50) and corresponds to rays which get away from the
cusp as in Fig. 6. The branch (A7) is analogous to the branch
2 at 1/2 < z < zs in Sec. VI.

APPENDIX B: CHANNEL UNDER THE BARRIER

In Sec. VII B the channel under the Coulomb barrier is
investigated. It is described by the wave function weakly
decaying along the z axis and localized close to it. This type of
solution can be simply constructed using arguments given by
Eq. (69). One can take a function, weakly decaying along
the z axis (small kz), which permanently decreases in the
perpendicular direction r (a finite imaginary kr ). This function,
exponentially decaying in the r direction at large r , should
have the unphysical singularity ln r at small r , reminding us
of the Bessel function K0(Br) [39] with the same properties.
This type of unphysical wave function is clear despite the
underbarrier region being involved.

The problem is to eliminate the singularity at small r .
For this purpose another branch has to enter the game to
compensate the singularity. So the total solution becomes
smooth at small r but is expected to exponentially increase
at large r analogous to the Bessel function I0(Br) [39]. The
statement of Sec. VII B is that if we take the infinite set of
functions, the exponentially increasing branch disappears due
to mutual interference.

In the Coulomb problem, vanishing of the increasing branch
is accompanied by specific details. Below we propose a simple
model where details do not mask how the interference kills the
increasing branch. We use the two-dimensional Schrödinger
equation

− 1

B2

(
∂2ψ

∂z2
+ ∂2ψ

∂x2

)
= −ψ, (B1)

which describes an underbarrier motion in dimensionless units.
The scale 1/B relates to the de Broglie wavelength. The exact
solution of Eq. (B1) has the form

ψ(z, x) =
∫ ∞

−∞
dk exp

(
Bz

√
1 + k2 + iBkx − Bα

2
k2

)
,

(B2)

which is smooth at x = 0. The parameter B is large and α is,
generally, of the order of unity.
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Even without calculations one can draw a conclusion that
the function (B2) is localized close to the z axis at all z (the
channel). Indeed, at x = 0 the function (B2) is determined
by the saddle method. For example, at negative z the saddle
point is ks = 0. At a finite x > 1/B the additional rapidly
oscillating exponent can only reduce the result of integration
of the Gaussian function.

Since B is large one can apply a saddle method to evaluate
the integral. The saddle point in Eq. (B2) is given by the
expression

αk − zk√
1 + k2

= ix. (B3)

To be specific we consider negative z and small α. Then the
saddle position is ks = ix/

√
z2 + x2 which results in the

wave function

ψ(z, x) ∼ exp(−B
√

z2 + x2), z < 0. (B4)

The formula (B4) is valid when ψ is exponentially small.
The solution (B2) is not singular and it exponentially

decreases at large |x|. At positive z the solution is different
but also corresponds to a channel localized near the z axis.
This means that at a fixed z (negative or positive) the wave
function exponentially decreases with increase of |x|.

In the considered limit α 	 1, Eq. (B4) looks simi-
lar to the exact solution of Eq. (B1), I0(B

√
z2 + x2), if

we artificially “cut off” its exponentially increasing part
exp(B

√
z2 + x2) at large distances. That Bessel function

follows from Eq. (B2) if we change the weight function
exp(−iBαk2/2) → 1/

√
1 + k2 and integrate around the cut

{−i, i} in the complex plane of k [39].
One can see that the asymptote far from the z axis crucially

depends on the choice of the integration contour in Eq. (B2); in
other words, on the way of adding partial waves with different
k. The formula (B2) is constructed in a manner to naturally
remove the increasing exponent due to interference of partial
waves. The same can be said about the choice of the integration
contour in Fig. 4.

The exact solution (B2) is analogous to the exact solu-
tion (51) for the Coulomb field. Both describe channels in
classically forbidden regions. Due to distinctions in physical
systems (for example, in the presented model the underbarrier
region is infinitely long) the wave function decays more
weakly under the Coulomb barrier. This difference has a
secondary meaning compared to the main common feature:
vanishing of the increasing branch, from the z axis, due to
interference.
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