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Elastic scattering of protons from 9C with a 290 MeV/nucleon 9C beam
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The angular distribution of proton-9C elastic scattering at 277–300 MeV/nucleon was measured with a
newly designed recoil proton spectrometer. The angular distribution was analyzed using the relativistic impulse
approximation. The root-mean-square matter radius of 9C was deduced to be 2.43+0.55

−0.28 fm with different two-
parameter Fermi density distributions for protons and neutrons.
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I. INTRODUCTION

Recent progress in the study of unstable nuclei has triggered
renewed interest in nuclear radii and proton and neutron
density distributions [1,2], and proton elastic scattering at
intermediate energies is one method of studying these dis-
tributions. Using a relativistic impulse approximation (RIA)
or a folding model with complex g-matrix interaction, we can
directly compare proton elastic scattering with nuclear density
distributions.

For stable nuclei, the proton density distribution can be
obtained by unfolding the charge distribution determined using
electron scattering. A technique such as proton elastic scatter-
ing can then be used to deduce the neutron density distribution.
In order to accomplish this, the angular distribution must be
precisely reproduced. We thus introduced density-dependent
phenomenological medium-effect parameters to scattering
amplitudes used in an RIA [3] and tuned the scattering
amplitudes with scattering data for a nucleus whose proton
and neutron densities are thought to be the same shape and can
be well inferred from the electron scattering [4,5].

For unstable nuclei, we do not have information from
electron scattering. Thus we need to infer both proton and
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neutron density distributions from proton elastic scattering.
We also need to tune the scattering amplitudes with scattering
for a nearby stable N = Z nucleus.

The matter and charge radii of various unstable nuclei
have been deduced by measuring the interaction (reaction)
cross sections and optical isotope shifts (see, e.g., [6,7]).
However, the experiments performed at GSI are the only
instance to date of proton elastic scattering for unstable
nuclei at intermediate energies [8–10]. At 700 MeV/nucleon,
experimenters at GSI have measured neutron-rich isotopes
from helium to beryllium at the small angle region where
the Glauber multiple-scattering theory is appropriate. These
studies have examined the tail structure of the density
distributions, comparing them with experimental data.

At 300 MeV, where nucleons have the longest mean free
path in the nucleus, no quantitative or qualitative studies of
proton elastic scattering for unstable nuclei have been made.
We have therefore planned elastic scattering of protons with
radioactive ion beams (ESPRI) and have constructed a recoil
proton spectrometer (RPS). This work is devoted to reporting
the first results using the RPS.

As the first measurement, we have measured the elastic
scattering of protons from 9C. It is believed that 9C has
a proton skin and a large matter radius due to the large
difference between the proton and neutron numbers. In fact,
these quantities may relate to the puzzle of the large isoscalar
spin expectation value deduced from the magnetic moment
[11,12]. Recently, Utsuno suggested that the shell quenching
in 9C accounts for the anomalous magnetic moment and breaks
the mirror symmetry in the ground-state wave functions [13].
Therefore, 9C is an interesting nucleus among carbon isotopes.
In addition, this isotope located at the proton drip line has no
bound excited states below the one- and two-proton separation
energies. Hence, we have been able to identify the elastic
events robustly as described in the next section.

The main purposes of this work are the application of our
previous work [3–5] to the measurement of the unstable 9C
nucleus and deducing the matter radius. In this article, the
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FIG. 1. Schematic view of the fragment separator in the HIMAC
of the NIRS. The inset shows the experimental setup at the
momentum-dispersive focal plane F1.

experimental results are reported in Sec. II and the matter
radius is investigated in Sec. III. Finally, Sec. IV summarizes
this study.

II. EXPERIMENT

A. Experimental setup

The experiment was performed at a secondary beam course
(fragment separator) in the Heavy Ion Medical Accelerator
in Chiba (HIMAC) of the National Institute of Radiological
Science (NIRS) [14]. Figure 1 shows a schematic view of the
fragment separator and the experimental setup at a momentum-
dispersive focal plane F1. Figure 2 shows a schematic view of
the experimental setup at an achromatic focal plane F22.

A 12C beam was accelerated up to 430 MeV/nucleon with
a heavy-ion synchrotron. The intensity was 6 × 109 particles
per pulse; the repetition cycle and the duty factor of the pulse
were 1/3.3 Hz and about 50%, respectively. A 9C beam was
produced by projectile fragmentation of the 12C beam on a
9Be target of 50 mm thickness. The 9C beam was roughly
distinguished from the cocktail beam using the fragment
separator. The intensity of the secondary beam on a hydrogen
target was 4 × 104 particles per pulse.

The 9C beam was clearly selected from correlation between
the energy loss in a 3-mm-thick plastic scintillator (SF3) and

Flight length
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FIG. 2. (Color online) Schematic view of the experimental setup
around the SHT.

the time of flight (TOF) from a scintillating fiber detector
(SFD) [15] to SF3. The SFD and SF3 were placed at the
momentum-dispersive focal plane and behind an exit duct of
the beam line, respectively. The SFD was tilted at an angle
of 60◦ relative to the beam axis so that inefficient regions
between fibers disappeared. From Ref. [15], the time and
position resolutions of the SFD are estimated to be about 1 ns
and less than 0.7 mm (root mean square, rms), respectively.
We also used the SFD to tag the momentum of the beam
by approximating the momentum to a simple function of the
detected position. The function was determined by fitting
the correlation between the position and the momentum,
which was calculated by the TOF between two 5-mm-thick
plastic scintillators SF1 and SF2. The energy loss up to the
hydrogen target was calculated using the code of Ref. [16].
The energy spread on the target was 277–300 MeV/nucleon.
The trajectories of the incident beam were tracked with two
beam drift chambers (BDCs) placed in front of the target. A
bag filled with helium gas at a pressure of 1 atm was inserted
between the BDCs to reduce multiple scattering. For 9C, the
position and angle resolutions on the target were 130 μm and
0.13 mrad (rms), respectively.

As the proton target, we use a solid hydrogen target (SHT).
The cryogenic system used has been described in detail
elsewhere [17]. The system is called a solid hydrogen target
for recoil detection in coincidence with inverse kinematics
(SH TRIC K) [18]. The SHT was 5 mm thick and 35 mm in
diameter, and was tilted at an angle of 45◦. In order to eliminate
background events caused by the beam colliding with a frame
of the SHT, a 1-mm-thick plastic scintillator SF4 was placed in
front of the target. SF4 had a 30-mm-diameter hole to pass the
beam and was tilted at an angle of 45◦ and placed perpendicular
to the SHT. Behind the target, a scintillator SF5 was placed
to identify the charge of forward scattered particles. The size
of SF5, 160(W) × 160(H) × 10(D) mm3, covered a sufficient
scattering-angle region (>40◦ in the center-of-mass frame).
Since the excited 9C, which has no bound excited states,
decays into other nuclides, identifying the charge was very
important for selecting the elastic channel, and we were able
to use a thick target without concern for the excitation-energy
resolution [e.g., 0.4 MeV (rms) for a 1-mm-thick SHT]. In
this experiment, the SHT was made of normal H2. Since the
thermal conductivity of solid normal H2 is not sufficient to
withstand the thermal radiation from the surroundings, the
central region of the SHT evaporated, creating a hole. Hence,
we defined an effective area to be analyzed. The effective area
was smaller than the hole of SF4 and included only the clear
solid region. The number of protons in the effective volume
was estimated to be 3.43(13) × 1022 /cm2 by measuring cross
sections for proton scattering from 12C using the 12C primary
beam. Events when incident beams passed through areas
outside the effective region were eliminated from the analysis
with the BDCs. The total number of the 9C beams which
hit the effective area was 4.52(9) × 108 counts. In order to
evaluate the background events, we also irradiated the area
with 0.389(7) × 108 of 9C after evaporating the solid H2

completely.
Two sets of RPS detectors were installed on the upper and

lower exit windows of a vacuum chamber which is shown in
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Fig. 2 by dashed lines. The flight length of a recoil proton
from the SHT to each set was about 1 m. Each set consisted
of a recoil drift chamber (RDC), a plastic scintillator (p�E),
and NaI(Tl) calorimeters. The number of NaI(Tl) rods was
seven and five for the upper and lower sides, respectively.
The energies of the recoil protons respectively reaching and
penetrating the NaI(Tl) rods were about 20 and 120 MeV;
these energies corresponded to 80◦ and 66◦ of recoil angle,
respectively. For the combination of 12 NaI(Tl) rods, the solid
angle for every 1◦ bin of recoil angle became 5–7 msr in the
laboratory frame. Because the position resolution in the RDC
was less than 0.5 mm (rms) for recoil protons and the energy
resolution of the NaI(Tl) rods was 0.3 MeV (rms) for 80 MeV
protons [19], the uncertainty of the reaction point in the SHT
mainly determined the excitation-energy resolution, which is
described later.

The trigger condition of data acquisition consisted of the
coincidence of a beam and a recoil particle defined as follows:
The beam was defined as a logical AND of signals from SF2
and SF3 and no signal from SF4. For the signal from SF3, we
selected Z = 6 by roughly discriminating information about
energy loss. The recoil particle was defined as a logical OR of
signals from p�E. The live time as well as all the detection
efficiencies were about 90–100%. The errors of the detection
efficiencies were �1%.

B. Data reduction

Compared with normal kinematics, proton scattering in
inverse kinematics is characterized by the kinematical corre-
lation between recoil angle and recoil energy. Figure 3 shows
the correlation for recoil protons reaching the upper side of
the RPS. We can see a clear locus corresponding to the elastic
channel in Fig. 3(a). This results from distinguishing elastically
scattered 9C from particles arising from breakup channels with
SF5. When we do not use SF5, the clear locus is hidden
in the unbound region due to the thick target, as shown in
Fig. 3(b). The measurement of the forward scattered particles
with SF5, in addition to the missing-mass measurement, has
thus greatly facilitated elastic reaction-channel identification
for the 9C beam, which is located at the proton drip-line
and has no bound excited states below the proton-separation
energy.

From the kinematical information of the beam and the recoil
proton, the excitation energy of 9C was calculated. Figure 4
shows the excitation-energy spectrum for recoil angles of less
than 79◦. The solid and dotted lines correspond to the events
shown in Figs. 3(a) and 3(b), respectively. We can see a clear
peak corresponding to the elastic channel. The excitation-
energy resolution was about 1 MeV (rms), as mentioned above.
The small gray area in Fig. 4 shows the background events
normalized by the number of 9C beams. Due to the pure proton
target, the number was extremely small. After subtracting
the background events from the peak, we counted the elastic
events between ±7.5 MeV for every 1◦ bin in the laboratory
frame.

We obtained the differential cross sections by the following
procedure. Since the angular distribution of the measured
elastic events is broadened due to the detector resolutions

FIG. 3. (Color online) Kinematical correlations between angle
and energy for recoil protons. (a) The elastic events and (b) all
the events are plotted for the upper side of the RPS. The solid
lines indicate the loci of proton elastic scattering at 277 and
300 MeV/nucleon.

mentioned above and the multiple scattering, the present
yield y(θi) integrated between θi ± �θ of polar angle in the
laboratory frame is written as

y(θi) = IN

∫ θi+�θ

θi−�θ

dθ ′
∫ π

0
d sin θ ′′ε(θ ′′)σ (θ ′′)f (θ ′ − θ ′′),

(1a)

σ (θ ) =
∫ 2π

0
dψ

(
dσ

d�

)
lab.

, (1b)

where I , N , and ε are the total number of incident beams,
the number of target protons, and the detection efficiency.
In the above equation, σ is the cross section integrated
over the azimuthal angle in the laboratory frame, and f
is an instrumental response function. During the numerical
procedure, this equation was transformed to a discrete form
for every 1◦ bin (�θ = 0.5◦):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

...

yi

...

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= IN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f11 · · · f1i · · · f1n

...
. . .

...

fi1 · · · fii · · · fin

...
. . .

...

fn1 · · · fni · · · fnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1σ1

...

εiσi

...

εnσn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)
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FIG. 4. Excitation-energy spectrum of 9C for recoil angles of less
than 79◦. The solid line corresponds to the elastic events tagged with
SF5. The dotted line corresponds to all the events not tagged. The
small gray area is the background events normalized by the number
of 9C beams. The dashed lines indicate the gate of ±7.5 MeV for the
elastic events.

The matrix elements of the instrumental response function
were calculated using the Monte Carlo simulation code
GEANT3 [20]. After solving Eq. (2), we obtained the cross
sections in the center-of-mass frame by dividing the cor-
responding solid angle in the center-of-mass frame into
σi . Lastly, we removed data points around the end of the
measured angular region since we do not know the influx
of recoil protons from the outside region. The obtained cross
sections are plotted in Fig. 5 and are listed in Table V in
the Appendix. The experimental error includes statistical and
systematic uncertainties in the number of beams, the number
of target protons, the number of recoil protons, and the detector
efficiencies. Of these, the statistical error of the recoil protons
accounted for most of the experimental error. Nuclear reaction
loss in the NaI(Tl) [21] was not considered in this analysis
because the reduction was much less than the statistical error.

10-1
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 10  20  30  40
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12C
Fit

FIG. 5. Angular distribution of the differential cross sections for
the H(9C,p) reaction at 277–300 MeV/nucleon (closed circles). The
data for 12C are also plotted as a reference (open circles). The best-fit
calculation with the modified MH model and the two-parameter Fermi
distributions is shown by the solid line.

III. RESULTS AND DISCUSSION

The matter radius of 9C was deduced by fitting the present
angular distribution, which shows a smoother diffraction
pattern than that of 12C [22] as shown in Fig. 5 (open circles).
Section III A describes the reaction model, and the result is
given in Sec. III B.

A. Reaction model

We used and modified a model formulated by Murdock
and Horowitz (the MH model) [23]. The characteristics of
the MH model are that the effective NN scattering amplitude
is described by the simple direct plus exchange terms in the
framework of the RIA; the pseudovector coupling for the pseu-
doscalar meson instead of the pseudoscalar coupling restores
disagreement with phenomenological optical potentials at low
energies. In addition, the MH model can include medium
modification from Pauli blocking. However, we applied the
medium modification proposed in our previous work [3] to
take into account various nuclear many-body effects in terms
of the nuclear density. The modification of the effective NN
scattering amplitude from the original MH model, which arises
in the σ - and ω-meson exchange diagrams, is written as

g2
i , g

2
i → g2

i

1 + aiρB(r)/ρ0
,

g2
i

1 + aiρB(r)/ρ0
, (3a)

mi,mi → mi

(
1 + bi

ρB(r)

ρ0

)
, mi

(
1 + bi

ρB(r)

ρ0

)
,

i = σ, ω, (3b)

where g2
i are the coupling constants of the nucleon-meson

vertexes, mi are the masses of the propagators, and ρB(r)/ρ0 is
the baryon density divided by the normal density 0.1934 fm−3.
An overline indicates an imaginary part.

We determined the phenomenological coefficients
ai, ai, bi , and bi by the same procedure for the medium-heavy
stable nuclei [4,5]: the number of coefficients was reduced
to four (aσ = aσ , bσ = bσ , aω = aω, bω = bω), and they were
searched by means of the minimum chi-square method. The
chi-square is

χ2 =
N∑

j=1

[yj − y(θj ; ai, bi)]2

�y2
j

, (4)

where N is the number of data points, yj and �yj are the
j th experimental data and error, and y(θj ) is the calculated
cross section at an angle θj . In this analysis, we adopted the
scattering observables of the 12C(−→p ,p) reaction at 300 MeV to
be fitted because 12C is the nearby stable N = Z nucleus and
the charge density distribution was inferred by the electron
scattering precisely. Figure 6(a) shows the employed proton
vector and scalar density distributions, which are equal to the
employed neutron density distributions. The vector density
distribution ρV(r) was extracted by unfolding the sum-of-
Gaussians (SOG) charge density distribution [24] with the
intrinsic charge distributions of the proton and the neutron [25].
The SOG charge density distribution itself was used for the
Coulomb potential. On the other hand, we calculated the scalar
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FIG. 6. (a) Unfolded vector density distribution of 12C (solid line).
The scalar density distributions for α = 0 and α = 0.44 are indicated
by the dashed and dotted lines, respectively. (b) Ratio of the scalar
density to the vector density. The ratios for α = 0, 0.1, 0.2, and 0.44
are indicated by the solid, dashed, long-dashed, and dotted lines,
respectively. The constant ratio 0.97 is plotted as a guide for the eye
as a gray line.

density distribution ρS(r) with the approximation described in
Ref. [23]:

ρS(r) = ρV(r)

(
1 − 3

10

k2
F

M∗2

)
, (5a)

k3
F = 3

2
π2ρB(r), (5b)

M∗

M
= 1 − α

ρB(r)

ρ0
, (5c)

where kF is the local Fermi momentum and M is the nucleon
mass. The coefficient α is 0.44 in Ref. [23], but we changed
the value. Figure 6(b) shows ratios of ρS(r) to ρV(r) for α =
0, 0.1, 0.2, and 0.44. With a decrease of α, the ratio increases,
and the change becomes smooth inside the nucleus. In the
relativistic Hartree (RH) calculation [26] for medium-heavy
nuclei, the ratio is almost constant and about 0.96 as reported in
Refs. [3–5]. For light nuclei, the ratio slightly increases and
the ratio in 12C is about 0.97. This characteristic in the RH
calculation is compatible with that for α ∼ 0. Additionally,
we examined α by the minimum chi-square method. Figure 7
shows χ2 for the original and modified MH models as a
function of α. χ2 decreases with a decrease of α, and is almost
constant when α is smaller than 0.1. We therefore selected
α = 0.

The modified MH calculation with the best-fit parameters
is shown in Fig. 8 as solid lines. The overestimation of
the differential cross sections by the original MH model

Without modification
With modification

-0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5
α

 0

 1

 2

 3

 4

 5

10
-4

   2 χ

FIG. 7. χ 2s as a function of α. Circles: χ 2 without modifica-
tion; squares: χ 2 with modification. The lines are guides for the
eye.

(dotted line) is improved with χ2 = 493.15, which is about
10 times smaller than that by the original MH model. The
best-fit parameters are listed in Table I. The deviations listed
correspond to the maximal and minimal values of each
parameter in a joint confidence region which satisfies

χ2 � χ2
min + �χ2, (6)

where χ2
min is the minimum value of χ2 and �χ2 defines the

boundary of the present confidence region. In this analysis,
�χ2 = 4.72. This value corresponds to a 68% joint confidence

FIG. 8. Comparison of experimental data for the 12C( �p, p)
reaction at 300 MeV with the MH calculations. The data of (a) the
differential cross sections and (b) the analyzing powers are taken from
Ref. [22]. The solid and dashed curves are the MH calculations with
and without modification, respectively.
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TABLE I. Coefficients ai and bi (i = σ, ω) in Eqs. (3).

i σ ω

ai −0.391+0.016
−0.015 −0.529+0.027

−0.016

bi 0.356+0.013
−0.018 0.477+0.025

−0.037

region for four variables whose errors are normally distributed
[27].

In the next section, we used the above-mentioned modified
MH model and the relation between the vector and scalar
densities represented by Eqs. (5) with α = 0. The charge
density distribution for the Coulomb potential was calculated
by folding the vector density distributions with the intrinsic
charge distributions of the proton and the neutron [25].

B. Matter radius of 9C

The present angular distribution was fitted with two-
parameter Fermi distributions for protons and neutrons:

ρi(r) = Ni

1 + exp{(r − Ri)/ai} , i = p, n, (7)

where Ni are the normalization coefficients and Ri and ai are
free parameters. Using the density distributions, we obtained
the rms matter radius 〈r2

m〉1/2 as

〈
r2

m

〉 = 1

A

∫
d rρp(r)r2 + 1

A

∫
d rρn(r)r2, (8)

where A is the target mass number.
The best-fit calculation is presented in Fig. 5 as a solid line.

The fit reproduces the data qualitatively well. Table II lists the
deduced rms matter radius, the best-fit χ2, and the geometry
parameters. The present rms matter radius is consistent with the
radii deduced from the measurements of the interaction cross
sections [6] and the reaction cross sections [28] within the
errors (Table III). The value also agrees with the experimental
radii of 9Li deduced from the measurement of the elastic
scattering of protons at 700 MeV/nucleon [9] as well as the
measurements of the interaction cross sections [6] and the
reaction cross sections [29].

We evaluated the error of the rms matter radius in a similar
manner to the phenomenological coefficients in Eqs. (3)
since the rms matter radius was determined by the four free
parameters Ri and ai through Eq. (8). Figure 9 shows the
confidence region for the parameter set (Ri , ai). Note that
the minimum χ2 was found using the remaining two free
parameters for every fixed parameter set (Rp, ap) or (Rn,
an). The confidence regions which satisfy Eq. (6) are roughly
enclosed by solid and dashed curves. The solid and dashed
curves in Fig. 9(a) correspond to the solid and dashed curves

TABLE II. Deduced rms matter radius (fm), best-fit χ2, and
geometry parameters (fm).

〈r2
m〉1/2 χ 2 Rp Rn ap an

2.43+0.55
−0.28 5.15 3.345 1.647 0.307 0.070

TABLE III. Experimental matter radii (fm) of 9C and 9Li.
The values deduced from the measurements of the proton elastic
scattering, the interaction cross sections σI, and the reaction cross
sections σR are listed.

(p, p) σI σR

9C 2.43+0.55
−0.28

a 2.42(3)b 2.75(34), 2.71(32)c

9Li 2.44(6)d 2.32(2)b 2.534(25)e

aThis work.
bReference [6].
cReference [28].
dReference [9].
eReference [29].

in Fig. 9(b), respectively. The parameter sets in the solid and
dashed curves yield proton and neutron skins, respectively.
From the parameter sets in the regions, we obtained the
maximal and minimal rms matter radii, and adopted them as
the errors of the rms matter radius.

In Fig. 9, we can roughly see valleys from the upper left
to the lower right of the figure in both the proton and neutron
sides and can thereby find out the confidence region splitting
into two parts. The emergence of the two valleys implies that
it is appropriate to deduce the radius rather than the density
distribution because the radius is not sensitive to the correlation
between Ri and ai , as the proton and neutron rms radii are

>50
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FIG. 9. (Color online) Two-dimensional confidence regions for
the parameter sets (a) (Rp , ap) and (b) (Rn, an). The regions which
satisfy Eq. (6) are enclosed by the solid and dashed curves.

034614-6



ELASTIC SCATTERING OF PROTONS FROM 9C WITH . . . PHYSICAL REVIEW C 87, 034614 (2013)

TABLE IV. Root-mean-square matter radii (fm) of 9C with the
RH and MAMD calculations.

This work RH MAMD

〈r2
m〉1/2 2.43+0.55

−0.28 2.58 2.40a

aReference [31].

approximately written as
〈
r2
i

〉 ∼ 3
5R2

i + 7
5π2a2

i , (9)

using the Sommerfeld expansion [30]. The splitting of the
confidence region indicates that it is inappropriate to use the
same geometry parameters for protons and neutrons even
though we use large diffuseness parameters so as to reflect
the smooth diffraction pattern. Instead of them, the present
diffraction pattern was reproduced well by spreading out one
distribution while the other distribution remained inside the
nucleus. Because the rms matter radius is approximately repre-
sented by such a quadratic sum of four geometry parameters, a
proton or neutron skin appeared in this analysis. Unfortunately,
the splitting of the confidence region also indicates that the
present data are not sensitive to the proton and neutron density
distributions independently. Hence, in order to determine the
skin thickness, we need to measure another experimental
observable which has different sensitivity to the proton and
neutron density distributions than the present observable.

Finally, we compare the present result with two theoretical
densities based on the RH and multiple-width Gaussian basis
antisymmetrized molecular dynamics (MAMD) [31]. Table IV
shows the RH and MAMD matter radii. These sizes agree with
the present rms matter radius within the errors. Concerning
angular distribution, the calculations with the RH and MAMD
densities reproduce the present data with χ2 � 30 and 40,
respectively (Fig. 10). The calculations also have a similar
behavior to the present fit in the measured momentum transfer
region. However, the present fit overestimates both calcula-
tions at forward and backward angles. Hence, additional data

10-1

100

101

102

103

 10  20  30  40

c.m.
 (deg)

RH

MAMD

9C
12C
Fit

θ

d 
 /d

   
 (

m
b/

sr
)

σ

FIG. 10. (Color online) Comparison of the experimental data with
calculations using theoretical densities. The dashed and dotted lines
show the calculations with the RH [26] and MAMD [31] densities,
respectively. The other notations are the same as those in Fig. 5.

on cross sections at these angles are necessary to discuss the
details of the density distribution.

IV. SUMMARY

We have developed a recoil proton spectrometer to measure
the elastic scattering of protons with radioactive ion beams.
Using the spectrometer, cross sections for proton elastic scat-
tering from 9C at 277–300 MeV/nucleon were measured. The
matter radius was deduced with the relativistic folding model
formulated by Murdock and Horowitz. In this analysis, the
reaction model was modified to reproduce the cross sections
and the analyzing powers for proton elastic scattering from
12C at 300 MeV. The proton and neutron density distributions
were assumed to be two-parameter Fermi distributions.

The root-mean-square matter radius was deduced to be
2.43+0.55

−0.28 fm. This value is consistent with the radii deduced
from the measurements of the interaction cross sections and
the reaction cross sections. It also agrees with the experimental
radii of the mirror nucleus 9Li.
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APPENDIX: NUMERICAL DATA TABLE

TABLE V. Differential cross sections of the H(9C, p) reaction
at a beam energy of 277–300 MeV. The angle integrated ±0.5◦ in
the laboratory frame corresponds to ±�θc.m. in the center-of-mass
frame. The error ±�(dσ/d�)c.m. includes statistical and systematical
uncertainties (for details see the text).

θc.m. ±�θc.m.

(
dσ
d�

)
c.m.

±�
(

dσ
d�

)
c.m.

(deg) (mb/sr)

16.948 0.813 31.3 2.1
18.576 0.815 19.4 1.0
20.209 0.817 11.86 0.80
21.846 0.820 7.14 0.51
23.488 0.822 3.66 0.33
25.134 0.825 2.05 0.23
26.787 0.827 1.64 0.21
28.444 0.830 0.84 0.13
30.108 0.834 0.472 0.098
31.779 0.837 0.351 0.080
33.456 0.840 0.343 0.076
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