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Coulomb breakup reactions of 11Li in the coupled-channel 9Li + n + n model
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We investigate the three-body Coulomb breakup of a two-neutron halo nucleus 11Li. We use the coupled-
channel 9Li + n + n three-body model, which includes the coupling between last neutron states and the various
two-particle–two-hole (2p-2h) configurations in 9Li due to the tensor and pairing correlations. The three-body
scattering states of 11Li are described by using the combined methods of complex scaling and the Lippmann-
Schwinger equation. The calculated breakup cross section successfully reproduces the experiments. The large
mixing of the s state in the halo ground state of 11Li is shown to play an important role in the explanation of shape
and strength of the breakup cross section. In addition, we predict the invariant mass spectra for binary subsystems
of 11Li. It is found that the two kinds of virtual s states of 9Li-n and n-n systems in the final three-body states of
11Li largely contribute to make low-lying peaks in the invariant mass spectra. On the other hand, in the present
analysis, it is suggested that the contributions of the p-wave resonances of 10Li are hardly confirmed in the spectra.
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I. INTRODUCTION

Recent radioactive ion beam experiments reveal exotic and
interesting properties of unstable nuclei beyond the stability
line [1]. In particular, the neutron halo structure is one of the
most interesting topics, and many studies have been performed
from both experimental [1] and theoretical [2] sides since the
discovery of the halo structure in 11Li [3]. The halo nuclei, such
as 6He, 11Li, 11Be, and 14Be, have been observed to have large
matter radii [1] and narrow momentum distributions of the
last neutrons [4]. These facts reflect the ground-state structure
in halo nuclei, in which the weakly bound last neutrons are
spread far from the core nucleus.

In addition to the exotic structure in the ground states,
breakup reactions of halo nuclei are expected to provide
us with much information on the excited states, which are
mostly located above the particle thresholds. The transition
mechanism into the excited states is an important issue to be
understood. Experimentally, the Coulomb breakup reactions
have been performed to search for the electric dipole responses
of halo nuclei [5]. The observed cross sections commonly show
low-lying enhancement above the breakup thresholds [6–12],
and this enhancement has been considered to be related to
the exotic halo structure. For one-neutron halo cases such as
11Be [6], the mechanism of the Coulomb breakup reaction has
been discussed as the direct breakup from the halo ground

*yuma@rcnp.osaka-u.ac.jp

state to the nonresonant continuum states. The low-lying
enhancement can be interpreted as the reflection of the weakly
binding halo structure. On the other hand, for two-neutron
halo cases such as 6He and 11Li, the breakup mechanism is
complicated because the two-neutron halo nuclei are broken
up to the core + n+ n three-body scattering states due to the
Borromean nature, and these final scattering states contain
various kinds of correlations, such as of the binary subsystems
of core-n and n-n [13–15].

It has been observed in 11Li that the amount of the (1s1/2)2

component (45 ± 10%) of the halo neutrons is comparable to
that of (0p1/2)2 [16]. This fact indicates the breaking of the
N = 8 magic number in the ground state of 11Li. For 10Li,
the virtual s state is suggested from a large negative value of
the observed scattering length [17,18]. The experiments on
10Li also support the existence of p-wave resonances at low
excitation energies [18]. Based on those observed properties
of 10Li and 11Li, it is necessary to understand the breakup
mechanism of 11Li using the Coulomb response.

Theoretically, the exotic properties of 11Li have been
studied using several kinds of approaches, such as the
9Li + n+ n three-body models [2,13,19], no-core shell model
[20], fermionic molecular dynamics [21], antisymmetrized
molecular dynamics [22], stochastic variational method [23],
and microscopic cluster model [24]. For the Coulomb breakup,
three-body models have been often used to investigate the
mechanism of the breakup into the three-body final states. Most
of the studies based on the three-body models assume the 1s1/2

orbit is degenerated with the 0p1/2 one energetically by using
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the different 9Li-n interactions for even and odd parity states
[25,26]. However, those models cannot reproduce the observed
large s-wave mixing in 11Li [26]. Furthermore, Esbensen
et al. [27] have mentioned that the 9Li + n+ n three-body
model fails to explain the observed charge radius and the
dipole strength in 11Li consistently. In order to overcome these
difficulties in 11Li, a new approach beyond the 9Li + n+ n
three-body model has been desired.

Myo et al. [28–30] have attempted to understand the
exotic properties of 11Li by taking into account the tensor
and pairing correlations in 9Li using the tensor-optimized
shell model (TOSM) [31,32]. In their approach, the s-wave
virtual states and the p-wave resonances in 10Li are reproduced
simultaneously by taking into account the two-particle–two-
hole (2p-2h) excitations of the 9Li core coming from the
tensor and pairing correlations. The Pauli principle between
the last neutron and the 9Li core plays an important role. This
dynamical description has also been applied to the 11Li system
by using the coupled-channel 9Li + n+ n model. In this model,
the tensor correlation produces the specific 2p-2h excitation
from the 0s1/2 orbit to the 0p1/2 orbit [31], and the Pauli
blocking between the excited 0p1/2 neutron in the 9Li core
and the last halo neutrons dynamically pushes up the energy
of the 0p1/2 orbit in 11Li [28,29]. As a result, the energies
of the p-wave and s-wave states of 11Li get close to each
other, and a large s-wave mixing in the 11Li ground state is
brought. Furthermore, this coupled-channel 9Li + n+ n model
is shown to reproduce various physical quantities such as
the matter and charge radii and the dipole strength of 11Li
consistently.

In this study, we investigate the Coulomb breakup reaction
of 11Li by using the coupled-channel 9Li + n+ n three-body
model proposed in Refs. [28,29]. The aim of this work is
to investigate the role of the dynamical mixing of (1s1/2)2

configuration in the ground state on the reaction mechanism
of the three-body Coulomb breakup of 11Li. The other aim is to
get the knowledge of the binary correlations of 9Li-n and n-n
in the breakup final states. For these purposes, it is necessary
to describe the three-body scattering states with a correct
boundary condition. This problem is solved by applying
the complex-scaled solutions of the Lippmann-Schwinger
equation (CSLS) [14,15]. This method has been recently
developed and successfully applied to the Coulomb breakup
reactions of 6He and the α + d scattering using the α + p + n
model for 6Li [33].

The Coulomb breakup cross sections have been analyzed as
functions of subsystem energies to understand the correlations
in two-neutron halo nuclei [13–15,26,34,35]. For two-neutron
halo nucleus 6He, the breakup mechanism of 6He has been
analyzed based on the α + n+ n three-body model, in which
the employed α-n interaction reproduces the observed phase
shifts but is not enough strong to produce the virtual s states.
In our previous works of 6He [14,15], it was found that the
characteristic shape of the breakup cross section is weakly
influenced by the halo structure in the ground state. The
magnitude and the peak position of the cross section can be
explained with a dominant contribution from the final state
interactions (FSIs), which produce the 5He(3/2−) resonance
and the n-n virtual state.

In contrast to 6He, the Coulomb breakup cross sections of
11Li have been shown to depend strongly on the structure,
in particular, on the s-wave mixing in the halo ground state
[13,26,36]. The simple 9Li + n+ n model calculations [13,26],
which predict a small s-wave mixing (about 20%), reproduce
the low-energy enhancement in the cross section. However, the
energy position of the enhancement is higher than the observed
one [12]. In this paper, it is shown that this serious problem
in the 9Li + n+ n model is solved satisfactorily. Furthermore,
the previous 9Li + n+ n model suggests that the virtual s state
and the p1/2 resonances of 10Li are observed in the strength
distribution together with the n-n correlation as functions of
subsystem energies [26]. These problems are also discussed in
the present coupled-channel 9Li + n+ n analysis.

This paper is organized as follows. In Sec. II, we explain
the coupled-channel 9Li + n+ n three-body model and the
formalism of the Coulomb breakup reaction using CSLS. In
Sec. III, we show the results of the Coulomb breakup cross
section of 11Li and the invariant mass spectra of its binary
subsystems, and discuss the breakup mechanism of 11Li. All
results and discussion are summarized in Sec. IV.

II. FRAMEWORK

A. Coupled-channel three-body model for 11Li

We give a brief explanation of the coupled-channel
9Li + n+ n three-body model of 11Li employed here, the
details of which are given in Refs. [28,29]. To solve many-body
correlations not only of the last two neutrons but also of the
coupling with degrees of freedom in the 9Li core, we start with
the Schrödinger equation:

Ĥ�Jπ = E�Jπ , (1)

where Ĥ and �Jπ are the total Hamiltonian and the wave
function with spin parity Jπ for 11Li, respectively.

The wave function �Jπ is described as follows:

�Jπ =
∑

c

acA
[
�c

3/2− (9Li) ⊗ χc
J0

(nn)
]
Jπ , (2)

where A is an antisymmetrizer and �c(9Li) and χc(nn) are
the wave functions for the 9Li core and the last two neutrons,
respectively. The index c represents the quantum numbers
of the 9Li core configurations. The channel amplitude ac

is determined by solving the coupling between 9Li and the
relative wave functions of the last two neutrons using the
coupled-channel equation Eq. (1). Using TOSM [28,29] for
the configurations of the 9Li core, we employ two kinds of
2p-2h configurations: (nn)Jπ =0+ for the pairing correlation and
(pn)Jπ =1+ for the tensor correlation, in addition to the 0p-0h
one of (0s)4(0p3/2)4

ν(0p3/2)1
π . Thus our model is considered to

be an extension of the usual 9Li + n+ n model, because this
coupled-channel model is equivalent to the simple 9Li + n+ n
model when the only 0p-0h configuration is taken for 9Li.
The Pauli principle between the last two neutrons is taken
into account by antisymmetrizing the relative wave function
χc(nn). For the 9Li-n part, we take into account the Pauli
principle by projecting out the Pauli forbidden states occupied
by the 9Li core from the relative wave function χc(nn).
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Here, the total Hamiltonian for the coupled-channel
9Li + n+ n three-body system is given as

Ĥ =
3∑

i=1

T̂i − T̂cm + Vn-n +
2∑

i=1

V̂core-n(ri) + ĥ(9Li), (3)

where T̂i and T̂cm are kinetic energies of each cluster and the
center-of-mass motion of the 9Li + n+ n three-body system,
respectively. For the n-n interaction V̂n-n, we employ the
realistic Argonne v8′ force [37]. The relative coordinate ri

represents that between the 9Li core and the ith last neutron,
and V̂core-n is the 9Li-n interaction. For V̂core-n, we employ
a potential folding of an effective NN interaction with 9Li
core density [38]. We here use the modified Hasegawa-Nagata
(MHN) potential [39,40] obtained in the G-matrix calculation
as the effective NN interaction. We introduce one parameter δ,
which enhances the strength of the intermediate range of MHN
potential from the original one in order to describe the starting
energy dependence dominantly coming from the tensor force
in the G-matrix calculation [28]. In the present calculation,
we take this parameter δ as 0.1893 to reproduce the observed
two-neutron separation energy of 11Li.

The microscopic internal Hamiltonian for the 9Li core,
ĥ(9Li), is given as

ĥ(9Li) =
9∑

i=1

t̂i − t̂cm +
9∑

i<j

v̂ij . (4)

Here, t̂i and t̂cm are the kinetic energies for each nucleon and the
center-of-mass motion in the 9Li core, respectively. The two-
body NN interaction v̂ij , whose detail is given in Ref. [31],
consists of central, spin-orbit, tensor, and Coulomb terms.
Using the Hamiltonian in Eq. (4), the 2p-2h configurations in
the 9Li core are involved by the pairing and tensor correlations.

The wave function χc(nn) of the last two neutrons are
solved by using a few-body technique. Here we employ the
variational approach called the hybrid-VT model [41]. In this
model, we expand the relative wave function χc(nn) with
two kinds of basis functions, shown in Fig. 1: One is the
cluster-orbital shell model (COSM; V-type) and the other is
the extended cluster model (ECM; T-type). These two kinds
of basis functions are important for expressing the 9Li-n and
n-n correlations simultaneously. Radial components of each
relative wave function are expanded using the Gaussian basis
functions [42]. The number of the basis functions is determined
to reach the convergence of the numerical results. In the present
calculation, we employ 18 basis functions for each coordinate,
and the range of the Gaussian is taken up to 60 fm.

n n n n

Li9 Li9

COSM (V-Type) ECM (T-Type)

r Rr

r

1 2

FIG. 1. (Color online) Coordinate sets in hybrid-VT model for 11Li.

B. Complex-scaled solutions of the
Lippmann-Schwinger equation

We describe the 9Li + n+ n three-body scattering states of
11Li by using CSLS [14] to calculate the Coulomb breakup
cross section. Before going into the formalism of CSLS, we
briefly explain the complex scaling method (CSM) [43]. In
CSM, the relative coordinates shown in Fig. 1 are commonly
transformed as follows:

U (θ )ξU−1(θ ) = ξeiθ , (5)

where U (θ ) is a complex scaling operator with a scaling angle
θ being a real number. The coordinate ξ represents the set of
the two relative coordinates in the three-body system as used
in Fig. 1. Applying this transformation to the Hamiltonian Ĥ ,
we obtain the complex-scaled Schrödinger equation given as

Ĥ θ�θ = Eθ�θ, (6)

where Ĥ θ and �θ are the complex-scaled Hamiltonian and the
complex-scaled wave function given as

Ĥ θ = U (θ )ĤU−1(θ ) (7)

and

�θ = U (θ )�(ξ ) = e( 3
2 iθ)·f �(ξeiθ ), (8)

respectively. The factor, e( 3
2 iθ)·f , comes from the Jacobian in

the volume integral, and f = 2 for the three-body systems.
By solving the complex-scaled Schrödinger equation given in
Eq. (6) with a finite number of L2 basis functions such as
Gaussian, we obtain the eigenstates and energy eigenvalues of
Ĥ θ as {�θ

n} and {Eθ
n} with a state index n, respectively.

All the energy eigenvalues {Eθ
n} are obtained on a complex

energy plane, governed by the ABC theorem [44,45], and their
imaginary parts represent the outgoing boundary conditions. In
Fig. 2, we show a schematic distribution of energy eigenvalues
of the three-body Borromean system in CSM. In CSM, the
resonances of a many-body system are obtained as the isolated
poles with the L2 basis functions. On the other hand, the energy
eigenvalues of continuum states are obtained on the 2θ -rotated
branch cuts starting from different thresholds of two- and

Im(E)

Re(E)2θ

Bound state

Resonances

3-body continuum

2-body continuum

FIG. 2. (Color online) Schematic picture of energy eigenvalues
of the three-body Borromean system in CSM.
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three-body decay channels, such as 10Li + n and 9Li + n+ n
in the case of 11Li. This classification of continuum states
in CSM imposes that the outgoing boundary condition for
each open channel is taken into account automatically by the
imaginary parts of energy eigenvalues. Using the classification
of continuum states in CSM, we can describe three-body
scattering states without any explicit enforcement of boundary
conditions.

Furthermore, the complex-scaled eigenstates satisfy the
extended completeness relation (ECR) [46,47], consisting of
bound states, resonances, and rotated continua for the state
index n as

1 =
∑

n

∫ ∣∣�θ
n

〉〈
�̃θ

n

∣∣, (9)

where {�̃θ
n,�

θ
n} form a set of biorthogonal states [46]. This

relation is used when we describe the scattering states with the
Lippmann-Schwinger equation.

In CSLS, we start with the formal solution of the Lippmann-
Schwinger equation given as

	(±)(k, K) = φ0(k, K) + lim
ε→0

1

E − Ĥ ± iε
V̂ φ0(k, K), (10)

where φ0(k, K) is the solution of the asymptotic Hamiltonian
Ĥ0 with two relative momenta k and K in Jacobi coordinates of
the three-body system. The total Hamiltonian Ĥ is the same as
given in Eq. (3), and the interaction V̂ is defined by subtracting
the asymptotic Hamiltonian Ĥ0 from Ĥ .

For the three-body breakup reaction of 11Li, the asymptotic
Hamiltonian Ĥ0 consists of the kinetic part of the 9Li + n+ n
system and the internal Hamiltonian of 9Li since no binary
subsystems have bound states because of the Borromean con-
dition for 11Li. Hence, we can define Ĥ0 and its solution φ0 as

Ĥ0 = ĥ(9Li) +
3∑

i=1

t̂i − T̂c.m., (11)

Ĥ0φ0 =
(

ε9Li + h̄2k2

2μ
+ h̄2K2

2M

)
φ0, (12)

〈r, R|φ0(k, K)〉 = 1

(2π )3
�gs(

9Li) ⊗ eik·r+iK·R, (13)

where μ and M are the reduced masses corresponding to k
and K, respectively. The coordinates r and R are conjugate
to the momenta k and K, respectively. Here, we assume that
the 9Li core is in the ground state with energy of ε9Li after the
breakup. The interaction V̂ in Eq. (10) is given as

V̂ =
2∑

i=1

V̂core-n(ri) + V̂n-n. (14)

We consider the incoming scattering states in bra repre-
sentation, which are used as the final states in the Coulomb
breakup cross section of 11Li. Assuming the Hermiticities of
Ĥ and V̂ , Eq. (10) is rewritten as

〈	(−)(k, K)| = 〈φ0(k, K)| + 〈φ0(k, K)|V̂ lim
ε→0

1

E − Ĥ + iε
.

(15)

In CSLS, we express the Green’s function in Eq. (15) in
terms of the complex-scaled Green’s function. The complex-
scaled Green’s function with the outgoing boundary condition,
Gθ (E), is connected to the nonscaled Green’s function G(E)
as follows:

lim
ε→0

1

E − Ĥ + iε
= G(E) = U−1(θ )Gθ (E)U (θ ). (16)

The explicit form of Gθ (E) is defined as

Gθ (E) = 1

E − Ĥ θ
=

∑
n

∫ ∣∣�θ
n

〉 〈
�̃θ

n

∣∣
E − Eθ

n

, (17)

where ECR defined in Eq. (9) is inserted. Using Eqs. (16)
and (17), we obtain the incoming scattering state 	(−) in CSLS
as

〈	(−)(k, K)| = 〈φ0(k, K)| +
∑

n

∫
〈φ0(k, K)|V̂ U−1(θ )

× ∣∣�θ
n

〉 1

E − Eθ
n

〈
�̃θ

n

∣∣U (θ ). (18)

It is noted that the scattering states in Eq. (18) consist of two
terms: The first term describes the noninteracting three-body
continuum state, which is the same as given in Eq. (10). The
second term contains all information of FSI. Using Eq. (18),
we can extract the effect of each component from the breakup
cross section.

C. Coulomb breakup cross section

The Coulomb breakup reaction is considered to be domi-
nated by the E1 transition. In the present calculation, we obtain
the Coulomb breakup cross section using the E1 transition
strength and the virtual photon number from the equivalent
photon method [48,49].

In CSLS, we calculate the momentum distribution of the
E1 transition strength from the 11Li ground state into the
9Li + n+ n three-body scattering states. The distribution is
given as

d6B(E1)

dkdK
= 1

2Jgs + 1
|〈	(−)(k, K)||Ô(E1)||�gs〉|2, (19)

where �gs and Jgs are the wave function and the total spin
for the initial ground state of 11Li, respectively. The wave
function 	(−)(k, K) is that for the three-body scattering state
of 9Li + n+ n with relative momenta, k and K, and here is
described by using CSLS as shown in Eq. (18). Using the
coordinate sets shown in Fig. 1, the E1 operator Ô(E1) is
given as

Ôm(E1) = 6

11
eRY1m(R̂) = 3

11
[r1Y1m(r̂1) + r2Y1m(r̂2)] ,

(20)

where Y1m is the spherical harmonics and m is the z component
of the operator.
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Using Eq. (19), the two-dimensional energy distribution is
defined as

d2B(E1)

dε1dε2
=

∫∫
dkdK

d6B(E1)

dkdK
δ

(
ε1 − h̄2k2

2μ

)

× δ

(
ε2 − h̄2K2

2M

)
, (21)

where ε1 and ε2 are the relative energies of each subsystem,
such as 9Li-n and n-n. Similarly, the total energy distribution
of the E1 strength is given as

dB(E1)

dE
=

∫∫
dkdK

d6B(E1)

dkdK

× δ

(
E − ε9Li − h̄2k2

2μ
− h̄2K2

2M

)
. (22)

By using Eqs. (21) and (22) and the equivalent photon
method, we can calculate the Coulomb breakup cross sections.
The two-dimensional energy distribution and total energy
distribution of the cross sections are given as

d2σ

dε1dε2
= 16π3

9h̄c
NE1(Eγ )

d2B(E1)

dε1dε2
(23)

and

dσ

dE
= 16π3

9h̄c
NE1(Eγ )

dB(E1)

dE
, (24)

respectively. Here, NE1(Eγ ) is the virtual photon number with
the photon energy Eγ , and Eγ is given as

Eγ = ε1 + ε2 + S2n = E − ε9Li + S2n, (25)

where S2n is the two-neutron separation energy of 11Li.
From Eq. (23), the invariant mass spectra for binary

subsystems such as of 9Li-n and n-n are given as

dσ

dε1
=

∫
dε2

d2σ

dε1dε2
, (26)

where ε1 is the relative energy of the binary subsystem.

III. RESULTS

A. Properties of 10Li and 11Li

We here discuss the properties of 10Li and 11Li obtained in
the present coupled-channel 9Li + n + n model. In Table I,
we show the 10Li results. We obtain the p-wave doublet
resonances, 1+ and 2+, constructed from the coupling between

TABLE I. Resonance energies and decay widths of p1/2 reso-
nances of 10Li, measured from the 9Li + n threshold. The scattering
lengths as are for the s1/2 virtual states of 10Li. The experimental data
for as are also listed.

1+ 2+ 1− 2− Exp.

Energy (keV) 275 506
Width (keV) 150 388
as (fm) −6.8 −45.0 −30+12

−31
a

aReference [17].

TABLE II. Ground-state properties of 11Li. See the text for details.

Theor. Exp.

S2n (keV) 377 378 ± 5a

Rm (fm) 3.39 3.12 ± 0.16b

3.53 ± 0.06c

3.71 ± 0.20d

Rch (fm) 2.43 2.467 ± 0.037e

2.423 ± 0.034f

P [(s1/2)2] (%) 44.0 45 ± 10g

P [(p3/2)2] (%) 2.5
P [(p1/2)2] (%) 46.9
P [(d5/2)2] (%) 3.1
P [(d3/2)2] (%) 1.7

aReference [50].
bReference [51].
cReference [52].
dReference [53].
eReference [54].
fReference [55].
gReference [16].

the spins of the last neutron and 9Li(3/2−). Two resonances
are located at 275 and 506 keV measured from the 9Li + n
threshold with the decay widths of 150 and 388 keV for 1+
and 2+, respectively. There are also the s-wave doublet states
of 1− and 2− in 10Li in the same reason of the spin coupling
as the p-wave case. The scattering length as for the 2− state is
obtained as −45.0 fm, quite a large negative value, and shows
good agreement with the experimental one within the error
bounds [17]. The present large negative value of as indicates
the existence of the virtual s states in 10Li(2−). It is noted that
the previous value of as is about −18 fm in Ref. [29], which is
negatively smaller than the present one, because the smaller 2n
separation energy of 11Li, suggested from the old experiment,
was adopted to determine the 9Li-n interaction.

We show the ground-state properties of 11Li in Table II. The
calculated matter and charge radii, Rm and Rch, are obtained
as 3.39 and 2.43 fm, respectively, and are in a good agreement
with the observed data. We also calculate the probabilities of
the partial wave components P [(lj )2] of the last two neutrons.
The probability of (s1/2)2 is very large and consistent with the
observed data [16], which is almost equal to that of the (p1/2)2

component. The large s-wave mixing generates the neutron
halo structure and also indicates the breaking of the N = 8
magic number. From the results, the present coupled-channel
9Li + n+ n model using TOSM for the 9Li core well repro-
duces the structures of 10Li and 11Li, in particular, those related
to the s-wave properties. Other ground-state properties, such as
the quadrupole moment and the spin dipole moment of 9Li and
11Li, have been discussed, and it was shown that the present
coupled-channel 9Li + n+ n three-body model also explains
those observed quantities [29,30]. The detailed analysis from
the experimental side has been summarized in Ref. [21].

In the previous works [28,29], it has been discussed that
the 2p-2h configurations induced by the tensor and pairing
correlations in the 9Li core are essential to explain the various
physical observables in 10Li and 11Li. It was shown that in
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9Li, the specific excitations of neutrons into the p1/2 orbit
occurred due to the tensor and pairing correlations, so that
in 10Li and 11Li, the coupling between the excited p1/2

neutron in 9Li and the last p1/2 neutrons give rise to the Pauli
blocking, which loses the total energy of 10Li and 11Li with
p-wave configurations. As a result, the s-wave configurations
dynamically gain the energy and are largely mixed, which are
sufficient to explain the s-wave properties of the two nuclei. It
was found that the tensor correlation gives the stronger effect
of the Pauli blocking than the pairing case [28,29]. The large
matter and charge radii of 11Li can be the consequences of the
Pauli-blocking effect and become important quantities for the
Coulomb breakup reaction, because the charge radius affects
the E1 transition from the viewpoint of the sum rule value
and this transition can be dominant in the Coulomb breakup
reaction. Actually in Ref. [36] the low-energy E1 strength
of 11Li is sensitive to the s-wave component of the ground
state. Esbensen et al. discussed [27] the relation between the
Coulomb breakup strength and the charge radius of 11Li. They
concluded that the simple 9Li + n+ n model cannot explain
both quantities simultaneously. This problem is solved in
the present coupled-channel 9Li + n+ n model including the
tensor and pairing correlations in the 9Li core.

To see the effect of the channel coupling, we also performed
the single-channel calculation [29] using the inert 9Li core with
the 0p-0h configuration and adjust V̂core-n to fit the experimental
S2n value. The result shows that the (p1/2)2 configuration of
last two neutrons dominates the 11Li ground state with the
probability 90.6%, which preserves the p-shell magic number
of neutrons. Instead, the (s1/2)2 configuration is mixed very
small by only 4.3%. Accordingly, the matter and charge radii
are obtained as 2.99 and 2.34 fm, respectively [29], both
of which are smaller than the experimental values shown in
Table II. These results indicate that the halo structure is not
so developed and the inert core assumption cannot explain the
properties of 11Li. For 10Li, the scattering lengths of s-wave
states do not show the negative value, which does not support
the existence of the virtual s state. The results of 10Li and 11Li in
the single-channel calculations are significantly different from
the results of the coupled 9Li + n+ n model. This fact means
that the single-channel calculation using an inert core is inade-
quate to understand the structures of 10Li and 11Li consistently.

B. Coulomb breakup cross section

We calculate the Coulomb breakup cross section of 11Li
using Eq. (24) with the E1 strength distribution and take care
of the experimental resolution [56]. The target is Pb and the
incident energy of the 11Li projectile is 70 MeV/nucleon. The
cross section measured from the 9Li + n+ n threshold energy
is shown in Fig. 3. It is found that the results show good
agreement with the experiment [12] for shape and magnitude
over the whole energy region. The distribution shows a low-
lying enhancement at around 0.25 MeV and rapidly decreases
as the energy increases. In the CSM calculation, there is no
three-body dipole resonance, whose decay width can make a
visible structure on the cross section.

One of the characteristics of 11Li is quite a large (s1/2)2

mixing, 45%, in the ground state, which generates the halo
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FIG. 3. (Color online) Coulomb breakup cross section of 11Li,
measured from the 9Li + n + n three-body breakup threshold. The
red (gray) solid line represents the cross sections calculated with
CSLS. The experimental data are taken from Ref. [12], shown as the
open squares with error bars.

structure. It is interesting to see the effect of the large s-wave
mixing on the Coulomb breakup strength. We here calculate
the E1 strength distributions using the different 11Li wave
functions, in which the coupling of the 2p-2h configuration
involved only by the neutron pairing correlation in the 9Li
core is taken into account. This restriction of the correlation in
9Li leads to the small (s1/2)2 component as 21.0% in the ground
state [36]. The calculated distribution is shown in Fig. 4 as red
(gray) dashed line. The distribution shows a relatively small
strength at the peak energy, the magnitude of which is about
a half of the original one with a large s-wave mixing. The
result indicates that a large s-wave mixing in the ground state
plays a significant role in reproducing the observed low-lying
enhancement in the breakup strength. This point has also been
discussed in the previous analysis by changing the s-wave
properties of 11Li [36]. The explicit effect of the virtual s state
of 10Li in the Coulomb breakup is discussed using the invariant
mass spectra in the next subsection. It is suggested that the
large s-wave mixing enhances the dineutron correlation in the
11Li ground state [29].
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FIG. 4. (Color online) Comparison between the E1 strength
distribution with different (s1/2)2 components. The black (solid) line
represents the present result used in Fig. 3. The red (gray) dashed
line is the result of using the ground-state wave function with
(s1/2)2 = 21%. The blue (gray) dotted line is the result taken from
Ref. [26].
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It is important to clarify the effect of the correlations in the
9Li core on the E1 strength distribution. For this purpose, we
compare our coupled-channel calculation including only the
pairing correlation and that of the simple 9Li + n+ n model
assuming an inert 9Li core [26], which gives 20.6% of the
(s1/2)2 component and −5.6 fm scattering length of the s-wave
state of 9Li-n. Both wave functions contain almost the same
amount of the s-wave component in the 11Li ground state. In
two kinds of results, the E1 strength distributions commonly
have peaks at around 0.5 MeV; however, there exists a large
difference of strength around the peak energy. This is due
to the fact that about 15% of the integrated strength in our
calculation escapes to the higher excited 11Li states having the
excited components of the 9Li core.

From these comparisons, it is summarized that the large
s-wave mixing in the initial ground state of 11Li and the corre-
lations in the 9Li core play essential roles in reproducing the
Coulomb breakup cross section, in particular, the position and
the magnitude of the low-lying enhancement. Furthermore,
the large s-wave mixing has a strong influence on the breakup
mechanism. In our previous work [36], we discussed how the
s-wave mixing in the ground state enhances the direct breakup
process into the 9Li + n+ n states instead of the sequential
one via the p-wave resonances in 10Li. In fact, when the
s-wave mixing is about 40% in the ground state, the three-body
direct breakup process exhausts 66% of the integrated E1
strengths. This result is much different from the 6He case,
in which the sequential process via the 5He(3/2−) resonance
dominates the breakup reaction [46]. This difference between
11Li and 6He can be understood as the effect of two-neutron
s-wave component on the Coulomb breakup process. It should
be noticed that the discussion of the breakup mechanism in
Ref. [36] is based on the strength distribution calculated in
CSM, in which the s-wave virtual states of 10Li cannot be
separated from the continuum states. Such a calculation cannot
distinguish the sequential process via the s-wave virtual states
from the direct breakup process. It is important to derive
the invariant mass spectra of the 9Li + n subsystem in order
to estimate appropriately the contribution of the sequential
breakup process via the virtual state in the final states, which
is shown in the next subsection.

In addition to the ground-state properties of 11Li, it is also
interesting to see the effect of the final-state interaction (FSI)
on the Coulomb breakup cross section. The FSI is defined in
Eq. (14). In CSLS, all the effects of FSI in the scattering wave
functions are included in the second term in Eq. (18). We can
drop off the second term in the calculation of the cross section
to examine the effect of FSI, while we do not change the initial
ground-state wave function. The cross section without FSI is
shown in Fig. 5 as red (gray) dashed line and has a broad peak
structure at 0.5 MeV. It is found that the magnitude is much
smaller than the full results including FSI, while there is a
very small difference between two results in the higher energy
region above 1 MeV. From this analysis, it is concluded that
in addition to the initial-state properties of 11Li, FSI gives a
significant effect to create the low-lying enhancement in the
Coulomb breakup cross section of 11Li. This large effect of
FSI has been shown in previous analyses [15,26,29] for the
Coulomb breakups of 11Li and 6He.
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FIG. 5. (Color online) Comparison between the calculated
Coulomb breakup cross sections of 11Li. The black (solid) line
represents the same result in Fig. 3. The red (gray) dashed line is
the result without FSI.

C. Invariant mass spectra of binary subsystems of 11Li

To see the effect of FSI in more detail, we calculate the
invariant mass spectra using Eq. (26) in the Coulomb breakup
reaction of 11Li. In Fig. 6, we show the results as functions
of the relative energies of 9Li-n and n-n subsystems as panels
(a) and (b), respectively, together with the results calculated
without FSI. It is found that both spectra have sharp peak struc-
tures commonly below 0.1 MeV. From those results, the peaks
in the invariant mass spectra are understood to come from FSI.
In Fig. 6(b), the peak seen in the n-n invariant mass spectra is
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FIG. 6. (Color online) Invariant mass spectra for 9Li-n and n-n
binary subsystems. The panels (a) and (b) represent the results for
9Li-n and n-n subsystems, respectively. The red (gray) solid lines
show the results with FSI and the black (dashed) ones are those
without FSI.
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(gray) dashed lines represent the results for relative s- and p-wave
components, respectively. The black (thin) line is same as the result
with FSI in Fig. 6(a). Two arrows indicate the positions of resonance
energies of 1+ and 2+.

caused obviously by the n-n virtual state, because FSI, V̂n-n,
produces no resonance. Such a peak due to the n-n virtual state
is also seen in the Coulomb breakup reaction of 6He [15].

For the invariant mass spectrum of the 9Li-n subsystem,
Hagino et al. [26] discussed that both the s-wave virtual state
and the p-wave resonance of 10Li contribute to the E1 strength
distribution using the simple 9Li + n+ n three-body model
without the tensor correlation in the 9Li core. On the other
hand, as shown in Fig. 6(a), our prediction indicates only a
single prominent peak below 0.1 MeV. This peak is considered
to come from the s-wave virtual state due to V̂core-n.

To see explicitly the partial-wave contributions in the 9Li-n
invariant mass spectrum, we calculate the decomposed spectra
as shown in Fig. 7. The results show that the s-wave component
has a peak below 0.1 MeV, which comes from the virtual
s state of 10Li. The p-wave component has a broad bump
at around 0.15 MeV. It is found that the bump energy does
not correspond to the p-wave resonance energies in 10Li,
indicated by two arrows in Fig. 7. This result means that the
p-wave contribution in the spectra comes from the nonresonant
continuum states of 9Li-n. Thus we can conclude that the shape
of the invariant mass spectra of 9Li-n is mainly determined
by the virtual s state in 10Li, while the nonresonant p-wave
contribution gives some amount in the spectra, which becomes
dominant at energies greater than 0.2 MeV. This conclusion
contradicts the result in Ref. [26], in which the p-wave
resonance has a sizable contribution to the strength and the
virtual s state seems to give a small effect on the strength in
comparison with the present result.

The reason why the p-wave resonances are not observed in
the present 9Li-n invariant mass spectra can be understood as
follows: The p-wave resonances of 10Li are located at 0.275
and 0.506 MeV for 1+ and 2+, respectively, as shown in Table I.
On the other hand, the breakup cross section has a peak at
around 0.25 MeV as shown in Fig. 3. This peak energy is
lower than the energies of the p-wave resonances of 10Li.
The relation of energies implies that the sequential breakup
process via the p-wave resonances of 10Li is energetically
not favored at around the peak energy of the cross section.
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FIG. 8. (Color online) Two-dimensional energy distributions of
the Coulomb breakup cross section of 11Li, where ε1 and ε2 are
the relative energy of the 9Li-n subsystem and the energy of the
relative motion between the center of mass of the 9Li-n subsystem
and the other neutron, respectively. Panel (a) presents the total
distribution, and panels (b) and (c) present the results for s- and
p-wave components for the relative motion of 9Li-n, respectively.

From this energy condition, the p-wave resonances give a
minor contribution to the Coulomb breakup reaction of 11Li.
In fact, since the observed breakup cross section shows a peak
at 0.25 MeV [12], it seems to be difficult to observe the p-wave
resonances in the 9Li-n invariant mass spectra if those energies
are higher than 0.25 MeV. On the other hand, the breakup cross
section calculated by Hagino et al. [26] has a peak at around
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0.5 MeV, higher than the p-wave resonance energies of 10Li. In
that case, the sequential breakup via the p-wave resonances of
10Li is favorably allowed and can make the peak in the strength.

The contributions of the s- and p-wave components in
the 9Li-n invariant mass spectra can be seen more clearly in
the two-dimensional energy distributions of the cross section,
d2σ/dε1dε2, shown in Fig. 8. Here, ε1 and ε2 are the relative
energy of the 9Li-n subsystem and the energy of the relative
motion between the center of mass of the 9Li-n subsystem and
the other neutron, respectively. The distributions are calculated
by using Eq. (23). It is found that the total distribution shown
in Fig. 8(a) has two peaks at small energies of ε1 and ε2,
respectively. The origin of those structures are confirmed by
decomposing the distribution into the s- and p-wave compo-
nents for the 9Li-n states. In Fig. 8(b), the s-wave component
is shown and the concentration of the strength is found at
ε1 = 0.03 MeV and ε2 = 0.13 MeV. This peak near the zero
energy of ε1 is a consequence of the virtual s state of the 9Li-n
system. In Fig. 8(c), the p-wave component shows a peak
at ε1 = 0.12 MeV and ε2 = 0.03 MeV and the distribution
is relatively wider for ε1 than for the s-wave case, which
is consistent with the nonresonant breakup of the p-wave
component in the 9Li-n system. It is also found that the s- and
p-wave components have similar magnitudes. Small bumps
are obtained at small energies of ε2 in Fig. 8(b) and of ε1 in
Fig. 8(c) for the s- and p-wave components, respectively. This
result suggests a coupling between s- and p-wave components.

IV. SUMMARY

We have investigated the Coulomb breakup reaction of
two-neutron halo nucleus 11Li using the coupled-channel
9Li + n+ n three-body model. The three-body scattering states
of 11Li are described in terms of the complex-scaled solutions
of the Lippmann-Schwinger equation (CSLS). In the present
model of 11Li, we take into account 2p-2h configurations of the
9Li core, which describes the tensor and pairing correlations in
the 9Li core on the basis of the tensor-optimized shell model.
As a result, we can reproduce the breaking of the N = 8 magic
number due to the large s-wave mixing, which brings the
neutron halo structure in 11Li and also explains the s-wave
property of 10Li simultaneously. In this paper, we calculated
the transition from the 11Li ground state into the three-body
scattering states using CSLS by the Coulomb response. In
CSLS, the Green’s function using the complex-scaled wave
functions provides the three-body scattering states of 11Li,
which include much information about the correlations not
only of three-body system but also of the binary subsystems
of 9Li-n and n-n.

The calculated Coulomb breakup cross section of 11Li
into the three-body scattering states shows the low-lying
enhancement and well reproduces the observed data over
the whole energy region. The magnitude of the low-lying
enhancement is sensitive to the s-wave mixing in the initial
11Li ground state, the value of which is obtained as 44% in
the present calculation and reproduces the experimental value.
The excitation of the 9Li core is also important to reproduce
the total breakup strength, because about 15% of the strength
escapes to the higher energy region as the component of the
core excitation in the present coupled-channel approach. This
component reduces the low-energy strength corresponding to
the experiment. These two effects nicely work to determine
the distribution of the cross section of 11Li.

It is confirmed that the low-lying enhancement in the cross
section is also affected by the FSI in the 9Li + n+ n three-body
system. This result is similar to the 6He breakup case except for
the large s-wave mixing in the ground state. To determine what
kinds of FSI dominate the Coulomb breakup reaction of 11Li,
we calculate the invariant mass spectra as functions of the
energies of the two kinds of the binary subsystems of 10Li
as 9Li-n and n-n. The calculated spectra show the sharp
peak structures below 0.1 MeV from the thresholds in both
cases. It is found that those peaks come from the virtual-
state correlations in 10Li and n-n subsystems in the final
states, respectively. On the other hand, it is found that the
p-wave resonances of 10Li have minor effects on the breakup
cross section. This is because the p-wave resonances of
10Li are energetically located higher than the energy of the
low-lying enhancement in the breakup cross section, so that
the sequential breakup process via the p-wave resonances is
mostly forbidden in energy. In relation to this fact, the effect
of FSI on the p-wave component of the 9Li-n invariant mass
spectra is suggested to be small. This feature of the 11Li
breakup is very different from the 6He case, which shows
a large effect of the p-wave component of the 4He-n states
and, instead, a minor effect of the s-wave component.
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R & D Platform Formation of Nuclear Reaction Data in Asian
Countries (2010–2013), the Asia-Africa Science Platform
Program, and the Japan Society for the Promotion of Science
for support. Numerical calculations were performed on a
computer system at RCNP, Osaka University.

[1] I. Tanihata, J. Phys. G 22, 157 (1996).
[2] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J.

Thompson, and J. S. Vaagen, Phys. Rep. 231, 151 (1993).
[3] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida,

N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and
N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).

[4] T. Kobayashi, Nucl. Phys. A 538, 343 (1992).

[5] K. Ikeda, INS Report No. JHP-7, 1988 (published in Japanese).
[6] N. Fukuda, T. Nakamura, N. Aoi, N. Imai, M. Ishihara,

T. Kobayashi, H. Iwasaki, T. Kubo, A. Mengoni, M. Notani
et al., Phys. Rev. C 70, 054606 (2004).

[7] T. Aumann, D. Aleksandrov, L. Axelsson, T. Baumann, M. J.
G. Borge, L. V. Chulkov, J. Cub, W. Dostal, B. Eberlein, T. W.
Elze et al., Phys. Rev. C 59, 1252 (1999).

034606-9

http://dx.doi.org/10.1088/0954-3899/22/2/004
http://dx.doi.org/10.1016/0370-1573(93)90141-Y
http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1016/0375-9474(92)90784-H
http://dx.doi.org/10.1103/PhysRevC.70.054606
http://dx.doi.org/10.1103/PhysRevC.59.1252
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