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The two-proton decay process is studied by using a simple approach within the framework of scattering theory.
We assume that the decaying nucleus is in a pairing state and, therefore, the two-particle wave function on
the nuclear surface corresponds to the two protons moving in time-reversed states. This allows us to sustain a
simplified version of the decay where the protons are simultaneously emitted with the same energies. We thus
obtain a coupled system of radial equations with outgoing boundary conditions. We use similar proton-proton
interactions to solve BCS equations and to describe external two-proton dynamics. A strong dependence of the
pairing gap and decay width upon the proton-proton interaction strength is revealed. The experimental half-lives
of 45Fe and 48Ni are reproduced by using a realistic proton-proton interaction.
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I. INTRODUCTION

The radioactive process in which two protons are emitted
is a very exotic mode of decay that is energetically possible
in some nuclei only. In the earlier sixties Goldansky proposed
two extreme mechanisms in which the particles are emitted,
either simultaneouly or sequentially [1]. Due to different
Coulomb barriers the penetrability in the two cases leads to
decay widths differing from each other by several orders of
magnitude. A systematic theoretical analysis of the processes
involving the inherent three-body problem was performed
for the first time in Ref. [2]. The interest in this subject
has increased in recent years due to experimental advances
that made possible the measurement of this rare event. The
theoretical description of the decays was performed by using
few-body formalisms [3–5] as well as R-matrix approaches
[6,7]. Even techniques based on the Feshbach reaction theory
and the continuum shell model were applied [8,9]. Still the old
question of whether the two protons decay as a single cluster
or whether they decay independently of each other remains.
The one-proton decay systematics reveals simple two-body
features depending on the Coulomb and centrifugal parameters
[10]. The systematic analysis of decay processes indicates
that the two-proton emission has a three-body character,
between the diproton and pure sequential decay [11]. The exact
three-body treatment in terms of hyperspherical coordinates or
by using the continuum shell model is rather involved. We will
consider that the two protons are emitted from a correlated
pairing state. It is important to point out that the pairing
interaction induces a clustering of the two protons. This is
a fundamental property in α emission, because it explains
the clustering of the four nucleons that eventually constitutes
the α particle [12]. We use this property below by assuming
that near the nuclear surface the two protons lie near each
other.

In Sec. II we give the necessary theoretical background, in
Sec. III we apply it to compute the two-proton decay width,
and in the Sec. IV we draw conclusions.

II. THEORETICAL BACKGROUND

We start by pointing out that in medium nuclei, where we
perform the calculations, the mass of the daughter nucleus is
much larger than the mass carried by the decaying protons. We
therefore neglect recoil effects. We consider that the parent and
the daughter nuclei are spherical. The parent ground state (gs)
|P 〉 can be expanded in terms of the daughter gs |D〉 as

|P 〉 =
∑
εlj

Xεlj [a†
εlj a

†
εlj ]0|D〉, (2.1)

where the operator a
†
εlj creates a single particle (sp) proton

eigenstate of the mean field potential. In r representation it is

a
†
εljm → ψεljm(r, s) = fεlj (r)

r

[
ilYl(r̂) ⊗ χ 1

2
(s)

]
jm

, (2.2)

where fεlj (r) is the radial wave function and the rest of
the notation is standard. We assume that the states with
positive energy are sp resonances. They are normalized to
unity inside the Coulomb barrier and at large distances behave
like outgoing Coulomb waves [13]:

fεlj (r) −→
r→∞ MεljH

(+)
l (r) ≡ Mεlj [Gl(r) + iFl(r)], (2.3)

where Mεlj defines the one-proton scattering amplitude.
In our calculations we consider that the two emitted protons

are initially paired. Thus, the expansion coefficients,

Xεlj = 1

2
P 〈BCS|[a†

εlj ⊗ a
†
εlj ]0|BCS〉D =

√
2j + 1

2
χεlj ,

(2.4)

are given in terms of BCS amplitudes as

χεlj ≡ uP
εlj v

D
εlj

∏
k 	=(εlj )

(
uP

k uD
k + vP

k vD
k

)
. (2.5)
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The two-proton formation amplitude, according to
Eq. (2.1), is given by

Xεlj [a†
εlj a

†
εlj ] → �εlj (r1, s1, r2, s2)

= XεljA{ψεlj (r1, s1) ⊗ ψεlj (r2, s2)}0

=
√

2Xεlj [ψεlj (r1, s1) ⊗ ψεlj (r2, s2)]0. (2.6)

The recoupling from the j -j (spin-spin) to the L-S (spin-orbit)
scheme gives a superposition between singlet and triplet terms.
Because the initial wave function corresponds to the paired
two-proton state only the singlet component is relevant. This
can be written as

�
(0)
εlj (r1, r2) =

√
2Xεlj

〈
(ll)0,

(
1

2

1

2

)
0; 0

∣∣∣∣
(

l
1

2

)
j,

(
l
1

2

)
j ; 0

〉

× [φεlj (r1) ⊗ φεlj (r2)]0

=
√

2Xεlj

〈
(ll)0,

(
1

2

1

2

)
0; 0

∣∣∣∣
(

l
1

2

)
j,

(
l
1

2

)
j ; 0

〉

× fεlj (r1)fεlj (r2)

r1r2
Yl(r̂1, r̂2)

≡ Fεlj (r1, r2)

r1r2
Yl(r̂1, r̂2), (2.7)

where we defined the two-proton azimuthal harmonics:

Yl(r̂1, r̂2) ≡ [ilYl(r̂1) ⊗ ilYl(r̂2)]0

=
√

2l + 1

4π
Pl(cos θ ) ≡ Yl(cos θ ). (2.8)

Thus, the two-proton dynamics can be described in terms of
three coordinates, r1, r2, and θ , as in Fig. 1.

The next step is the description of the two-proton emission
process. The motion of the two protons beyond the nuclear
surface is described by the Schrödinger equation

Hψ(r1, r2) = Eψ(r1, r2), (2.9)

with outgoing boundary conditions. We suppose that the
emitted protons have equal energies, due to the fact that they
initially occupy paired states with the same sp energy ε = E/2
in Eq. (2.7).

FIG. 1. The geometry of the two-proton emission.

The Hamiltonian in the laboratory system of coordinates is
similar to that describing two electrons in a 4He atom [14],
i.e.,

H = − h̄2

2μr1

∂2

∂r2
1

r1 − h̄2

2μr2

∂2

∂r2
2

r2 + h̄2

2μ

(
1

r2
1

+ 1

r2
2

)
L̂2

+ V (r1) + V (r2) + v(r12), (2.10)

where μ = mpMD/(mp + MD) is the proton reduced mass,
L̂2 denotes the standard angular momentum operator squared
and the modulus of the relative radius is given by

r12 = |r1 − r2| =
√

r2
1 + r2

2 − 2r1r2 cos θ. (2.11)

The proton-daughter potential is

V (rk) = VN (rk) + VC(ZDe2, RD, rk), k = 1, 2, (2.12)

where VN (rk) denotes the nuclear mean field, which we take
as a Woods-Saxon potential including the spin-orbit term.
The Coulomb potential VC(ZDe2, RD, rk) corresponds to a
homogeneous sphere with charge ZDe, i.e.,

VC(ZDe2, RD, rk) = ZDe2

2RD

(
3 − r2

k

R2
D

)
�(RD − rk)

+ ZDe2

rk

�(rk − RD), (2.13)

where RD = 1.2A
1/3
D is the daughter radius. We take for the

proton-proton interaction a Gaussian form. Therefore the total
proton-proton interaction is

v(r12) = −v0e
−(r12/r0)2 + VC(e2, r0, r12). (2.14)

where v0 and r0 are parameters suggested by scattering
nucleon-nucleon experiments, as we see below.

The two-proton wave function can be expanded in terms of
the two-proton azimuthal harmonics (2.8) in a fashion similar
to that of the monopole pairing wave function (2.7), i.e.,

ψ(r1, r2) =
∑

l

gl(r1, r2)

r1r2
Yl(cos θ ), (2.15)

and the resulting system of coupled radial equations becomes[
− h̄2

2μ

∂2

∂r2
1

− h̄2

2μ

∂2

∂r2
2

+ h̄2l(l + 1)

2μ

(
1

r2
1

+ 1

r2
2

)

+ V (r1) + V (r2) − E

]
gl +

∑
l′

vll′gl′ = 0, (2.16)

where the proton-proton matrix elements are given by

vll′ = l̂ l̂′

2

∫ 1

−1
v(r12)Pl(cos θ )Pl′(cos θ )d cos θ. (2.17)

Because the proton-daughter potential depends upon lj , in the
notation below it has to be understood that l → (l, j ).

To properly satisfy the asymptotic boundary conditions, it
is more conveninent to use polar coordinates:

r1 = r cos ϕ, r2 = r sin ϕ,
(2.18)

r ∈ [0,∞), ϕ ∈
[

0,
π

2

]
.
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One can thus describe the two-proton dynamics in terms of
one radius, r =

√
r2

1 + r2
2 , and two angles, ϕ and θ . This

procedure is different than the one in the hyperspherical
formalism [3], but the main idea is the same, namely, to obtain
a coupled system of equations for the radial components of the
wave function with boundary conditions compatible with the
emission process. Introducing the function

gl(r, ϕ) = gl(r, ϕ)√
r

, (2.19)

the system of radial equations contains only second-order
derivatives,

(
∂2

∂r2
+ ∂2

r2∂ϕ2

)
gl(r, ϕ)

= 2μ

h̄2 [Vl(r, ϕ) − E] gl(r, ϕ) + 2μ

h̄2

∑
l′

vll′ (r, ϕ)gl′(r, ϕ),

(2.20)

where

Vl(r, ϕ) = h̄2

2μ

[
l(l + 1)

(
1

r2
1

+ 1

r2
2

)
− 1

4r2

]
+ V (r1) + V (r2)

= h̄2

2μr2

[
4l(l + 1)

sin2 2ϕ
− 1

4

]
+ V (r cos ϕ) + V (r sin ϕ)

(2.21)

is a symmetric function with respect to the exchange of
the variables (r1, r2) or (ϕ, π

2 − ϕ). Because the pairing
interaction acting upon the two protons induces their clus-
tering [12], as we show below, we expect that the most
important contribution is given by the configuration where
proton radii are equal to each other, i.e., r1 = r2 = r/

√
2,

which implies that ϕ = π/4. Therefore the protons depart
from the parent nucleus symmetrically with respect to the
angle θ . The case ϕ 	= π/4 describes a sequential two-
proton emission. Thus, “the degree of sequentiality” is
described by the difference ϕ − π/4. Notice that the two
extreme cases with ϕ = 0 and π/2 correspond to one-proton
decay.

The system of Eqs. (2.20) can be solved by expanding
the solution in terms of products between radial and angular
functions [15], i.e.,

gl(r, ϕ) =
∑

k

Rlk(r)Zlk(r, ϕ), (2.22)

where the angular components are eigenstates of the eigen-
value problem given by

[
− ∂2

r2∂ϕ2
+ 2μ

h̄2 Vl(r)

]
Zlk(r, ϕ) = λlk(r)Zlk(r, ϕ),

(2.23)

Zlk(r, 0) = Zlk

(
r,

π

2

)
= 0.

In the following we simplify the problem by integrating the
system (2.20) for a given angle ϕ. The system of radial

equations becomes

∂2gl(r, ϕ)

∂r2
= 2μ

h̄2 [Vl(r, ϕ) − E]gl(r, ϕ)

+ 2μ

h̄2

∑
l′

vll′ (r, ϕ)gl′(r, ϕ), (2.24)

Because the nuclear part of the daughter-proton potential
practically vanishes for r1, r2 > RD one obtains a simple
expression for Vl(r), namely,

Vl(r) ≈ h̄2

2μr2

[
4l(l + 1)

sin2 2ϕ
− 1

4

]

+ ZDe2

r

(
1

sin ϕ
+ 1

cos ϕ

)
. (2.25)

We have thus reduced the initial entangled dynamics of the
system into a rather simple two-body problem.

To check the validity of this approximation we compared
the numerical solution gl(r, ϕ) in the absence of the interproton
potential (vll′ = 0) with the exact solution, given by the product
of Coulomb-Hankel functions H

(+)
l for each l, i.e.,

g
(exact)
l (r, ϕ) = H

(+)
l (r cos ϕ)H (+)

l (r sin ϕ). (2.26)

We obtained 1 � [log10 gl/ log10 g
(exact)
l ] � 1.1.

To solve the system (2.24) it is convenient to introduce
the fundamental matrix of independent solutions [13]. It turns
out that the matrix elements of the proton-proton interaction
(2.17) decrease as the polar radius r increases. This feature is
due to the strong cutoff property of the exponential factor
exp[−(r/r0)2(1 − cos θ )] in Eq. (2.14) at large distances.
Therefore the fundamental matrix of solutions at large dis-
tances has practically a diagonal form and each element is
given by the product of one-proton outgoing Coulomb waves,
i.e.,

H(+)
lk (r, ϕ) −→

r→∞ δlkH
(+)
l (r cos ϕ)H (+)

l (r sin ϕ), (2.27)

where k labels that element. The general solution is given by
the superposition of different columns

gl(r, ϕ) =
∑

k

NkH(+)
lk (r, ϕ)

−→
r→∞ NlH

(+)
l (r cos ϕ)H (+)

l (r sin ϕ). (2.28)

The coefficients defining the scattering amplitudes [13], are
determined by matching the general solution with the internal
radial wave function (2.7). One thus gets

gl′(r, ϕ) =
∑

k

NkH(+)
l′k (r, ϕ)

= Fεlj (r cos ϕ, r sin ϕ)δll′ , (2.29)

where εlj are the sp quantum numbers of the initial state. In
the absence of the proton-proton interaction one obtains only
one nonvanishing scattering amplitude corresponding to the
quantum numbers of the initial paired state:

Nl =
√

2Xεlj

〈
(ll)0,

(
1

2

1

2

)
0; 0

∣∣∣∣
(

l
1

2

)
j,

(
l
1

2

)
j ; 0

〉
M2

εlj .

(2.30)
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By applying the Schrödinger equation with complex energy
E − i�/2 one obtains in a standard fashion the total decay
width by integrating over θ [13]:

�(ϕ) = (sin ϕ + cos ϕ)h̄v
∑

l

|Nl|2. (2.31)

The total width is given by

� = 2

π

∫ π/2

0
�(ϕ)dϕ. (2.32)

III. NUMERICAL APPLICATION

We investigate the two-proton emitters 45Fe and 48Ni.
The first nucleus is superfluid, while the second one is
in a normal proton phase. The experimental values of the
energies and half-lives are E = 1.14 ± 0.04 MeV and T =
4.7(+3.4,−1.4) ms for 45Fe [16] and E = 1.35 ± 0.02 MeV
and T = 2.1(+2.1,−0.7) ms for 48Ni [17]. For the central
nuclear field we use a standard Woods-Saxon potential with
universal parametrization [18]. The strength of the potential
was adjusted to reproduce the available experimental two-
proton emission energy E = 2ε.

The nuclear structure properties are described by the wave
function amplitudes Xεlj in Eq. (2.4). The u and v occupation
amplitudes are evaluated as usually, i.e., by solving the BCS
equations for the parent and daughter nuclei, respectively.
To solve the internal problem in a self-consistent way with
respect to the external two-proton dynamics, we evaluated the
pairing matrix elements entering BCS equations by using a
similar proton-proton interaction given by Eq. (2.14). Details
of the estimation of the pairing interaction matrix elements,
which depend upon relative coordinates, in terms of absolute
coordinates can be found in Ref. [19].

In Ref. [20] the coherent length of the pairing interaction,
estimated by using the Gogny force, has a much larger value
inside the nucleus than in the external region. Figure 5
of this Ref. [20], corresponding to Ni isotopes, predicts a
mean coherence length of about 6 fm in the internal region,
decreasing as one approaches the nuclear surface and reaching
the value of 2 fm just outside the nucleus. Actually one expects
that the size of any cluster increases when going from outside
to inside the nucleus because inside the Pauli blocking hinders
nucleons to cluster together and, therefore, the cluster loses
binding and becomes larger.

In the evaluation of the proton-proton interaction (2.14)
we adopted the value r

(int)
0 = 6 fm for the size parameter. We

found that larger values of r
(int)
0 have a smoothing effect on the

pairing gap as a function of the sp level.
We estimated the quantity χεlj , Eq. (2.5), corresponding

to the two-proton emission from 45Fe as a function of the
sp state number k. In Fig. 2 we averaged this quantity
over neighboring states to smooth out local oscillations. For
comparison the uv product in the parent nucleus (dashed
line) and the same quantity in the daughter nucleus (dot-
dashed line) are also shown. The decaying state corresponds
to the Fermi level k = 7, with ε = 0.57 MeV, l = 3, and
j = 7/2. For the normal phase, like in 48Ni, we use in the
parent nucleus a sharp distribution around the Fermi surface

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14 16 18 20

FIG. 2. The function χεlj [Eq. (2.5)], which is proportional to the
formation amplitude (2.4), corresponding to the two-proton emission
from 45Fe as a function of the sp state number (solid line). The dashed
line is the uv product in the parent nucleus and the dot-dashed line
is the same product in the daughter nucleus. The Fermi level is at
k = 7. The parameters of the pairing interaction in Eq. (2.14) are
v0 = 35 MeV and r0 = 2 fm.

and compute the two-proton wave function corresponding to
Eq. (2.7).

As mentioned above, near the nuclear surface the pairing
interaction induces a clustering of the two protons. One thus
expects that at that position the corresponding wave function
acquires its maximum value. This is indeed the case, as shown
in Fig. 3(a), where the wave function is plotted as a function of
the radial coordinate r . A similar clustering feature can be seen
on the ϕ coordinate. In Fig. 3(b) we plotted the dependence of
the wave function upon the angle ϕ for the radius r = 6 fm, cor-
responding to the wave function maximal value. One sees that
the two-proton distribution reaches its maximal value at ϕ =
45◦, corresponding to the symmetric configuration r1 = r2.

We performed the matching of the internal wave function
with the outgoing solution in the region beyond the maximal
value of the internal wave function. But it is important to
stress that the continuity of the wave function’s first derivative
requires that the computed half-life T = h̄ln2/� should not
depend on the matching radius in this region. How well the
half-life thus obtained satisfies this criterion is a measure of
the quality of the calculation.

We first estimated the half-life by using the decoupled
ansatz [v(r12) = 0] of the scattering amplitude given by
Eq. (2.30). The value of T thus obtained overestimates the
corresponding experimental value by 4 orders of magnitude.
This shows that the proton-proton interaction (2.14) plays a
crucial role in the two-proton dynamics. We adopted for the
radial parameter r0 of the nuclear (Gaussian) potential in v(r12)
[Eq. (2.14)] the value r0 = 2 fm.

We investigated the influence of the proton-proton inter-
action upon the decay process by changing the potential
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FIG. 3. (a) Two-proton radial wave function in 45Fe, given by
Eq. (2.7), as a function of the coordinate r for ϕ = 45◦. The
parameters of the proton-proton interaction in Eq. (2.14) are v0 =
35 MeV and r0 = 2 fm. (b) Same as in panel (a) but as a function of
the angle ϕ corresponding to the maximal value of the wave function
at r = 6 fm.

strength v0. Concerning the strength parameter in the internal
region, we kept a constant ratio v0/v

(int)
0 = 4, reproducing

the experimental pairing gap for the realistic value of the
proton-proton strength v0. The proton pairing gap increases
as a function of the interaction strength v0, as is shown in
Fig. 4 for 45Fe.

The specific feature of the three-body scattering problem is
that the relative distance between the emitted protons can be
small (ϕ ≈ 45◦) for any radius between their center of mass

0

0.5

1

1.5

2

2.5

3

15 20 25 30 35 40 45 50

FIG. 4. Proton pairing gap versus proton-proton strength v0 in 45Fe.
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FIG. 5. Diagonal matrix elements (2.17) versus angular variable
ϕ for r = 10 fm (a), r = 20 fm (b), and r = 30 fm (c). The proton-
proton interaction in Eq. (2.14) is defined by v0 = 35 MeV and r0 =
2 fm.

and the daughter nucleus. This implies that the solution at
large distances of r =

√
r2

1 + r2
2 never decouples. But it has to

be stressed that at r = 50 fm the interaction matrix elements
are 2 orders of magnitude smaller with respect to their values
on the nuclear surface. This is illustrated in Fig. 5, where we
have plotted the diagonal matrix elements given by Eq. (2.17)
as a function of the angular variable ϕ for r = 10 fm (a),
r = 20 fm (b), and r = 30 fm (c). Notice that the interaction
matrix elements are concentrated in a rather narrow interval
between 40◦ and 50◦ around the symmetric configuration and
they rapidly decrease with distance. Thus, the decoupled ansatz
(2.27) can be considered as a rather good approach at large
distances for any angular variable ϕ.

We computed the partial angular decay width, given by
Eq. (2.31). In Fig. 6 we give the result corresponding to the
matching radius r = 7 fm and the strength parameter v0 =
35 MeV in 45Fe. One sees that the width is concentrated in
a very narrow interval, i.e., ϕ = 45◦ ± 2◦, thus showing that
the symmetric configuration r1 = r2 = r/

√
2 has the dominant

role.
In Fig. 7 we plotted the half-life as a function of the

matching radius r , lying beyond the geometrical nuclear
radius, for several values of v0. Notice that the corresponding
sp radii are given by Eq. (2.18). The first feature to be noticed is
the weak dependence of the half-life upon the matching radius
around the nuclear surface. This confirms that the derivative
of the internal and external wave functions are approximately
equal; i.e., the so-called “plateau condition” is fulfilled [13],
thus endorsing the validity of our calculation.

The strong influence of the proton-proton interaction
strength v0 upon the half-life is also noteworthy. This is
due to the coupling of the initial channel, with l = 3, to the
monopole channel, with l = 0, giving the largest partial decay
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FIG. 6. The ratio of the angular-dependent width given by
Eq. (2.31) and its value at ϕ = 45◦ versus the angle ϕ for v0 = 35 MeV
and r0 = 2 fm.

width (and therefore the lowest partial half-life). Figure 7
shows that this coupling becomes larger by increasing the
proton-proton coupling strength. The experimental interval
for the half-life (between dashed lines) corresponds to a
proton-proton strength of v0 ∈ [30, 35] MeV, i.e., close to
its realistic value v0 = 35 MeV [5]. The corresponding value
of the pairing gap in Fig. 4 is also close to the realistic value,
which is � ≈ 1.3 MeV for Fe isotopes in this region.

We performed similar calculations for 48Ni. This nucleus is
magic in protons and therefore they are in a normal phase.
This leads to a smaller pairing density and decay width.
Therefore the half-life is slightly larger for the same coupling

-5
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1

6 6.5 7 7.5 8 8.5 9

FIG. 7. Theoretical two-proton half-life for 45Fe, versus the
matching proton radius for various proton-proton interaction
strengths v0 in Eq. (2.14) (solid lines). The dashed lines indicate
the upper and lower experimental limits.
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FIG. 8. Same as in Fig. 7, but for 48Ni.

strength v0. This is confirmed by Fig. 8, where the experi-
mental value corresponds to a larger coupling strength of v0

∈ [33, 37] MeV.

IV. CONCLUSIONS

In conclusion we have described in this paper the two-
proton emission process from spherical nuclei by using a
simple formalism. We considered that the two particles are
emitted from a correlated pairing state. The proton-proton
potential was chosen to have a Gaussian form besides the
Coulomb interaction. We treated the BCS equations and the
external dynamics in a self-consistent way, by using similar
proton-proton interactions.

It would be incorrect to make an analogy with α decay
and consider the decaying system as a simple diproton. The
decay proceeds neither through a diproton particle nor as an
uncorrelated two-proton channel but rather as a configuration
in between these two extremes.

We have shown that the partial decay width is strongly
peaked around the symmetric configuration r1 = r2, in the
interval ϕ = 45◦ ± 2◦. An important feature is that the for-
malism predicts a strong dependence of the half-life upon
the proton-proton coupling strength. We thus conclude that
two-proton emission is a powerful tool not only to uncover
the nuclear degrees of freedom determining the nuclear
dynamics, especially the pairing mode, but also to investigate
the evolution of the proton-proton potential from the nuclear
medium to regions well outside the nucleus.
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