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Unified ab initio approach to bound and unbound states: No-core shell model with continuum and
its application to 7He
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We introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-
core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method
(NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum
(NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced
approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes (i) a
square-integrable A-nucleon component expanded in a complete harmonic oscillator basis and (ii) a binary-cluster
component with asymptotic boundary conditions that can properly describe weakly bound states, resonances,
and scattering. The Schrödinger equation is transformed into a system of coupled-channel integral-differential
equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We
demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.
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I. INTRODUCTION

One of the central goals of nuclear physics is to come
to a basic understanding of the structure and dynamics of
nuclei, quantum many-body systems exhibiting bound states,
unbound resonances, and scattering states, all of which can
be strongly coupled. Ab initio (i.e., from first principles)
approaches attempt to achieve such a goal for light nuclei.
Over the past 15 years, efficient techniques such as the Green’s
function Monte Carlo (GFMC) [1], ab initio no-core shell
model (NCSM) [2], coupled-cluster method (CCM) [3–5], or
nuclear lattice effective field theory (EFT) [6] have greatly
advanced our understanding of bound-state properties of light
nuclei starting from realistic nucleon-nucleon (NN ) and three-
nucleon (NNN ) interactions. However, a fully developed
fundamental theory able to address a large range of nuclear
scattering and nuclear reaction properties is still missing,
particularly for processes involving more than four nucleons
overall. Better still, achieving a realistic ab initio description
of light nuclei requires abandoning the “traditional” sepa-
rated treatment of discrete states and scattering continuum
in favor of a unified treatment of structural and reaction
properties.

The development of such a unified fundamental theory is
key to refining our understanding of the underlying forces
across the nuclear landscape—from the well-bound nuclei to
the exotic nuclei at the boundaries of stability that have become
the focus of the next generation experiments with rare-isotope
beams, to the low-energy fusion reactions that represent the
primary energy-generation mechanism in stars, and could
potentially be used for future energy generation on Earth.
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In the recent past, significant effort has been devoted to
extend ab initio techniques to the treatment of dynamical
processes among light nuclei [7–9]. To this aim, we introduced
a new many-body approach based on expansions over fully
antisymmetric (A − a, a) binary-cluster states in the spirit
of the resonating-group method (RGM) [10–15], in which
each cluster of nucleons is described within the ab initio
NCSM [16]. The unknown relative-motion wave functions
between pairs of clusters are obtained by solving a set of
nonlocal integral-differential coupled-channel equations and
have appropriate bound-state and/or scattering asymptotic
behavior. Capable of treating bound and scattering states of
light nuclei in a unified formalism starting from the funda-
mental internucleon interactions, the NCSM/RGM approach
[8,17] has been successfully applied to a wide variety of
binary processes, such as nucleon-4He and n-7Li scattering
[18], 7Be(p,γ )8B capture [19], d-4He scattering [20], and
3H(d,n)4He and 3He(d,p)4He fusion [21], and an extension to
the treatment of three-cluster dynamics is under development
[22,23]. At the same time, these studies have highlighted
practical limitations of the approach mainly related to a
nonentirely efficient convergence behavior at short to medium
distances, as discussed in the following.

Two kinds of convergence patterns have to be taken into ac-
count when performing a NCSM/RGM calculation. First, one
has to investigate the dependence on the size of the harmonic
oscillator (HO) basis used to expand the NCSM eigenstates
of the clusters and localized components of the couplings
between binary-cluster states. This size is characterized by
Nmax, the maximal number of HO excitations above the lowest
possible configuration of the clusters. With soft similarity-
renormalization-group (SRG) [24–27] evolved chiral EFT
NN interactions [28,29], employed in most NCSM/RGM
calculations, HO basis sizes with Nmax ∼ 10–14 are typically
sufficient to reach convergence and computationally feasible.
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Second, one has to study the convergence with respect to the
number of clusters’ eigenstates included in the calculation.
While including only the ground state (g.s.) of the tightly
bound 4He in nucleon-4He scattering calculations already
leads to a very good approximation of the A = 5 scattering
phase shifts [18], the description of the low-energy 7Be(p,γ )8B
capture required taking into account the lowest five eigenstates
of 7Be [19]. The convergence with the number of clusters’
eigenstates becomes even more problematic for weakly bound
clusters. Calculations with composite projectiles (the lighter
of the two clusters) such as 2H, 3H, and 3He, show that it
is essential to take into account the virtual breakup of these
systems even at energies much below the breakup threshold.
Presently, this is achieved by including a large number of
excited pseudostates [20,21,30] of the projectile. This, in turn,
results in a dramatic increase of complexity of the calculations
as a large number of channels are coupled.

In this paper we present a more efficient approach to nuclear
bound and continuum states, the no-core shell model with
continuum (NCSMC). We adopt an extended model space
that, in addition to the continuous binary-cluster (A − a, a)
NCSM/RGM states, encompasses also square-integrable
NCSM eigenstates of the A-nucleon system. Such eigenstates
introduce in the trial wave function short- and medium-range
A-nucleon correlations that in the NCSM/RGM formalism
have to be treated by including a large number of excited states
of the clusters. An analogous approach was suggested already
in the original RGM papers [10,11]. The idea behind the
NCSMC was first mentioned in our review paper [31] and
the formalism was succinctly introduced in Ref. [32], where it
was applied to study of the low-lying resonances of the exotic
7He nucleus using an SRG-evolved chiral EFT NN potential
that provides an accurate description of the NN system. Here
we give a detailed presentation of the formalism, discuss the
results published in Ref. [32], and present additional results.

In Sec. II, we briefly review the NCSM and NCSM/RGM
approaches and then introduce in detail the NCSMC formal-
ism. In Sec. III, we apply the NCSMC to the exotic 7He
nucleus. We discuss calculations presented in Ref. [32] as
well as additional results. Conclusions and outlook are given
in Sec. IV. Parts of the formalism not suitable for the main text
are presented in the Appendix.

II. FORMALISM

This section is dedicated to the formalism of the NCSMC
theory with a particular focus on the case in which the
binary-cluster portion of the basis is given by a single-nucleon
projectile in relative motion with respect to an (A − 1)-nucleon
target. First, in Sec. II A, we briefly review the NCSM; then,
in Sec. II B, we present useful background and expressions for
the NCSM/RGM formalism. Finally, in Sec. II C we introduce
in detail the NCSMC.

A. NCSM

The ab initio NCSM is a structure technique appropriate
for the description of bound states or for approximations

of narrow resonances. Nuclei are considered as systems
of A nonrelativistic pointlike nucleons interacting through
realistic internucleon interactions, i.e., those that describe
accurately two-nucleon and, possibly, three-nucleon systems.
All nucleons are active degrees of freedom. Translational
invariance as well as angular momentum and parity of the
system under consideration are conserved. The many-body
wave function is cast into an expansion over a complete set
of antisymmetric A-nucleon HO basis states containing up to
Nmax HO excitations above the lowest possible configuration:

∣∣�Jπ T
A

〉 =
Nmax∑
N=0

∑
i

cNi |ANiJπT 〉. (1)

Here, N denotes the total number of HO excitations of all
nucleons above the minimum configuration, JπT are the
total angular momentum, parity and isospin, and i additional
quantum numbers. The sum over N is restricted by parity
to either an even or an odd sequence. The basis is further
characterized by the frequency � of the HO well and may
depend on either Jacobi relative or single-particle coordinates.
In the former case, the wave function does not contain
the center-of-mass (c.m.) motion, but antisymmetrization is
complicated. In the latter case, antisymmetrization is trivially
achieved using Slater determinants, but the c.m. degrees of
freedom are included in the basis. The HO basis within
the Nmax truncation is the only possible one that allows an
exact factorization of the c.m. motion for the eigenstates,
even when working with single-particle coordinates and Slater
determinants. Calculations performed with the two alternative
coordinate choices are completely equivalent.

Square-integrable energy eigenstates expanded over the
Nmaxh̄� basis, |ANiJπT 〉, are obtained by diagonalizing the
intrinsic Hamiltonian, Ĥ = T̂int + V̂ ,

Ĥ |AλJπT 〉 = Eλ|AλJπT 〉, (2)

where T̂int is the internal kinetic energy operator and V̂ the
NN or NN + NNN interaction. Convergence of the HO
expansion with increasing Nmax values is accelerated by the use
of effective interactions derived from the underlying potential
model through either Lee-Suzuki similarity transformations
in the NCSM space [16,33] or SRG transformations in
momentum space [24–27,34,35]. In this latter case, the NCSM
calculations are variational. Finally, we note that with the
HO basis sizes typically used (Nmax ∼ 10–14), the |AλJπT 〉
eigenstates lack correct asymptotic behavior for weakly bound
states and always have incorrect asymptotic behavior for
resonances.

B. NCSM/RGM

In the NCSM/RGM, the ansatz of Eq. (1) for the A-
nucleon wave function is replaced with an expansion over
antisymmetrized products of binary-cluster channel states
|�Jπ T

νr 〉 and wave functions of their relative motion,

∣∣�Jπ T
A

〉 =
∑

ν

∫
dr r2 γν(r)

r
Âν

∣∣�Jπ T
νr

〉
. (3)
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The channel states |�Jπ T
νr 〉 contain (A − a)- and a-nucleon

clusters (with a � A) of total angular momentum, parity,
isospin, and additional quantum number I1, π1, T1, α1 and
I2, π2, T2, α2, respectively, and are characterized by the rela-
tive orbital angular momentum 
 and channel spin �s = �I1 + �I2:

∣∣�Jπ T
νr

〉 = [(∣∣A − a α1I
π1
1 T1

〉∣∣a α2I
π2
2 T2

〉)(sT )
Y
(r̂A−a,a)

](Jπ T )

× δ(r − rA−a,a)

rrA−a,a

. (4)

The channel index ν collects the quantum numbers {A −
a α1I

π1
1 T1; a α2I

π2
2 T2; s
}. The intercluster relative vector

�rA−a,a is the displacement between the clusters’ centers of
mass and is given in terms of the single-particle coordinates �ri

by

�rA−a,a = rA−a,a r̂A−a,a = 1

A − a

A−a∑
i=1

�ri − 1

a

A∑
j=A−a+1

�rj . (5)

The cluster wave functions depend on translationally invariant
internal coordinates and are antisymmetric under exchange of
internal nucleons, while the intercluster antisymmetrizer Âν

takes care of the exchange of nucleons belonging to different
clusters.

With appropriate boundary conditions imposed on the
wave functions of the relative motion γν(r), the expansion of
Eq. (3) is suitable for describing bound states, resonances, and
scattering states between clusters. For bound states, expansions
(1) and (3) are equivalent, although for well-bound systems
where short-range A-body correlations play a dominant role,
the convergence of the eigenenergy would typically be more
efficient within the NCSM model space defined by Eq. (1).

The unknown relative-motion wave functions γν(r) are
determined by solving the many-body Schrödinger equation
in the Hilbert space spanned by the basis states Âν |�Jπ T

νr 〉:∑
ν

∫
dr r2

[HJπ T
ν ′ν (r ′, r) − E N Jπ T

ν ′ν (r ′, r)
]γν(r)

r
= 0, (6)

where

HJπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣Âν ′Ĥ Âν

∣∣�Jπ T
νr

〉
, (7)

N Jπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′

∣∣Âν ′Âν

∣∣�Jπ T
νr

〉
, (8)

are the Hamiltonian and norm kernels, respectively, and E is
the total energy in the c.m. frame.

When computing Eqs. (7) and (8), the “exchange” terms
of the norm kernel arising from the nonidentical permutations
in Âν as well as all localized parts of the Hamiltonian kernel
are obtained by expanding the radial dependence of the basis
states of Eq. (4) on HO radial wave functions Rn
(r) according
to ∣∣�Jπ T

νr

〉 =
∑
n∈P

Rn
(r)
∣∣�Jπ T

νn

〉
, (9)

where P indicates the HO model space and∣∣�Jπ T
νn

〉 = [(∣∣A − a α1I
π1
1 T1

〉∣∣a α2I
π2
2 T2

〉)(sT )
Y
(r̂A−a,a)

](Jπ T )

×Rn
(rA−a,a). (10)

Here, we remind the reader that the A-nucleon microscopic
Hamiltonian can be written in the form

Ĥ = T̂rel + V̂rel + V̂C(r) + Ĥ(A−a) + Ĥ(a), (11)

where T̂rel is the relative kinetic energy between target and
projectile, V̂rel includes all the interactions between nucleons
belonging to different clusters after subtraction of the average
Coulomb interaction between them V̂C(r) (see Ref. [17] for
a detailed discussion on this point), and Ĥ(A−a) and Ĥ(a)

are the intrinsic microscopic Hamiltonians for A − a and a
nucleons, respectively. The same internucleon interactions are
consistently employed in each term of Eq. (11). Accordingly,
the clusters’ eigenstates |A − a α1I

π1
1 T1〉 and |a α2I

π2
2 T2〉 are

obtained by NCSM diagonalization of their respective micro-
scopic Hamiltonians Ĥ(A−a) and Ĥ(a). The same frequency and
consistent model-space size are used in the HO expansions of
the clusters and localized parts of the integration kernels. The
size Nmax of the HO model space is the same for states of the
same parity, whereas it differs by one unit for states of opposite
parity.

While the NCSM/RGM formalism has been fully developed
for single- (a = 1) [17], two- (a = 2) [20], and three-nucleon
(a = 3) projectiles [30], and can be also extended to a = 4
projectiles as well as to three-body clusters [23], in this work
we limit ourselves to the a = 1 case, where the intercluster
antisymmetrizer is defined as

Âν ≡ 1√
A

(
1 −

A−1∑
i=1

P̂iA

)
, (12)

and P̂i,A is the permutation operator exchanging the ith particle
in the target with the projectile nucleon, labeled by the
index A.

1. Orthogonalization in the NCSM/RGM

Here, we recall some of the details concerning the orthog-
onalization of the NCSM/RGM equations (6) that are useful
for our further discussion of the NCSMC formalism.

Because of the nonidentical permutations in the intercluster
antisymmetrizer, the channel states Aν |�Jπ T

νr 〉 are not or-
thonormal to each other. In general, we prefer to work with
the orthonormalized binary-cluster states

∑
ν ′

∫
dr ′r ′2 N− 1

2
νν ′ (r, r ′) Âν ′

∣∣�Jπ T
ν ′r ′

〉
, (13)

where we introduced the inverse square root of the
NCSM/RGM norm kernel (8). In the following we review
how this as well as the square root of the norm kernel are
obtained.

As anticipated in the previous section, the “exchange” term
arising from the permutations in Âν that differ from the identity
are obtained using the HO expansion of Eq. (9). Hence, using
Eqs. (12) and (10), the r-space representation of the norm
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kernel can be written as

N Jπ T
νν ′ (r, r ′) = δνν ′

δ(r − r ′)
rr ′ − (A − 1)

∑
n,n′

Rn
(r)

× 〈
�Jπ T

νn

∣∣P̂A−1,A

∣∣�Jπ T
ν ′n′

〉
Rn′
′(r ′)

= δνν ′

[
δ(r − r ′)

rr ′ −
∑

nn′∈P

Rn
(r)δnn′Rn′
′(r ′)
]

+
∑

nn′∈P

Rn
(r)N JπT
νnν ′n′Rn′
′(r ′), (14)

where we introduced the model-space norm kernel:

N Jπ T
νnν ′n′ = δνν ′δnn′ − (A − 1)

〈
�Jπ T

νn

∣∣P̂A−1,A

∣∣�Jπ T
ν ′n′

〉
. (15)

The last line of Eq. (14) shows that the r-space representation
of the kernel is given by the convolution of the model-space
kernel (second term) plus a correction owing to the finite size
of the model space P (first term). Square and inverse-square

roots N± 1
2

νν ′ (r, r ′) can then be defined in an analogous way as

N± 1
2

νν ′ (r, r ′) = δνν ′

[
δ(r − r ′)

rr ′ −
∑

nn′∈P

Rn
(r)δnn′Rn′
′(r ′)
]

+
∑

nn′∈P

Rn
(r)N± 1
2

νnν ′n′Rn′
′(r ′), (16)

where the model-space square and inverse square roots N± 1
2

νnν ′n′
are obtained from the spectral theorem.

The NCSM/RGM Hamiltonian kernel within the orthonor-
mal basis of Eq. (13),

Hνν ′(r, r ′)

=
∑
μμ′

∫ ∫
dydy ′y2y ′2N− 1

2
νμ (r, y)Hμμ′(y, y ′)N− 1

2
μ′ν ′(y ′, r ′)

(17)

is obtained from the Hermitized Hamiltonian kernel,

Hνν ′(r, r ′) = 〈
�Jπ T

νr

∣∣ 1
2 (Â2

νĤ + Ĥ Â2
ν ′)

∣∣�Jπ T
ν ′r ′

〉
= 〈

�Jπ T
νr

∣∣Ĥ − 1

2

(
Ĥ

A−1∑
i

P̂iA+
A−1∑

i

P̂iAĤ

) ∣∣�Jπ T
ν ′r ′

〉
,

(18)

for which we have borrowed the same notation Hνν ′(r, r ′) used
previously in Eq. (7).

Finally, the orthogonalized RGM equations read

∑
ν ′

∫
dr ′r ′ 2Hνν ′ (r, r ′)

χν ′(r ′)
r ′ = E

χν(r)

r
, (19)

with the wave functions of the relative motion χν(r) related to
the original functions γν(r) by

χν(r)

r
=

∑
ν ′

∫
dr ′r ′2N+ 1

2
νν ′ (r, r ′)

γν ′(r ′)
r ′ . (20)

For more details on the NCSM/RGM kernels we refer the
interested reader to Ref. [17].

C. NCSMC

The NCSMC ansatz for the many-body wave function
includes both A-body square-integrable and (A − a, a) binary-
cluster continuous basis states according to∣∣�Jπ T

A

〉 =
∑

λ

cλ|AλJπT 〉+
∑

ν

∫
dr r2 γν(r)

r
Âν

∣∣�Jπ T
νr

〉
.

(21)

The resulting wave function (21) is capable of describing
efficiently both bound and unbound states. Indeed, the NCSM
sector of the basis (eigenstates |AλJπT 〉) provides an effective
description of the short- to medium-range A-body structure,
while the NCSM/RGM cluster states make the theory able
to handle the scattering physics of the system. In other words,
with the expansion (21) one obtains the coupling of the NCSM
with the continuum. Clearly, the NCSMC model space is
overcomplete, but this is not a concern, as shown in the
following. We also note that, in principle, the expansion (21)
can be further generalized to include a three-cluster component
suitable for the description of, e.g., Borromean halo nuclei and
reactions with final three-body states.

1. NCSMC equations

The discrete (cλ) and continuous (γν(r)) unknowns of the
NCSMC wave function are obtained as solutions of the coupled
equations(

HNCSM h̄

h̄ H

) (
c

χ

)
= E

(
1 ḡ

ḡ 1

)(
c

χ

)
, (22)

where χν(r) are the relative wave functions in the NCSM/RGM
sector when working with the orthogonalized cluster channel
states of Eq. (13). These are related to the original wave
functions γν(r) of Eq. (21) by the relationship (20). Note,
however, that the χν(r) appearing in Eqs. (19) and (22) are, in
general, different; i.e., they are solutions of different equations.

The NCSM sector of the Hamiltonian kernel is a diagonal
matrix of the NCSM energy eigenvalues Eλ (2),

(HNCSM)λλ′ = 〈AλJπT |Ĥ |Aλ′JπT 〉 = Eλδλλ′, (23)

whileH is the orthogonalized NCSM/RGM kernel of Eq. (17).
Because of the orthogonalization procedure of Sec. II B1, both
diagonal blocks in the NCSMC norm kernel N are identities
in their respective spaces

Nλλ′
νrν ′r ′ =

(
δλλ′ ḡλν ′(r ′)

ḡλ′ν(r) δνν ′ δ(r−r ′)
rr ′

)
. (24)

The coupling between square-integrable and binary-cluster
sectors of the model space is described by the cluster form
factor

ḡλν(r) =
∑
ν ′

∫
dr ′r ′2〈AλJπT

∣∣Âν ′�Jπ T
ν ′r ′

〉 N− 1
2

ν ′ν (r ′, r) (25)

in the norm kernel, and by the coupling form factor

h̄λν(r) =
∑
ν ′

∫
dr ′r ′2〈AλJπT |Ĥ Âν ′

∣∣�Jπ T
ν ′r ′

〉 N− 1
2

ν ′ν (r ′, r)

(26)
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
〈AλJπT |Âν�

Jπ T
νr 〉 overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′
νrν ′r ′ =

(
0 0

0 δνν ′ δ(r−r ′)
rr ′ − δνν ′Rn
(r)δnn′Rn′
′(r ′)

)

+
(

δλλ̃ 0

0 Rνrν̃n

)
Nλ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)
, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνrν̃n stands for Rn
(r)δνν̃ , and the
model-space NCSMC norm is given by

Nλ̃λ̃′
ν̃n ν̃ ′n′ =

(
δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)
. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) = ∑

n Rnl(r)ḡλνn (as demonstrated
in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′ δ(r−r ′)
rr ′ − Rn
(r)δνν ′δnn′Rn′
′(r ′)

)

+
(

δλλ̃ 0

0 Rνrν̃n

)
(N± 1

2 )λ̃λ̃′
ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)
.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)
N− 1

2 , (31)

and the orthogonal wave functions by(
c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form∣∣�Jπ T

A

〉 =
∑

λ

|AλJπT 〉
[ ∑

λ′
(N− 1

2 )λλ′
c̄λ′

+
∑
ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑
νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣�Jπ T
νr

〉N− 1
2

νν ′ (r, r ′)

×
[ ∑

λ′
(N− 1

2 )λ
′

ν ′r ′ c̄λ′

+
∑
ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r � r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0

must be large enough to ensure that the wave function of
the A-body states |AλJπT 〉 vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJπ T
ν (r) = CJπ T

ν W
(ην, κνr), (34)

and

uJπ T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−

 (ην, κνr) − SJπ T

νi H+

 (ην, κνr)

]
(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJπ T

ν and SJπ T
νi .

The functions uJπ T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 � n � N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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points. The number of mesh points N has to be large enough
to guarantee an accurate representation of the wave functions
in the internal region up to the matching radius r0. Typically,
25 mesh points are sufficient to calculate a phase shift within
six significant digits for r0 = 15 fm.

The matching between internal and external regions, and
hence the imposition of the asymptotic behavior of Eqs. (34)
and/or (35), is ensured by the Bloch surface operator (here
generalized to account for the A-body square-integrable sector
of our basis)

L̂ν =
(

0 0
0 h̄2

2μν
δ(r − a)

(
d
dr

− Bν

r

))
(36)

and solving the Bloch-Schrödinger equations

(H + L̂ − E)

(
c̄
χ̄

)
= L̂

(
c̄
χ̄

)
. (37)

The operator H + L̂ is Hermitian when the boundary parame-
ter Bν is real. Because of the Bloch operator, the wave function
on the right-hand side of Eq. (37) can be replaced by its
asymptotic behavior. When searching for bound states, Bν

is chosen in such a way that the right-hand side vanishes, and
one is left with the diagonalization problem:

(H + L̂)

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
. (38)

For scattering states, the scattering matrix and the scattering
wave functions are computed by solving Eq. (37) with the
boundary parameter Bν = 0 for each value of the relative
kinetic energy Ekin of the projectile-target system. The phase
shifts δ(Ekin) can then be extracted from the S matrix.
Energetically open and closed channels are treated on equal
footing.

III. APPLICATION TO 7He

The 7He nucleus is a particle-unstable system with a
JπT = 3/2− 3/2 g.s. lying at 0.430(3) MeV [38,39] above
the 6He + n threshold and an excited 5/2− resonance centered
at 3.35 MeV, which mainly decays to α + 3n (as discovered
in the pioneering work of Ref. [40]). While there is a general
consensus on the 5/2− state, discussions are still open for
the other excited states. In particular, the existence of a
low-lying (ER ∼ 1 MeV) narrow (� � 1 MeV) 1/2− state
has been advocated by many experiments [41–45] (most of
them using knockout reactions with a 8He beam on a carbon
target), while it was not confirmed in several others [46–51].
This contradictory situation arises from the main experimental
difficulty of measuring the properties of 7He excited states in
the presence of a three-body background of 6He plus n (coming
from the particle decay of 7He) plus a third outgoing particle
involved in the reaction used to produce 7He. In addition, as
it has been pointed out in one of the most recent experimental
works [51], some of the earlier data could have been affected by
background noise coming from the interaction with the carbon
target, while a polypropylene (CH2)n target would reduce
the background contamination. The presence of a low-lying
1/2− state has also been excluded at the 90% confidence level

TABLE I. Ground-state energies of 4,6,7He in MeV. NCSM
calculations were performed with the SRG-N3LO NN potential
with � = 2.02 fm−1. The HO frequency h̄� = 16 MeV was used
in the shown Nmax = 12 calculations. Exponential extrapolation was
employed.

Eg.s. (MeV) 4He 6He 7He

NCSM Nmax = 12 −28.05 −28.63 −27.33
NCSM extrapolation −28.22(1) −29.25(15) −28.27(25)
Experiment −28.30 −29.27 −28.84

by a study on the isobaric analog states of 7He in 7Li [52].
According to this work, a broad 1/2− resonance at ∼3.5 MeV
with a width � ∼ 10 MeV fits the data the best. Neutron pickup
and proton-removal reactions [48,49] suggest instead a 1/2−
resonance at about 3 MeV with a width � ≈ 2 MeV.

From a theoretical point of view, 7He is an ideal system
to showcase new achievements made possible by a unified
ab initio approach to nuclear bound and continuum states
such as the NCSMC. Because 7He is unbound, it cannot be
reasonably described within the NCSM. One could calculate
its properties using the NCSM/RGM within an 6He + n
binary-cluster expansion. However, the 6He nucleus is weakly
bound and all its excited states are unbound. Consequently,
a limitation to just a few lowest 6He eigenstates in the
NCSM/RGM expansion would be questionable especially
because, except for the lowest 2+ state, all other 6He excited
states are either broad resonances or simply states in the
continuum. As we show in the following, with the NCSMC
these challenges are overcome. Finally, for this study we
use the SRG evolved [24–27] chiral N3LO NN potential
(500 MeV cutoff) of Refs. [28,29]. For the time being, the
induced and initial chiral three-nucleon interactions are not
included in the calculations; therefore, our results depend on
the low-momentum SRG evolution parameter �. However,
by selecting � = 2.02 fm−1, we obtain very realistic binding
energies for the lightest nuclei, e.g., the 4He (see Table I)
and, more importantly for the present investigation, the 6He.
Consequently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations for
7He that can be compared to experiment. In the following sec-
tions, we discuss the convergence of the NCSMC calculation
and compare it to the corresponding NCSM and NCSM/RGM
results. We also address the controversial issue of a low-lying
1/2− resonance in 7He.

A. 6He and 7He NCSM calculations

We begin our discussion of results with NCSM calculations
for 6He that will generate eigenstates needed as input for the
subsequent NCSM/RGM and NCSMC investigations of 7He.

Our calculated 6He g.s. energies for a range of HO
frequencies and various basis sizes (Nmax values) are presented
in Fig. 1. The variational NCSM calculations converge rapidly
and can be easily extrapolated to Nmax → ∞ using, e.g., an
exponential function of the type E(Nmax) = E∞ + a e−bNmax .
Results of such an extrapolation are shown in Fig. 2, where
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FIG. 1. (Color online) Ground-state energy of 6He calculated
within the NCSM using the SRG-N3LO NN potential with � =
2.02 fm−1. The dependence on the HO frequency for different Nmax

basis sizes is shown. The points with error bars represent the results
of the exponential extrapolation.

the Nmax = 8, 10, and 12 points were used to determine
the fitting parameters. The extrapolated g.s. energy with its
error estimate, based on extrapolations at other frequencies
and different point selections, and the calculated energy at
Nmax = 12, h̄� = 16 MeV, are given in Table I. The calculated
6He g.s. energy agrees quite well with experiment on both the
absolute value and the separation with respect to the 4He + 2n
threshold.

As shown in Fig. 1, at Nmax = 12 the dependence of the
6He g.s. energy on the HO frequency is flat in the range of
h̄� ∼ 16–19 MeV. In general, when working within an HO
basis, lower frequencies are better suited for the description
of unbound systems. Therefore, we choose h̄� = 16 MeV
for the calculation of the other 6He eigenstates that will be
used as input for the NCSM/RGM and NCSMC investigations
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FIG. 2. (Color online) Basis size Nmax dependence of 6He and
7He g.s. energies calculated within the NCSM. The SRG-N3LO
NN potential with � = 2.02 fm−1 and the HO frequency of h̄� =
16 MeV were used. Exponential extrapolations from the last three
Nmax points is shown.
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FIG. 3. (Color online) Dependence of 6He excitation energies
on the size of the basis Nmax. NCSM calculations were performed
with the SRG-N3LO NN potential with � = 2.02 fm−1 and the HO
frequency of h̄� = 16 MeV.

of the 7He nucleus. At the same time, we also performed
NCSM/RGM and NCSMC calculations with h̄� = 19 MeV
to test the stability of our results against this parameter.
Calculated 6He excitation energies for basis sizes up to
Nmax = 12 are shown in Fig. 3. The 6He nucleus is a weakly
bound Borromean system. All its excited states are unbound
and, except for the lowest 2+, are either broad resonances
or states in the continuum. The excitation energy of the 2+

1
state is fairly stable with respect to the basis size of our NCSM
calculations. The higher excited states, however, drop in energy
with increasing Nmax with the most dramatic example being the
multi-particle-hole 0+

3 state. This spells a potential difficulty
for the NCSM/RGM calculations as, with increasing density
of 6He states at low energies, a truncation of the model space to
include just the few lowest eigenstates becomes questionable.
In addition, in a NCSM/RGM study of 7He one should also
consider the contribution of binary-cluster states in which the
neutron is coupled to negative-parity states of 6He, where
similar issues arise.

Next we performed NCSM calculations for 7He ground
and excited states, which will serve as input to the NCSMC
calculations described in the next section. The calculated
g.s. energy for different basis sizes is shown in Fig. 2
together with the exponential extrapolation and the 6He
g.s. energies discussed earlier. The largest-space values and
the extrapolated energies are also given in Table I. The
NCSM calculation predicts 7He unbound in agreement with
experiment. However, the resonance energy with respect to
the 6He + n threshold appears overestimated (contrary to the
6He ↔ 4He + 2n case). Obviously, it is not clear that the
ad hoc exponential extrapolation is valid for the unbound
states. It may have a sizable systematic uncertainty compared
to the bound-state case. Nevertheless, the differences between
Nmax = 12 and extrapolated energies suggest that the fastest
convergence rate is obtained for the strongly bound 4He and
the slowest for the unbound 7He, as one would expect. Finally,
we note that no information on the width of the resonance can
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TABLE II. NCSM spectroscopic factors compared to Cohen-Kurath (CK) [54] and VMC/GFMC [1,55,56] calculations and experiment.
NCSM calculations were performed with the SRG-N3LO NN potential with � = 2.02 fm−1, Nmax = 12, and the HO frequency of h̄� =
16 MeV. The CK results should, in principle, be still multiplied by A/(A−1) to correct for the c.m. motion.

7He J π 6He − n(lj ) NCSM CK VMC GFMC Exp.

3/2−
1 0+ − p 3

2 0.56 0.59 0.53 0.565 0.512(18) [39]

0.64(9) [53]

0.37(7) [48]

3/2−
1 2+

1 − p 1
2 0.001 0.06 0.006

3/2−
1 2+

1 − p 3
2 1.97 1.15 2.02

3/2−
1 2+

2 − p 1
2 0.12 0.09

3/2−
1 2+

2 − p 3
2 0.42 0.30

1/2− 0+ − p 1
2 0.94 0.69 0.91

1/2− 2+
1 − p 3

2 0.34 0.60 0.26

1/2− 2+
2 − p 3

2 0.93

5/2− 2+
1 − p 1

2 0.77 0.85 0.81

5/2− 2+
1 − p 3

2 0.49 0.52 0.37

5/2− 2+
2 − p 1

2 0.26

5/2− 2+
2 − p 3

2 1.30

3/2−
2 0+ − p 3

2 0.06 0.06 0.05

3/2−
2 2+

1 − p 1
2 1.10 1.05 1.07

3/2−
2 2+

1 − p 3
2 0.08 0.32 0.03

3/2−
2 2+

2 − p 1
2 0.03

3/2−
2 2+

2 − p 3
2 0.25

be obtained from the NCSM calculation, which is performed
in a square-integrable HO basis.

However, we can study the structure of the 7He NCSM
eigenstates by evaluating their overlap functions with 6He + n
binary-cluster channels. These overlap functions, or cluster
form factors, gλν(r) [see Eqs. (25), (A1), (A3)] are also one of
the inputs to the NCSMC calculations. By integrating g2

λν(r)
over r , we obtain the spectroscopic factors summarized in
Table II. Note that there we use an alternative coupling scheme
[compared to Eq. (4)] more commonly used in the literature for
spectroscopic factors. Overall, we find a very good agreement
with the variational Monte Carlo (VMC) and GFMC results
as well as with the latest experimental value for the g.s. [39].
Interesting features to notice are the spread of the 3/2− g.s.
wave function over all three considered 6He states with a
dominance of the 2+

1 and the about equal spread of 1/2−
7He excited state between the 6He 0+ and 2+

2 states. The
7He 5/2− state has about the same contributions from the 2+

1
and 2+

2
6He states with the former of an almost pure s = 5/2

component [with s the channel spin defined in Eq. (4)]. Though
spectroscopic factors are not observable, they provide valuable
information on the structure of the wave function. In the present
study, overlap functions and spectroscopic factors are not the
final products to be compared to experiment, but rather inputs
to more sophisticated NCSMC calculations. An interesting
question arises on how to obtain an analogous information
from the full NCSMC wave function (33) for a resonance state.
Clearly, for an unbound state, the spectroscopic factor would
become infinite if the overlap integrations were performed to
an infinite cluster separation. For a narrow resonance, then,

one could define a spectroscopiclike quantity by limiting the
integration only over the localized part of the resonance wave
function. We postpone analyses of the NCSMC wave functions
for future investigations.

B. 7He NCSM/RGM and NCSMC calculations

In the following, we present NCSMC calculation for the
7He nucleus performed within a model space containing the six
lowest negative-parity (3/2−

1 , 1/2−, 5/2−, 3/2−
2 , 3/2−

3 , 3/2−
4 )

and four lowest positive-parity (1/2+, 5/2+
1 , 3/2+, 5/2+

2 )
NCSM eigenstates of 7He plus n + 6He NCSM/RGM binary-
cluster channels including up to the three lowest eigenstates of
6He, i.e., 0+, 2+

1 , and 2+
2 . For the sake of comparison, we also

present results obtained by retaining only the binary-cluster
portion of such a model space [i.e., only the second term
in Eq. (21) or, equivalently, the ansatz (3)] and solving the
orthogonalized NCSM/RGM equations of Eq. (19).

We start by studying the dependence of the 3/2− g.s.
phase shifts on the number of 6He eigenstates included in the
NCSM/RGM [panel (a)] and NCSMC [panel (b)] calculations,
shown in Fig. 4. Here, the channels are denoted using the
standard notation 2s+1
J , e.g., 2P3/2 for the g.s. resonance,
with the quantum numbers s, 
, and J defined as in Sec. II B,
Eq. (4). We observe that the NCSM/RGM calculation with
the 6He target restricted to its g.s. does not produce a 7He
3/2− resonance (the phase shift does not reach 90◦ and is
less than 70◦ up to 5 MeV). A 2P3/2 resonance does appear
once n + 6He(2+

1 ) channel states are coupled to the basis, and
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FIG. 4. (Color online) Dependence of the NCSM/RGM (a) and
NCSMC (b) 6He + n phase shifts of the 7He 3/2− g.s. on the number
of 6He states included in the binary-cluster basis. The short-dashed
green curve, the dashed blue curve, and the solid red curve correspond
to calculations with 6He 0+ g.s. only, 0+, 2+ states, and 0+, 2+, 2+

states, respectively. The SRG-N3LO NN potential with � =
2.02 fm−1, the Nmax = 12 basis size and the HO frequency of h̄� =
16 MeV were used. See text for further details.

the resonance position further moves to lower energy with
the inclusion of the second 2+ state of 6He. On the contrary,
the NCSMC calculation with only the g.s. of 6He already
produces the 2P3/2 resonance. In fact, this NCSMC model
space is sufficient to obtain the 7He 3/2− g.s. resonance
at about 1 MeV above threshold, which is lower than the
NCSM/RGM prediction of 1.39 MeV when three 6He states
are included. Adding the first 2+ state of 6He generates a
modest shift of the resonance to a still lower energy while the
2+

2 state of 6He has no significant influence [see Fig. 4(b)].
We further observe that the difference of about 0.7 MeV
between the NCSM/RGM and NCSMC results for the res-
onance position is attributable to additional correlations in
the wave function brought about by the 7He eigenstates that
are coupled to the neutron-6He binary-cluster states in the
NCSMC. Indeed, such A = 7 eigenstates (in the present
calculation, four 3/2− states, of which only the 3/2−

1 produces
a substantial effect on the 2P3/2 resonance) have the practical
effect of compensating for higher excited states of the 6He
target omitted in the NCSM/RGM sector of the basis. These
omitted 6He states include both positive-parity, some of which
are shown in Fig. 3, and negative-parity excitations such as,
e.g., the 1− soft dipole excitation, etc. While NCSM/RGM
calculations with a large number of excited states of the
target or projectile can become prohibitively expensive, the
coupling of a few square-integrable NCSM eigenstates of
the composite system is straightforward. Because of this, the
NCSMC approach offers a superior rate of convergence and is
much more efficient, as demonstrated in Fig. 4.
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FIG. 5. (Color online) Dependence of the NCSM/RGM (a) and
NCSMC (b) 6He + n phase shifts of the 7He 1/2− excited state on
the number of 6He states included in the binary-cluster basis. The
short-dashed green curve, the dashed blue curve, and the solid red
curve correspond to calculations with 6He 0+ g.s. only, 0+, 2+ states,
and 0+, 2+, 2+ states, respectively. See Fig. 4 for further details.

A similar, although less dramatic, difference between
NCSM/RGM and NCSMC calculations is shown in Fig. 5 for
the 1/2− excited state of 7He. Here, the 2P1/2 resonance is quite
broad with a slowly increasing phase shift. It is interesting to
note that the 1/2− state couples strongly to the 2+

2 state of 6He
(the spectroscopic factor is large; see Table II). This causes
a small but visible shift of the 2P1/2 phase shift when this
state is added to the NCSMC calculation in panel (b) (full vs
dashed line). The 1/2− state presents a significant overlap also
with the 0+ and 2+

1 states of 6He, and this is the reason of its
broadness.

In Fig. 6, we present the dependence of the NCSMC
2P3/2, 2P1/2 [panel (a)], and 6P5/2 [panel (b)] phase shifts
on the size of the HO basis in the range 6 � Nmax � 12.
While the variation between Nmax = 6 and Nmax = 8 curves
is substantial, it becomes quite small between Nmax = 10 and
Nmax = 12 results. Based on this, we do not expect that an
Nmax = 14 calculation, which at this time is computationally
out of reach, would significantly change the present Nmax = 12
picture.

The NCSM/RGM and NCSMC phase shifts for the n + 6He
five P -wave and the 2S1/2 channels are shown in Fig. 7.
All curves have been obtained including the three lowest
6He states (i.e., the 0+ g.s. and the two lowest 2+ excited
states) within the Nmax = 12 HO basis. The model space
of the NCSMC calculations [panel (b)] additionally includes
ten 7He NCSM eigenstates, as described at the beginning of
this section. The dashed vertical area centered at 0.43 MeV
indicates the experimental centroid and width of the 7He
g.s. [38,39]. As expected from a variational calculation, the
introduction of the additional square-integrable A-body basis
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FIG. 6. (Color online) Dependence of the NCSMC 6He + n phase
shifts of 7He 3/2− (a), 1/2− (a), and 5/2− (b) states on the size of
the HO expansion Nmax. The 6He 0+, 2+, 2+ states were included
in the binary-cluster basis. The SRG-N3LO NN potential with � =
2.02 fm−1 and the HO frequency of h̄� = 16 MeV were used.

states |AλJπT 〉 [i.e., going from panel (a) to panel (b) of
Fig. 7] lowers the centroid values of all 7He resonances.
In particular, the 3/2− ground and 5/2− excited states of
7He are pushed toward the 6He + n threshold, closer to their
respective experimental positions. The resonance widths also
shrink toward the observed data, as we discuss below. We note
that we also calculated higher partial waves, e.g., D waves,
in both approaches. However, the corresponding phase shifts
are very small and do not present any interesting structures
in the energy range displayed in Fig. 7. Therefore, we did
not include them in the figure. Unlike the P -wave resonances,
the influence of the 7He positive-parity NCSM eigenstates on
these phase shifts is rather weak.

The experimental centroid of the accepted 3/2− and 5/2−
resonances in 7He as well as the possible 1/2− state at
3.03 MeV [48] are shown in Fig. 8 together with our Nmax =
12 predictions. For NCSM/RGM and NCSMC, the resonance
centroids are calculated as the values of the kinetic energy
in the c.m. Ekin for which the first derivative of the phase
shifts is maximal [57]. The resonance widths are subsequently
computed from the phase shifts according to (see, e.g.,
Ref. [58])

� = 2

dδ(Ekin)/dEkin

∣∣∣∣
Ekin=ER

, (39)

where ER is the resonance centroid, evaluated as discussed
above, and the phase shift is expressed in radians. Computed
widths and ER values are reported in Table III, together
with the available experimental data. An alternative, though
less general, choice for the resonance energy could be the
kinetic energy corresponding to a phase shift of π/2 (dashed
horizontal lines in Fig. 7). Another alternative approach would
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FIG. 7. (Color online) NCSM/RGM (a) and NCSMC (b) 6He + n

diagonal phase shifts (except 6P3/2, which are eigenphase shifts) as
a function of the kinetic energy in the c.m. The dashed vertical area
centered at 0.43 MeV indicates the experimental centroid and width
of the 7He g.s. [38,39]. In all calculations the lowest three 6He states
have been included in the binary-cluster basis. The SRG-N3LO NN

potential with � = 2.02 fm−1 within the Nmax = 12 basis size and
the HO frequency of h̄� = 16 MeV were used. See text for further
details.

be to match to a purely outgoing solution in the R matrix
(Gamow state). While the procedure of Eq. (39) is safely
applicable to sharp resonances, broad resonances would, in
principle, require an analysis of the scattering matrix in
the complex plane. Here, we are more interested in a qualitative
discussion of the results and use the above extraction procedure
for broad resonances as well. Though the two alternative ways
of choosing ER lead to basically identical results for our
calculated 3/2−

1 resonance, the same is not true for the broader
5/2− resonance and the very broad 1/2− resonance. The less
general π/2 condition, which is not valid for broad resonances,
would result in ER ∼ 3.7 MeV and � ∼ 2.4 MeV for the 5/2−
resonance and ER ∼ 4 MeV (see Fig. 7) and � ∼ 13 MeV for
the 1/2− resonance.

Interestingly, the NCSM eigenenergy for the 3/2−
1 g.s.

resonance is close to the energy centroid found within the
NCSM/RGM approach. This is accidental as both calcula-
tions are deficient in different ways. The NCSM lacks the
description of long-range correlations owing to the HO basis
truncation, while the NCSM/RGM lacks a proper description
of short- and medium-range correlations owing to the omission
of higher excited states of the 6He target. In the NCSMC,
a significant energy shift is brought by the coupling of
the two basis, with a quenching of the separation energy
by almost 0.7 MeV, closer to the experimental findings. At
the same time, in the NCSMC calculation, the resonances
become sharper, with narrower widths, once again in a better
agreement with experiment. Our NCSMC 3/2− g.s. resonance
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FIG. 8. (Color online) Experimental and theoretical centroid
energies for 7He resonances, with the 6He + n threshold as the
energy reference. The experimental energy of the 1/2− resonance
is taken from Ref. [48]. The theoretical values for NCSM/RGM and
NCSMC correspond to the n−6He kinetic energy in the c.m. when
the derivative of the phase shift is maximal; see text for details. The
information on the width of the states is given in Table III. The
calculations are carried out as described in Table I, Fig. 7, and in
the text.

position and width slightly overestimate measurement [e.g.,
the latest determination from the recoil proton tagged knockout
reaction for 8He [39] finds ER = 0.430(3) MeV and � =
0.182(5) MeV]. At the same time, predictions for the 5/2−
resonance are lower compared to experiment [40,59], though
our determination of the width should be taken with some
caution in this case.

In all three approaches considered here, the 1/2− resonance
is predicted below the 5/2− excited state. At the same time
one has to keep in mind that the NCSM approach is not
expected to provide a reliable description of broad resonances
and that our determination of the 1/2− resonance position
in the NCSM/RGM and NCSMC has to be taken with some
caution, as explained above. From an experimental standpoint,
the situation concerning the 1/2− resonance is not clear, as
discussed in the beginning of this section and documented
in Table III. While the centroid energies determined in the
experiments of Refs. [48,49] and [52] are comparable, the
widths are very different. Within the present determination
of ER and �, the NCSMC results are in fair agreement
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FIG. 9. (Color online) NCSMC 6He + n 3/2− P -wave eigen-
phase shifts as a function of the kinetic energy in the c.m. Calculations
are carried out as described in Fig. 7(b). See text for further details.

with the 1/2− properties measured in the neutron pickup and
proton-removal reactions experiments of Refs. [48] and [49].
Our calculations definitely do not support the hypothesis of a
low-lying (ER∼1 MeV) narrow (� � 1 MeV) 1/2− resonance
[41–45].

We also note that our NCSMC calculations predict two
broad 6P3/2 resonances (dominated, respectively, by the first
and second 2+ states of 6He) at about 3.7 and 6.5 MeV with
widths of 2.8 and 4.3 MeV, respectively. As shown in Figs. 7
and 9, the corresponding eigenphase shifts do not cross π/2.
In Fig. 9, we present all P -wave eigenphase shifts in a broader
energy range up to 10 MeV. There is a considerable mixing of
the P waves around the 3/2−

2 resonance as it can be seen by
comparing the eigenphase shifts of Fig. 9 with the diagonal
6P3/2 and 4P3/2 phase shifts of Fig. 10. The mixing parameter
for other resonances is very small [of course, there is no mixing
below the n + 6He(2+

1 ) state threshold]. In experiment, there
is a resonance of undetermined spin and parity at 6.2(3) MeV
with a width of 4(1) MeV [59].

The level order predicted in other theoretical calculations
mostly agrees with our present findings [1,48,60]. The widths
of the 7He states were calculated recently in a 4He + n + n + n
cluster model [60]. The 1/2− state was found at low excitation
energy (∼1.05 MeV), but with a width of 2.19 MeV, i.e., close
to what we find. The width of the 5/2− resonance, 1.5 MeV,
obtained in Ref. [60], is also comparable to our prediction.

TABLE III. Experimental and theoretical values for the resonance centroids and widths in MeV for the 3/2− g.s. and the 5/2− and 1/2−

excited states of 7He. Calculations are carried out as described in Table I, Fig. 7, and in the text.

J π Experiment NCSMC NCSM/RGM NCSM

ER � Ref. ER � ER � ER

3/2− 0.430(3) 0.182(5) [39] 0.71 0.30 1.39 0.46 1.30
5/2− 3.35(10) 1.99(17) [59] 3.13 1.07 4.00 1.75 4.56
1/2− 3.03(10) 2 [48] 2.39 2.89 2.66 3.02 3.26

3.53 10 [52]
1.0(1) 0.75(8) [42]
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FIG. 10. (Color online) NCSMC 6He + n 3/2−
2 and 5/2−

diagonal P -wave phase shifts as a function of the kinetic energy
in the c.m. The calculation is carried out as described in Fig. 7(b).
See text for further details.

Two 3/2− resonances in addition to the g.s. resonance were
reported in Ref. [60]. One of them just above the 5/2− state
with a width of 1.95 MeV, while the other at the excitation
energy of about 5.3 MeV and a width of 5.77 MeV. This is
qualitatively similar to our results although, in our case, the
3/2−

2 resonance is broader by 0.85 MeV.
The 7He resonances were also investigated in RGM calcu-

lations of Refs. [61,62] using semirealistic NN potentials.
The ordering of the resonances found in this study is the
same as in ours and the 2P3/2 g.s. resonance phase shift is
also in close agreement with our results. However, unlike in
our calculations, the 1/2− and 5/2− P -wave resonances of
Ref. [61] do not cross π/2. While the 6P3/2 and 4P3/2 diagonal
phase shifts qualitatively agree with ours, interestingly, the
5/2− resonance appears in the 4P5/2 partial wave rather than
in the 6P5/2, as found in our calculations. The 5/2− P waves are
reversed in Ref. [61] compared to our calculations (see Fig. 10
for the 6P3/2, 4P3/2, 6P5/2, and 4P5/2 diagonal phase shifts).

The helium isotope g.s. properties, including those of
7He, were also recently investigated within the complex
CCM [63]. Using a realistic low-momentum NN interaction,
the coupled-cluster singles and doubles (CCSD) calculations
underbound substantially the g.s.s of 3–10He compared to
experiment. However, they correctly predicted 5He and 7He
unstable with respect to neutron emission. The width of the
7He g.s. resonance, 0.26 MeV, is quite close to that calculated
here.

Finally, we note that the NCSMC g.s. resonance energy,
0.71 MeV, is lower but still compatible with the extrapolated
NCSM value of 0.98(29) MeV (see Tables I and III).

IV. CONCLUSIONS AND OUTLOOK

We introduced a new unified approach to nuclear bound
and continuum states based on the coupling of a square-
integrable basis (A-body NCSM eigenstates), suitable for
the description of many-body correlations, and a continuous

basis (NCSM/RGM cluster states) suitable for a description
of long-range correlations, cluster correlations, and scattering.
This ab initio method, which we call NCSMC, is capable of
describing efficiently: (i) short- and medium-range nucleon-
nucleon correlations, owing to the large HO basis expansions
used to obtain the NCSM eigenstates, and (ii) long-range
cluster correlations, owing to the NCSM/RGM cluster-basis
expansion. As a consequence, its convergence properties are
superior to either NCSM or NCSM/RGM.

We demonstrated the potential of the NCSMC in calcula-
tions of 7He resonances. Starting from a realistic soft SRG-
N3LO NN potential that describes accurately two-nucleon
properties and, with the choice of � = 2.02 fm−1 for the SRG
evolution parameter, also predicts 3H and 4He binding energies
close to experiment, we calculated 6He and 7He eigenstates in
the NCSM and used them as input to the coupled-channel
NCSMC equations. We found the 6He g.s. energy in very
good agreement with experiment. The results for the 3/2− g.s.
resonance as well as for the well-established 5/2− resonance of
7He are in reasonable agreement with experiment. Our results
for the controversial 1/2− resonance are in fair agreement with
the neutron pickup and proton-removal reactions experiments
of Refs. [48,49]. Our calculations definitely do not support
the hypothesis of a low-lying (ER ∼ 1 MeV) narrow (� �
1 MeV) 1/2− resonance. We also predict two broad currently
unobserved 6P3/2 resonances at about 3.7 and 6.5 MeV,
respectively.

The NCSMC calculations do not involve any adjustable
parameter except for those used in the construction of the
input NN (or three-nucleon) potentials. Computations depend
on the size of the HO basis, the HO frequency, and the number
of eigenstates included in the model space. We investigate the
convergence behavior of the approach with respects to these
expansions. Owing to the overcompleteness of the NCSMC
basis, the convergence rate is superior to that achievable with
either NCSM or NCSM/RGM. The advantages of the NCSMC
are expected to become even more evident in calculations
with composite projectiles (such as deuteron, 3H, or 3He)
that require the use of a large number of pseudostates in the
NCSM/RGM (or other cluster-based approaches) to account
for virtual breakup effects. The contribution of the pseu-
dostates is expected to be suppressed in the NCSMC approach.
Extension of the NCSMC formalism to the case of composite
projectiles, the inclusion of three-nucleon interactions, and the
coupling of three-body clusters are under way.
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APPENDIX

In this Appendix we briefly outline the explicit steps for
the derivation of the orthogonalized cluster form factors of
Eqs. (25) and (26) and provide their algebraic expressions.

The orthogonalized cluster form factor in r-space represen-
tation of Eq. (25) reads

ḡλν(r) =
∑
ν ′

∫
dr ′r ′2〈AλJπT

∣∣Âν ′�Jπ T
ν ′r ′

〉 N− 1
2

ν ′ν (r ′, r)

=
∑
n∈P

Rn
(r)
∑

ν ′n′∈P

〈
AλJπT

∣∣Âν ′�Jπ T
ν ′n′

〉 N− 1
2

ν ′n′,νn (A1)

=
∑
n∈P

Rn
(r) ḡλνn, (A2)

where the orthogonalized cluster form factor in the model-
space is given by the model-space nonorthogonalized cluster
form factor times the model-space norm kernel:

ḡλνn =
∑

ν ′n′∈P

〈
AλJπT

∣∣Âν ′�Jπ T
ν ′n′

〉 N− 1
2

ν ′n′,νn

=
∑

ν ′n′∈P

gλν ′n′ N− 1
2

ν ′n′,νn. (A3)

At the same time, the translational-invariant nonorthogonal-
ized cluster form factors in the model space, gλνn, can be
conveniently derived starting from the Slater-determinant (SD)
NCSM eigenstates,

|AλJπT 〉SD = |AλJπT 〉ϕ00
( �R(A)

c.m.

)
, (A4)

and the SD channel states∣∣�Jπ T
νn

〉
SD = [(∣∣A − a α1I

π1
1 T1

〉
SD

∣∣a α2I
π2
2 T2

〉)(sT )

×Y


(
R̂(a)

c.m.

)](Jπ T )
Rn


(
R(a)

c.m.

)
, (A5)

and removing the spurious motion of the c.m.. Here, the c.m.
coordinates of Eqs. (A4) and (A5) are given by

�R(A)
c.m. = 1√

A

A∑
i=1

�ri, �R(a)
c.m. = 1√

a

A∑
i=A−a+1

�ri, (A6)

and ϕ00( �R(A)
c.m.) is the HO wave function R00(R(A)

c.m.)Y00(R̂(A)
c.m.).

The resulting expression for the nonorthogonalized cluster

form factor in the single-nucleon projectile (a = 1) basis is

gλνn = 〈
AλJπT

∣∣Âν�
Jπ T
νn

〉
= 1

〈n
00, 
|00n
, 
〉 1
(A−1)

SD

〈
AλJπT

∣∣Âν�
Jπ T
νn

〉
SD

= 1

〈n
00, 
|00n
, 
〉 1
(A−1)

1

Ĵ T̂

∑
j

(−1)I1+J+j ŝĵ

×
{

I1
1
2 s


 J j

}
SD〈AλJπT |||a†

n
j 1
2
|||A − 1α1I

π1
1 T1〉SD.

(A7)

The Moshinsky brackets 〈n
00, 
|00n
, 
〉 allows us to
transform from the SD to the Jacobi-coordinate states. This
expression was first derived in Ref. [36], where further details
on the derivation can be found.

The orthogonalized coupling form factor in r-space repre-
sentation of Eq. (26) reads

h̄λν(r) =
∑
ν ′

∫
dr ′r ′2〈AλJπT |Ĥ ∣∣Âν ′�Jπ T

ν ′r ′
〉 N− 1

2
ν ′ν (r ′, r)

=
∑
n∈P

Rn
(r)
∑

ν ′n′∈P

〈AλJπT |Ĥ ∣∣Âν ′�Jπ T
ν ′n′

〉 N− 1
2

ν ′n′,νn

+Rnmax+1 
(r)
〈
AλJπT

∣∣Âν�
Jπ T
νnmax

〉
×〈nmax
|T̂rel|nmax + 1 
〉

=
∑
n∈P

Rn
(r)h̄λνn + Rnmax+1 
(r)

×〈nmax
|T̂rel|nmax + 1 
〉 gλνnmax , (A8)

where

h̄λνn =
∑

ν ′n′∈P

〈AλJπT |H̄ ∣∣Âν ′�Jπ T
ν ′n′

〉N− 1
2

ν ′n′,νn

≡
∑

ν ′n′∈P

hλν ′n′N− 1
2

ν ′n′,νn (A9)

is the orthogonalized coupling form factor in the model space.
In deriving the above expression, one has to pay attention
in taking into account the contribution of transitions to basis
states outside of the model space brought about by the relative
kinetic-energy operator. The model-space nonorthogonalized
coupling form factor hλνn can be derived in a similar fashion
as Eq. (A8), and is given by

hλνn = 〈AλJπT |Ĥ ∣∣Âν�
Jπ T
νn

〉 =
∑
ν ′

∑
n′∈P

gλν ′n′ 〈n′
′|T̂rel|n
〉+ gλνn Eν + 1

〈n
00, 
|00n
, 
〉 1
(A−1)

∑
j

(−1)I1+J−j ŝ

{
I1

1
2 s


 J j

}
1

2
√

2

×
∑
J ′T ′

∑
(nlj )abc

Ĵ ′T̂ ′

Ĵ T̂

√
1 + δnalaja,nblbjb

√
1 + δnclcjc,n
j

〈(
nalaja

1
2 , nblbjb

1
2

)
J ′T ′|V |(nclcjc

1
2 , n
j 1

2

)
J ′T ′〉

× SD〈AλJπT |∣∣∣∣((a†
nalaja

1
2
a
†
nblbjb

1
2

)(J ′T ′)
ãnclcjc

1
2

)(j 1
2 )∣∣∣∣|(A − 1)α1I1T1〉SD. (A10)

We note that the point-Coulomb contribution introduced in Eq. (11) is omitted in the above expressions for simplicity. It is zero
in the present application to 7He. Finally, Eν is the sum of the eigenenergies of the two clusters.
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