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Symmetry energy and nucleon-nucleon cross sections
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The extension of the Boltzmann-Uehling-Uhlenbeck model of nucleus-nucleus collision is presented. The
isospin-dependent nucleon-nucleon cross sections are estimated using the proper volume extracted from the
equation of state of the nuclear matter transformed into the form of the Van der Waals equation of state. The
results of such simulations demonstrate the dependence on symmetry energy, which typically varies strongly
from the results obtained using only the isospin-dependent mean field. The evolution of the n/p multiplicity
ratio with angle and kinetic energy, in combination with the elliptic flow of neutrons and protons, provides a
suitable set of observables for determination of the density dependence of the symmetry energy. The model thus
provides an environment for testing of equations of state that are used for various applications in nuclear physics
and astrophysics.
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I. INTRODUCTION

One of the main goals of intermediate-energy heavy-ion
collisions (HICs) is to study properties of nuclear matter,
especially to determine the nuclear equation of state (EoS).
HICs provide a unique possibility to compress nuclear matter
to a hot and dense phase within a laboratory environment. The
pressures that result from the high densities achieved during
such collisions strongly influence the motion of ejected matter
and are sensitive to the EoS. Over the past three decades,
the EoS of symmetric nuclear matter was studied in detail
with the studies of giant dipole resonances, collective flow,
and multifragmentation [1–4]. The EoS of isospin asymmetric
nuclear matter is under way, particularly for the density
dependence of symmetry energy. Considerable progress has
been made in determining the sub- and suprasaturation density
behavior of the symmetry energy [5–12]. The latter part is still
an unanswered question in spite of recent findings in terms
of neutron-proton elliptic flow ratio and difference [10,11].
However, the former one is understood to some extent [5–8],
although more efforts are needed for precise measurements.

The transport model is very useful to treat HIC dynamics
and obtain important information of nuclear matter EoSs
as well as the symmetry energy. In intermediate-energy
HICs, the Boltzmann-Uehling-Uhlenbeck (BUU) model is an
extensively used tool [13,14], which takes both Pauli blocking
and the mean field into consideration. The BUU equation reads

∂f

∂t
+ v ∇rf − ∇rU ∇pf

= 4

(2π )3

∫
d3p2d

3p3d�
dσNN

d�
v12 × [f3f4(1 − f )

×(1 − f2) − ff2(1 − f3)(1 − f4)]δ3(p + p2 − p3 − p4),

(1)
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where f = f (r, p, t) is the phase-space distribution function.
It is solved with the test particle method of Wong [15], with
the collision term as introduced by Cugnon et al. [16]. In
Eq. (1), dσNN

d�
and v12 are the in-medium nucleon-nucleon

cross section and relative velocity for the colliding nucleons,
respectively, and U is the single-particle mean field potential
with the addition of the isospin-dependent symmetry energy
term:

U = aρ + bρκ + 2as

(
ρ

ρ0

)γ

τzI, (2)

where I = (ρn − ρp)/ρ; ρ0 is the normal nuclear matter
density; ρ, ρn, and ρp are the nucleon, neutron, and proton
densities, respectively; τz assumes value 1 for neutron and −1
for proton; coefficients a, b, and κ represent properties of the
symmetric nuclear matter; and the last term, which describes
the influence of the symmetry energy, can be obtained, e.g.,
from the simple Weizsacker formula, where as represents the
coefficient of the symmetry energy term and γ is the exponent
describing the density dependence. Typical sets of mean field
parameters cover a substantial range between the soft EoS
with the compressibility K of 200 MeV (κ = 7/6, aρ0 =
−356 MeV, bρκ

0 = 303 MeV), and the hard EoS with K of
380 MeV (κ = 2, aρ0 = −124 MeV, bρκ

0 = 70.5 MeV) [13].
It is the aim of the present work to estimate the effect of the

symmetry energy parametrization within the equation of the
state on the crucial component of the transport simulations,
namely the in-medium nucleon-nucleon cross section.

II. ISOSPIN-DEPENDENT NUCLEON-NUCLEON
CROSS SECTIONS

When considering influence of the symmetry energy on
emission rates of nucleons in nucleus-nucleus collisions, one
needs to understand whether and how the medium represented
by the equation of state can influence relative probabilities of
emission of protons and neutrons. Theoretical investigations of
the density dependence of in-medium nucleon-nucleon cross
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section were carried out for symmetric nuclear matter [17,18],
and significant influence of nuclear density on resulting in-
medium cross sections was observed in their density, angu-
lar, and energy dependencies. Using momentum-dependent
interaction, ratios of in-medium to free nucleon-nucleon cross
sections were evaluated via reduced nucleonic masses [19]
and used for transport simulations. Still, transport simula-
tions are mostly performed using parametrizations of the
free nucleon-nucleon cross sections, eventually scaling them
down empirically or using simple prescriptions for density
dependence of the scaling factor [20]. In the present work, a
prescription for estimation of the density dependence of the
in-medium nucleon-nucleon cross sections corresponding to
the specific form of phenomenological nuclear equation of
state will be presented. The possibility to establish a simple
dependence of nucleon-nucleon cross sections on density,
temperature, and symmetry energy is potentially important for
a wide range of problems in nuclear physics and astrophysics.

A. Equation of state of nucleonic matter

Based on the single-particle potential, shown in Eq. (2), one
can construct the corresponding equation of the state. Change
of the pressure in the thermodynamical equation of state, which
is also a measure of nonideality of a neutron or a proton gas,
can be evaluated as

�pnonideal = − dU
dV

|T =const (3)

where U is the thermodynamic potential, V is the volume, and
T is the temperature. When evaluating the thermodynamic
potential U as a sum of single-particle contributions of
neutrons and protons, given by Eq. (2), one arrives at the
expression

p = xn

[
f5/2(zn)

f3/2(zn)
ρT + aρ2 + bκρ1+κ + 2γ asρ0

(
ρ

ρ0

)1+γ

I

]

+ xp

[
f5/2(zp)

f3/2(zp)
ρT + aρ2 + bκρ1+κ

− 2γ asρ0

(
ρ

ρ0

)1+γ

I

]
, (4)

where xn = ρn/ρ and xp = ρp/ρ are neutron and proton
concentrations and f5/2(z)

f3/2(z) is the factor, a fraction of the Fermi
integrals fn(z), assuring that Fermi statistics are taken into
account. The parameters zn = μn/T and zp = μp/T are the
values of fugacity of neutrons and protons, with μn and μp

being the neutron and proton chemical potentials, respectively.
This expression appears to provide separate terms for the
pressures of neutrons and protons, which, however, can be
combined to obtain the typical quadratic dependence on
isospin asymmetry I . The resulting pressure is the weighted
average between two terms, which can be, in a similar manner
to Eq. (2), summarily expressed as

p =
〈
f5/2(z)

f3/2(z)

〉
ρT + aρ2 + bκρ1+κ + 2γ asρ0

(
ρ

ρ0

)1+γ

τzI.

(5)

These terms can be interpreted as the equation of state of
the system of particles with the corresponding single-particle
potential, given by Eq. (2).

B. Proper volume in the Van der Waals equation of state

In order to find the relation between the equation of state
and nucleon emission rates, one can turn to the Van der Waals
equation of state. It can be written, using particle density ρ, as

(p + a′ρ2)(1 − ρb′) =
〈
f5/2(z)

f3/2(z)

〉
ρT , (6)

where the parameter a′ is related to attractive interaction
among particles and b′ represents the proper volume of the
constituent particles. In a geometrical picture the proper
volume of the particle can be directly related to its cross
section for interaction with other particles. It is possible to
formally transform the above equations of state for neutrons
and protons (5) (and practically any other equation of state) into
the form analogous to the Van der Waals equation. Then, by
comparison, one obtains the following values of coefficients:

a′ = −a, (7)

and

b′ =
bκρκ + 2γ as

(
ρ
ρ0

)γ
τzI

p − aρ2

=
bκρκ + 2γ as

(
ρ
ρ0

)γ
τzI〈 f5/2(z)

f3/2(z)

〉
ρT + bκρ1+κ + 2γρ0as

(
ρ
ρ0

)1+γ
τzI

, (8)

where the latter provides a measure of the proper volume of the
constituents, nucleons in this case, as a measure of deviation
from the behavior of the ideal gas. The proper volume of the
nucleon can be used to estimate its cross section within the
nucleonic medium

σ =
(

9π

16

)1/3

b′2/3, (9)

which can be implemented into the collision term of the
Boltzmann equation.

Concerning the physical meaning of this procedure, for each
point in the ρ-T plane the Van der Waals equation of state
is found, which behaves identically to the nuclear equation
of state (5) in the vicinity of that point. Thus the dynamics
of the system can be described using the two parameters of
the Van der Waals EoS, of which one provides a measure
of the effective volume of the constituent at a given density
and temperature. The variation of the constituent volume
reflects the interplay of the long-range attractive interaction,
leading to its apparent increase, with the short-range repulsive
interaction, leading to its apparent decrease.

The trend of the estimated values of nucleus-nucleus cross
sections, obtained using the soft parametrization of symmetry
energy with ρ2/3 dependence, is shown in Fig. 1 for the
temperature 20 MeV. The extracted values of the cross sections
are surprisingly close to the expected value of geometric
cross sections. With increasing isoscalar density the values
of cross sections initially grow until they reach maximum
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FIG. 1. Extracted isospin dependencies of nucleon-nucleon cross
sections for temperature 20 MeV and various densities.

values in the region around half of saturation density and
then monotonously decrease. The increase at low densities
possibly describes a gradual deviation from the equation of
state of ideal gas due to increasing attractive potential, while
at higher densities the decreasing trend may indeed represent
the properties of short-range repulsive interaction. At high
densities, with increasing isoscalar density, the sensitivity to
symmetry energy tends to decrease and around the density 2ρ0

it is practically lost, which, however, can be preserved using
harder parametrizations of the symmetry energy.

It is worth mentioning that a similar rise and fall of nucleon-
nucleon cross sections was observed by the Alm et al. [18] and
explained as a precursor effect of superfluid phase transition.
Also in the present case this effect can be related to the phase
transition in the nuclear matter, since it is caused by the same
interplay of attractive and repulsive interactions which also
influence the proper volume and thus extracted cross sections.

C. Implementation into the Boltzmann equation

While the Boltzmann equation (1) is formulated in terms of
density, it does not explicitly consider temperature. Therefore
temperature T needs to be estimated independently. It is possi-
ble to estimate temperature using the Maxwellian momentum
distribution of nucleons

f ( �p) = 1

(2πmT )3/2
e− p2

x+p2
y+p2

z
2mT , (10)

where m is the nucleon mass. Using this formula, local
temperature can be estimated from momentum distribution
in the c.m. frame by evaluating the momentum variance.
At early stages of collision this can be done primarily for
transverse momentum since it provides a measure of mutual
thermalization of particles from the projectile and target,
which proceeds by distant elastic collisions generating the
transverse momentum. More violent collisions would lead to
emission of colliding nucleons and thus would not contribute
to thermalization of the source. This temperature estimate can
be done without requiring stopping and formation of the source

FIG. 2. (Color online) Evolution of average temperature of the
fireball (solid line) with the time. The total volume of the fireball is
shown on an arbitrary scale as the dash-dotted line. The results were
obtained using the BUU in reaction 48Ca + 48Ca at 400 AMeV using
the impact parameter 1 fm. Dotted straight line shows the fireball
temperature estimate for a given beam energy obtained from the
systematics of pre-equilibrium spectra [21].

equilibrated in all three dimensions; a closer analog would be
the friction of two dilute gas clouds passing through each other.

Evolution of average temperature of the fireball with the
time is shown in Fig. 2. The results were obtained using the
BUU equation [13,14] in reaction 48Ca + 48Ca at 400 AMeV
using the impact parameter 1 fm. Temperature was evaluated
for each time step in the cubic cells with sides of 1 fm.
Average temperature was determined as a mean value of
temperature over all cells where number of nucleons was
sufficient (corresponding to density of ρ0/10) and temperature
thus could be evaluated. The total volume of this fireball is
shown in Fig. 2 in an arbitrary scale as a dash-dotted line.
The dotted line shows the estimate of fireball temperature
for a given beam energy obtained from the systematics of
pre-equilibrium spectra [21]. One can see that the average
temperature over the fireball at its peak value exceeds the
estimate from the systematics, while the value averaged over
the lifetime of the hot fireball (between 10 and 30 fm/c)
appears to correspond to the value from the systematics. Thus it
appears that the procedure introduced here leads to reasonable
estimate of local temperature.

Since the temperature, determined using the assumption of
Maxwellian distribution, represents the classical Boltzmann
statistics, it can be corrected in order to reflect the Fermi
statistics, which fermions like nucleons obey. To achieve this,
one needs to multiply the classical temperature TBoltz, corre-
sponding to the Boltzmann statistics, by a factor 〈 f5/2(z)

f3/2(z) 〉−1 and
thus the formula (8) will turn into

b′ =
bκρκ + 2γ as

(
ρ
ρ0

)γ
τzI

ρTBoltz + bκρ1+κ + 2γρ0as

(
ρ
ρ0

)1+γ
τzI

, (11)

which corresponds to classical case of Boltzmann statistics.
Thus, remarkably, this classical expression can be used also
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FIG. 3. (Color online) Comparison of the nucleon-nucleon cross sections in two variants of the BUU calculations. On the left panel are the
isospin-dependent nucleon-nucleon cross sections, obtained as the proper volume of the Van der Waals form of the equation of state, as a function
of density, while on the right panel are shown the corresponding nucleon-nucleon cross sections, obtained using standard energy-dependent
parametrization, used in BUU calculations. The results were obtained using the BUU in reaction 48Ca + 48Ca at 400 AMeV using the impact
parameter 1 fm.

for Fermionic (or even bosonic) particles, obeying their
corresponding statistics. From a practical point of view, in this
way the nontrivial determination of the Fermionic temperature,
depending of fugacity, can be avoided.

Once the local temperature is determined, it is possible to
implement the isospin-dependent nucleon-nucleon cross sec-
tion, obtained using the formulas (11) and (9), to the reaction
simulation, which can be used for determination of collision
rate. The results for solution of such fully isospin-dependent
version of the Boltzmann-Uehling-Uhlenbeck equation are
presented in the next section.

III. REACTION SIMULATIONS

The behavior of the in-medium nucleon-nucleon cross
sections was investigated using the already mentioned reaction
48Ca + 48Ca at 400 AMeV using the impact parameter 1 fm.
The soft equation of state was used, leading to incompressibil-
ity coefficient K = 200 MeV. For the isospin asymmetric part
the “asystiff” parametrization was used with two symmetry
energy terms, the kinetic term with the parameters as1 =
12.5 MeV and γ1 = 2/3, resulting from the Pauli principle,
and the potential term with the parameters as2 = 17.5 MeV
and γ2 = 2, respectively.

Figure 3 shows a comparison of the nucleon-nucleon
cross sections in two variants of the Boltzmann-Uehling-
Uhlenbeck simulations. On the left panel are shown, as
functions of density, the isospin-dependent nucleon-nucleon
cross sections, obtained using the proper volume of the Van
der Waals–like equation of state. On the right panel are
shown the corresponding free nucleon-nucleon cross sections,
obtained as energy-dependent parametrizations of measured
nucleon-nucleon cross sections [16]. It is apparent that while
the isospin-dependent nucleon-nucleon cross sections essen-
tially follow the 1/ρ2/3-dependence, the nucleon-nucleon

cross-sectional parametrization of Cugnon et al. leads to a
much larger spread, mostly due to its explicit energy depen-
dence. Nevertheless, one observes that both parametrizations
cover essentially the same range of values of the nucleon-
nucleon cross sections. Furthermore, from the comparison [22]
of the parametrization of Cugnon et al. to in-medium cross
sections at saturation density, calculated using the G-matrix
theory by Cassing et al. [23], it can be judged that the
in-medium cross sections, obtained using the proper volume
of the Van der Waals–like equation of state, are in better
agreement with the somewhat higher values of G-matrix
in-medium cross sections of Cassing et al., which reflect
properly the Fermionic nature of nucleons.

In general, it is remarkable that the in-medium nucleon-
nucleon cross sections possibly can be directly related to the
equation of state of the isospin asymmetric nuclear matter.
This offers a more consistent description of the nuclear
reactions and various astrophysical objects and processes in
term of properties of nucleonic matter, expressed using the
corresponding equation of state. However, one has to take into
account that the equation of state of the isospin asymmetric
nuclear matter describes isotropic medium and thus the
extracted in-medium cross sections represent angle-averaged
values. These values are used in this work, and compared to
the results obtained with angle-averaged free cross sections
of Cugnon et al. [16], and thus the effect of the equation of
state of the isospin asymmetric nuclear matter on in-medium
cross sections is demonstrated. However, one can consider
the possibility of implementing angular dependence, either
using the compatible microscopic calculations or from the
observed experimental free nucleus-nucleus cross sections.
This possibility is beyond the scope of the present work and
will be investigated in our future work.

The magnitude of the effect of isospin asymmetry on the
nucleon-nucleon cross sections can be judged from Fig. 4,
which shows the relative difference of the isospin-dependent
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FIG. 4. (Color online) Relative difference of the isospin-
dependent neutron-neutron and proton-proton cross sections as a
function of isospin asymmetry of the volume cell. The results were
obtained using the BUU in reaction 48Ca + 48Ca at 400 AMeV using
the impact parameter 1 fm.

neutron-neutron and proton-proton cross sections as a function
of isospin asymmetry of the volume cell. The results were
again obtained using the BUU in reaction 48Ca + 48Ca at
400 AMeV using the impact parameter 1 fm. One can see
that the relative magnitude does not reach very high values
even for most isospin-asymmetric cells, and the sensitiv-
ity of the Boltzmann-Uehling-Uhlenbeck simulation to the

isospin-dependent nucleon-nucleon cross sections will result
from the cumulative effect of a large amount of nucleus-
nucleus collisions.

The behavior observed in Figs. 3 and 4 appears to be
consistent with the behavior shown in Fig. 4 of Ref. [19].
In both cases the absolute values of cross sections decrease
monotonously with increasing density while the relative
difference of the neutron-neutron and proton-proton cross
sections increases with increasing asymmetry. Thus it appears
that the procedure used to extract in-medium nucleon-nucleon
cross sections by determining the parameters of corresponding
Van der Waals EoS reflects the same physics, which is encoded
even to a phenomenological equation of state such as Eq. (2).

Figure 5 shows evolution of the difference of n/p multi-
plicity ratios between the Boltzmann-Uehling-Uhlenbeck sim-
ulation with both isospin-dependent mean-field and nucleon-
nucleon cross sections, which are correlated to each other
by Eq. (9) (based on the analogy with the van der Waals
equation of state; hereafter we call this simulation VdWBUU)
and Boltzmann-Uehling-Uhlenbeck simulation with isospin-
dependent mean-field and free nucleon-nucleon cross sections
(hereafter we call it fBUU), for three angular ranges as a
function of the kinetic energy in the center-of-mass system.
The results were obtained using the BUU simulation in reac-
tions 124Sn + 124Sn and 112Sn + 112Sn at 400 AMeV using the
impact parameter 1 fm at the stopping time 200 fm/c. Squares
show the result with stiff symmetry energy parametrization
(as1 = 12.5 MeV, γ1 = 2/3, as2 = 17.5 MeV, and γ2 = 2)
while triangles show results for with soft symmetry energy
parametrization (as1 = 12.5 MeV, γ1 = 2/3, as2 = 17.5 MeV,
and γ2 = 1/2). Soft nuclear equation of state (K = 200 MeV)

FIG. 5. (Color online) Evolution of the difference of n/p multiplicity ratio between VdWBUU and fBUU calculations for three angular
ranges. The results were obtained in reactions 124Sn + 124Sn and 112Sn + 112Sn at 400 AMeV using the impact parameter 1 fm at the time
200 fm/c. Squares show the result with stiff symmetry energy while triangles show results for soft symmetry energy. Soft nuclear equation of
state is used.
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FIG. 6. (Color online) Same as in Fig. 5 but for stiff nuclear equation of state.

is used in this case. Particles are considered as emitted
when they are separated in the phase space from any other
particle and separation is large enough to assure that two
particles are not part of a cluster (a condition � �p��r > 2h
is implemented). One can see that implementation of isospin-

dependent nucleon-nucleon cross sections leads to significant
variation of n/p multiplicity ratio and this effect appears to
evolve with both kinetic energy and polar angle. Variation
of n/p multiplicity ratio is more significant for the more
neutron-rich system, which offers a strong argument for the use

FIG. 7. (Color online) Evolution of the difference of n/p multiplicity ratio between VdWBUU and fBUU calculations for three angular
ranges. The results were obtained in reactions 124Sn + 124Sn and 112Sn + 112Sn at 400 AMeV using the impact parameter 6 fm at the time
200 fm/c. Squares show the results with stiff symmetry energy while triangles show results for soft symmetry energy. The soft nuclear equation
of state is used.
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FIG. 8. (Color online) Same as Fig. 7 but for a stiff nuclear equation of state.

of neutron-rich exotic beams for studies of density dependence
of the symmetry energy in the future.

Figure 6 again shows evolution of the difference of the
n/p multiplicity ratio between the VdWBUU calculation and
fBUU calculation, in this case using a stiff nuclear equation
of state (K = 380 MeV). Also in the case of the stiff
nuclear equation of state one can see that implementation
of isospin-dependent nucleon-nucleon cross sections leads to
considerable variation of the n/p multiplicity ratio, which
again evolves with both kinetic energy and polar angle.
Also here the variation of the n/p multiplicity ratio is
more significant for the more neutron-rich system. It thus
appears that variation of the n/p multiplicity ratio between
the VdWBUU calculation and fBUU calculation provides a
robust signal of the density dependence of nuclear symmetry
energy.

Figures 7 and 8 show results for the difference of the
n/p multiplicity ratio between the VdWBUU calculation and
fBUU calculation, analogous to Figs. 5 and 6, with the impact
parameter set to be 6 fm. It can be seen that the effect of
isospin-dependent nucleon-nucleon cross sections persists,
with comparable magnitude, even in peripheral collisions.
This offers the possibility of studying such a signal of the
density dependence of the symmetry energy in a wide range
of centralities and thus eventually of providing a strong signal
of the density dependence of the symmetry energy in a wider
range of nuclear density.

The fact, that the isospin-dependent nucleon-nucleon cross
sections, obtained using the proper volume of the Van der
Waals–like equation of state, need to be introduced in order
to fully explore the isospin dependence in the Boltzmann-
Uehling-Uhlenbeck simulations, which directly affect the
applicability of the symmetry energy parametrizations to
the study of astrophysical objects such as neutron stars or

supernovae. Due to increased sensitivity to isospin due to
isospin-dependent nucleon-nucleon cross sections, the sym-
metry energy parametrizations may change significantly, and
that will affect the extrapolations toward the nuclear densities,
typical for neutron stars and similar objects. On the other
hand, increased sensitivity may offer more possibilities for
the simulations of reactions of exotic nuclear beams, with the
possible observation of stronger isospin-dependent signals.

The recently performed simulations based on the ultra-
relativistic quantum molecular dynamics model (UrQMD)
suggest that one of the most promising probes of the strength
of the symmetry energy at suprasaturation densities is the
difference of the neutron and proton (or hydrogen) elliptic
flows [9,10,24,25]. The simulations were performed using
both stiff (γ = 1.5) and soft (γ = 0.5) symmetry energy
parametrizations. An inversion of the relative strengths of the
elliptic flow for neutrons and protons is observed when the
symmetry energy parametrization is changed from the stiff
behavior to the soft behavior. Neutron- and proton-directed and
elliptic flows were measured a decade ago in 197Au + 197Au
collisions at beam energies from 400 to 800 AMeV using the
Large Area Neutron Detector (LAND) and the FOPI phase
1 forward wall [26,27]. Comparison of predictions of the
UrQMD model [28] provided a constraint on symmetry energy
at suprasaturation densities from transverse momentum depen-
dence of the neutron’s and hydrogen’s elliptic flow parameter
v2 measured in the 197Au + 197Au system with FOPI + LAND,
suggesting a value of γ = 0.9 ± 0.4 [10], in agreement with
findings at subsaturation densities. However, the statistics
of these data set severe limits on the conclusions that can
be drawn by comparison to transport model calculations.
The promising results of reanalysis of the FOPI + LAND
experiment initiated a proposal for a new experiment [29],
which is one of the first dedicated explorations of the symmetry
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FIG. 9. (Color online) Elliptic flow of neutrons and protons in
reactions 124Sn + 124Sn and 112Sn + 112Sn at 400 AMeV at the impact
parameter 6 fm. Solid and open squares show results of VdWBUU
calculation and fBUU calculation, respectively, with soft symmetry
energy. Solid and open asterisks show analogous results with stiff
symmetry energy.

energy at high densities. The experiment uses the LAND
calorimeter for neutron and charged particle detection, and
the impact parameter is determined with a detection system
with high effective granularity at forward angles consisting
of several CsI rings of the CHarged Ion Mass and Energy
Resolving Array (CHIMERA) multi-detector [30] and the A
Large Acceptance DIpole magNet (ALADIN) time-of-flight
wall [31]. In addition, flow of light fragments are measured
with the Krakow telescope [32] array positioned opposite from
LAND. Uncertainties are expected to be reduced by a factor
of 4 or 5, thus allowing constraint of theoretical calculations.
Expected results of this experiment will provide a welcome
testing ground for the model calculations introduced in the
present work.

It is of interest to estimate what effect the introduction of the
isospin-dependent nucleon-nucleon cross sections, obtained as
the proper volume of the Van der Waals–like equation of state,
will have on the resulting elliptic flow of neutrons and protons.
Figure 9 shows calculated values of the elliptic flow of neutrons
and protons (determined conventionally as second Fourier
coefficient of the invariant triple differential distribution v2

relative to the reaction plane) in reactions 124Sn + 124Sn and

112Sn + 112Sn at 400 AMeV at the impact parameter 6 fm. Solid
and open squares show results of the VdWBUU calculation and
fBUU calculation, respectively, with soft symmetry energy
parametrization. Solid and open asterisks show analogous
results with stiff symmetry energy parametrization. One can
see that introduction of isospin-dependent nucleon-nucleon
cross sections, with varying ratios of neutron-neutron and
proton-proton collision rates and thus in-plane and out-of-
plane emission ratios, influences the resulting values of the
elliptic flow. Since the effect appears to vary between neutrons
and protons, it will strongly influence the differential elliptic
flow, thus making it a strong signature of the nuclear equation
of state, as suggested in Ref. [10]. However, since the effect
of symmetry energy on such differential elliptic flow tends to
vary also with the isoscalar part of the nuclear equation of
state, it appears necessary to study differential elliptic flow
in combination with other observables, such as the evolution
of the n/p multiplicity ratio at different polar angles and
kinetic energies. Such a study, carried out on a sufficiently
neutron-rich system, can provide good sensitivity to both
isoscalar and isovector parts of the nuclear equation of state.

IV. CONCLUSIONS

An extension of the Boltzmann-Uehling-Uhlenbeck model
of nucleus-nucleus collision is presented. The isospin-
dependent nucleon-nucleon cross sections are estimated using
the proper volume extracted from the equation of state of the
nuclear matter transformed into the form of the Van der Waals
equation of state. The results of such simulations demonstrate
the dependence on symmetry energy, which typically varies
strongly from the results obtained using only the isospin-
dependent mean-field. The evolution of the n/p multiplicity
ratio with angle and kinetic energy, in combination with the
elliptic flow of neutrons and protons, provides a suitable set
of observables for determination of the density dependence of
the symmetry energy. The model thus provides an environment
for testing of equations of state, used for various applications
in nuclear physics and astrophysics.
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