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Rotational constants of multi-phonon bands in an effective theory for deformed nuclei
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We consider deformed nuclei within an effective theory that exploits the small ratio between rotational and
vibrational excitations. For even-even nuclei, the effective theory predicts small changes in the rotational constants
of bands built on multi-phonon excitations that are linear in the number of excited phonons. In 166,168Er, this
explains the main variations of the rotational constants of the two-phonon γ vibrational bands. In 232Th, the
effective theory correctly explains the trend that the rotational constants decrease with increasing spin of the
bandhead. We also study the effective theory for deformed odd nuclei. Here, time-odd terms enter the Lagrangian
and generate effective magnetic forces that yield the high level densities observed in such nuclei.
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I. INTRODUCTION

Deformed nuclei exhibit rotational bands as their lowest
excitations, with actinides and rare earth nuclei being the most
prominent and best studied examples [1,2]. The theoretical
description and understanding of these nuclei largely rests on
the Bohr Hamiltonian [3], the collective model by Bohr and
Mottelson [4,5], its extension within the general geometric
models [6–9], and algebraic models [10,11]. For even-even
nuclei the geometrical models employ rotations and shape
parameters as the relevant degrees of freedom, while algebraic
models utilize bosonic degrees of freedom. The theoretical
approach to odd-mass nuclei is more cumbersome and is based
on coupling the odd nucleon to an even-even nucleus [12,13].
More microscopic approaches to deformed nuclei can be based
on mean-field calculations [14,15] and shell-model studies
[16]. Being solidly based on fermionic degrees of freedom,
the microscopic models can properly illuminate interesting
phenomena such as, e.g., the effect of pairing on nuclear
moments of inertia [17–21].

The collective models are particularly successful in certain
symmetry limits of the Hamiltonian (or for certain choices
of the potential energy) where analytical solutions are avail-
able. Away from these limits, generalizations of collective
models employ expansions of kinetic and potential terms, or
expansions in the number of boson operators. Such approaches
can be systematic but lack a power counting; i.e., higher-
order terms in the Hamiltonian are not guaranteed to yield
smaller contributions than low-order terms. This difficulty
compounds the adjustment of model parameters [9]. Recently,
a computationally tractable approach to the collective model
was proposed by Rowe [22] and applied to the Bohr model
[23]. Some of the challenges in the theory of deformed nuclei
are described in Ref. [24].

An alternative approach to deformed nuclei can be for-
mulated as an effective theory [25]. This approach employs
degrees of freedom similar to those of the Bohr Hamiltonian,
and its highlights are the nonlinear realization of rotational
symmetry (as a consequence of the spontaneous symmetry
breaking associated with nuclear deformation) and a power

counting. It is thus similar in spirit to other effective field
theories [26,27] that have been employed to describe nuclear
interactions [28–31], halo nuclei [32,33], and dilute Fermi
systems [34–37].

At next-to-leading order, the effective theory for deformed
even-even nuclei yields spectra that agree (to this order) with
those from the Bohr Hamiltonian; i.e., vibrational states serve
as bandheads of rotational bands, with all bands exhibiting the
same moment of inertia [25]. However, the phenomenology
is richer and more complicated. Deformed nuclei typically
exhibit small variations in the rotational constants of individual
bands, and accounting for the observation [1] that rotational
constants decrease with increasing energy of the bandhead is
a longstanding problem for the traditional collective models
for well-deformed [23,38–44] and transitional nuclei [45–47].
To address this problem, we extend the effective theory of
deformed nuclei to next-to-next-to-leading order.

Another interesting problem concerns deformed odd-mass
nuclei. Though they account for half of all deformed nuclei,
our understanding of them is much more limited, and the
theoretical approach is more complicated than is the case for
even-even nuclei. Within the collective models such nuclei
are described by coupling a nucleon to an even-even nucleus
[7,12] or within boson-fermion models [13]. The presence
of the odd fermion compounds the description of odd-mass
nuclei considerably. The question thus arises whether the odd
nucleon really is a degree of freedom that is relevant at low
energies or to what extent collective vibrations and rotations
alone are sufficient to describe low-energy phenomena of
odd nuclei. In this paper, we will address this question by
constructing the effective theory for deformed odd-mass nuclei
at next-to-leading order.

This paper is organized as follows. Section II introduces the
effective theory for deformed nuclei. In Sec. III we derive the
couplings between rotations and vibrations at next-to-next-to
leading order, and we compute the resulting spectrum. We
confront theory with data in Sec. IV. Section V extends the
effective theory for odd-mass nuclei to next-to-leading order.
Finally, a summary of our results is presented in Sec. VI.
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II. EFFECTIVE THEORY FOR DEFORMED NUCLEI

An effective theory for deformed nuclei with axial symme-
try was derived in Ref. [25]. Here we summarize the essential
ingredients of the theory and contrast it to the collective model.

The effective theory is based on quadrupole degrees of
freedom φμ(t), μ = −2,−1, . . . ,2, because these are suffi-
cient to reproduce the spins and parities of low-lying states
in even-even nuclei. The reality condition φ−μ = (−1)μφ∗

μ

expresses invariance under time reversal and implies that
we deal with five real degrees of freedom. We assume the
spontaneous breaking of rotational symmetry and a nonzero
expectation value 〈φ0〉 = v > 0. This implies the existence of
two Nambu-Goldstone modes, which may be chosen as the
Euler angles α(t) and β(t) that change the orientation of the
axially symmetric nucleus. The three remaining degrees of
freedom are chosen as the complex “field” φ2(t) and the real
“field” φ0(t):

φ =

⎛
⎜⎜⎜⎜⎜⎝

φ2

0

φ0

0

φ−2

⎞
⎟⎟⎟⎟⎟⎠. (1)

Thus, the complex “field” φ1(t) is replaced by the two Nambu-
Goldstone bosons. This is consistent with the choice of φ0

having a nonzero expectation value v [48]: An infinitesimal
rotation of the configuration with components φμ = vδ0μ will
generate nonzero components φ±1. It is convenient to rewrite
φ0 in terms of its vacuum expectation value v and a small
fluctuating part ϕ0 as

φ0(t) = v + ϕ0(t). (2)

We must assume that |ϕ0| � v because of the spontaneous
breaking of rotational symmetry.

Due to the spontaneous symmetry breaking, the rotational
symmetry is realized nonlinearly, and quantities with proper
transformation properties are

Ex = α̇ sin β, Ey = −β̇. (3)

Under a general rotation by the Euler angles (ϕ1, ϕ2, ϕ3), the
quantities Ex and Ey transform as the x and y components,
respectively, of a vector under a rotation around the z
axis by a complicated angle η(ϕ1, ϕ2, ϕ3, α, β). The exact
transformation is of no interest here but can be found in
Ref. [25]. Thus, the linear combinations

E± = Ex ∓ iEy (4)

transform under a rotation as E± → e∓iηE±.
Likewise, the quadrupole fields transform as φμ →

e−iμηφμ under a rotation. The covariant derivative

Dt ≡ ∂t − iEzJz, (5)

with

Ez = −α̇ cos β, (6)

is invariant under rotations because Ez transforms as a gauge
field. Here, Jz is the z component of the angular momentum,
i.e., JzE± = ±E± and Jzφμ = μφμ.

Due to the nonlinear realization of rotational symmetry, any
Lagrangian that consists of E±, φ±2, φ0,Dt and is formally
invariant under axial [i.e., SO(2)] symmetry is indeed invariant
under full rotational [i.e., SO(3)] symmetry.

For the systematic construction of Lagrangians one needs
to establish a power counting. We denote the energy scale of
rotational excitations as ξ and that of vibrational excitations
as �. One has ξ � � with typical values of ξ ≈ 100 keV
and � ≈ 1 MeV in rare earth nuclei. For actinides, the typical
values for ξ are smaller by about a factor of 2. We also have
to identify a breakdown scale � of our effective theory. The
complete spectroscopy of low-lying levels in deformed nuclei
has been reported for 168Er [1] and 162Dy [2]. The existence of
negative-parity bands in these nuclei (which would require the
introduction of octupole degrees of freedom) and the absence
of clear signatures for multi-phonon vibrations indicate that
� = κ� with κ ≈ 2 or 3. For the quantities introduced so far
the power counting is

E± ∼ Ez ∼ ξ, Dtφ0 ∼ Dtφ2 ∼ �1/2,
(7)

ϕ0 ∼ φ2 ∼ �−1/2, φ0 ∼ v ∼ ξ−1/2.

This power counting is based on the following rationale: The
angles α and β are dimensionless, and a time derivative of
these fields (as in E± and Ez) must scale as the low-energy
scale ξ . Likewise, a time derivative on the field φ must scale
as �, and the scaling of the fields φ2, ϕ0 itself ensures that the
kinetic term (Dtφ)2 scales as �. Finally, the expectation value
v is associated with the spontaneous symmetry breaking and
must thus scale as ξ−1/2. In an infinite system, we would have
ξ → 0, correctly implying both the divergence of the vacuum
expectation value v and zero-energy Nambu-Goldstone modes.

Let us briefly recapitulate the effective theory for deformed
nuclei at next-to-leading order for even-even nuclei [25]. At
leading order (LO), i.e., at order �, we have only vibrations,
and we note that

(Dtφ2)(Dtφ−2) = φ̇2φ̇
∗
2 − 4Im(φ̇2φ

∗
2 )Ez + 4φ2φ

∗
2E2

z (8)

consists of three terms that are suppressed by subsequent
factors of ξ/� when going from left to right.

The Lagrangian at LO is

LLO = 1

2
φ̇2

0 + φ̇2φ̇−2 − ω2
0

2
ϕ2

0 − ω2
2

4
φ2φ−2. (9)

Here, we assume that ω0 ∼ ω2 ∼ �. We use φ2 = ϕ2e
iγ with

real ϕ2 and γ , and perform the Legendre transformation

p0 = ∂LLO

∂ϕ̇0
, p2 = ∂LLO

∂ϕ̇2
, pγ = ∂LLO

∂γ̇
. (10)

The Hamiltonian is

HLO = p2
0

2
+ ω2

0

2
ϕ2

0 + 1

4

(
p2

2 + p2
γ

ϕ2
2

)
+ ω2

2

4
ϕ2

2 , (11)

and the spectrum is thus equal to that of an axially symmetric
harmonic oscillator in three spatial dimensions with energies

ELO(n0, n2, l2) = ω0(n0 + 1/2) + ω2

2
(2n2 + |l2| + 1). (12)

With view on the breakdown scale � of the effective theory,
we limit ourselves to the ground state with quantum numbers
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(n0, n2, l2) = (0, 0, 0) and the two lowest vibrational states
with quantum numbers (1, 0, 0) and (0, 0, 1), respectively. The
eigenfunctions are products

�LO(γ, ϕ0, ϕ2) = e−il2γ ψn0 (ϕ0)χn2l2 (ϕ2). (13)

Here, ψn0 (ϕ0) is the eigenfunction of the one-dimensional
harmonic oscillator with frequency ω0, while χn2l2 (ϕ2) is
the radial eigenfunction of the two-dimensional isotropic
oscillator with frequency ω2.

At next-to-leading order (NLO), the Nambu-Goldstone
modes enter in addition to higher-order corrections in the
kinetic energy (8), and the Lagrangian becomes

LNLO = LLO + �LNLO,

�LNLO = C0

2
E+E− − 4Im(φ̇2φ

∗
2 )Ez (14)

= C0

2
(β̇2 + α̇2 sin2 β) + 4ϕ2

2 γ̇ α̇ cos β.

Here, we assume that C0 ∼ ξ−1, and the NLO correction is
thus of order ξ . Note that we neglected next-to-leading order
corrections (“anharmonicities”) to the vibrational potential.
Such anharmonicities would affect higher-lying vibrational
states (which are at or beyond the breakdown scale � of the
effective theory) and transition matrix elements (which are
not the interest of this work). The Hamiltonian at NLO thus
becomes

HNLO = 1

2
p2

0 + 1

4
p2

2 + p2
γ

4ϕ2
2

+ ω2
0

2
ϕ2

0 + ω2
2

4
ϕ2

2

+ 1

2C0

(
p2

β + 1

sin2 β
(pα − 2pγ cos β)2

)
. (15)

The corresponding energy spectrum is

ENLO(n0, n2, l2, I ) = ELO(n0, n2, l2) + I (I + 1) − (2l2)2

2C0
,

(16)

and the eigenfunctions are

�NLO(α, β, γ, ϕ0, ϕ2) = e−imαdI
m,2l2

(β)�LO(γ, ϕ0, ϕ2).

(17)

Here, I � |2l2| denotes the angular momentum, and m is
the angular-momentum projection with −I � m � I . The
eigenfunction dI

μ,ν(β) is part of the Wigner D function
DI

μ,ν(α, β, γ ) = e−iμαdI
μ,ν(β)e−iνγ . Thus, we can rewrite

�NLO(α, β, γ, ϕ0, ϕ2) = DI
m,2l2

(α, β, γ )ψn0 (ϕ0)χn2l2 (ϕ2).

(18)

The spectrum (16) consists of rotational bands (labeled by
the angular momentum I ) on top of the vibrational bandheads
(labeled by the quantum numbers n0, n2, l2). Note that the
moment of inertia C0 is identical for every rotational band.

Let us also compare the effective theory with the Bohr
model. Recall that the Bohr model starts from five quadrupole
degrees of freedom, and a transformation to the body-fixed
coordinate system yields three Euler angles and two shape
parameters (usually denoted as β and γ ). The β degree

of freedom corresponds to axially symmetric oscillations
around the static deformation while γ accounts for triaxial
deformations. In the Bohr Hamiltonian, the vibrational and
rotational degrees of freedom are coupled via the moment
of inertia, while the effective theory is less constrained.
Bohr’s β degree of freedom corresponds to ϕ0 in the effective
theory. One can combine Bohr’s γ degree of freedom and
Bohr’s rotational angle ψ into a two-dimensional harmonic
oscillator [49]. In this combination, these two degrees of
freedom correspond to the complex φ2 (or ϕ2 and γ ) in the
effective theory. Let us introduce

K ≡ 2l2 (19)

for the third quantum number of the axially symmetric rotor.
With this notation, the effective theory at NLO is in agreement
with the spectra and wave functions obtained for the collective
model (cf. Chapter 6 of Ref. [7]). This agreement is expected.

III. EVEN-EVEN NUCLEI AT
NEXT-TO-NEXT-TO-LEADING ORDER

At next-to-next-to-leading order (NNLO) we have to
include terms of the size ξ 2/�. As before, we focus on the
terms that couple rotations and vibrations. This is perhaps
one of the main differences between the collective model
and the effective theory. In the former, most authors have
restricted themselves to study higher-order corrections to the
vibrational potential. This is presumably due to the difficulty
in writing down (and working with) higher-order corrections
to the kinetic terms. In the effective theory, this task is
straightforward and yields [25]

LNNLO = LNLO + 4φ2φ
∗
2E2

z + �LNNLO, (20)

�LNNLO = D0(E+E−)ϕ2
0 + F0(E+E−)ϕ̇0

2

+D2(E+E−)|φ2|2 + F2(E+E−)|Dtφ2|2
+D1ϕ0(φ2E

2
− + φ−2E

2
+)

+F1ϕ̇0(E2
+Dtφ−2 + E2

−Dtφ+2). (21)

Here, �LNNLO denotes the rotation-vibration interaction at
NNLO. Each term in �LNNLO has order of magnitude
O(ξ 2/�), making the undetermined coefficients scale as

D0 ∼ D1 ∼ D2 ∼ O(1), F0 ∼ F1 ∼ F2 ∼ �−2. (22)

The correctness of these scaling relations should be validated
by fitting the derived spectrum to the experimental level
schemes.

The Lagrangian LNNLO expanded in terms of the polar
coordinates ϕ2 and γ and the Euler angles α and β is

LNNLO = 1

2
ϕ̇2

0 + ϕ̇2
2 + ϕ2

2 γ̇
2 − ω2

0

2
ϕ2

0 − ω2
2

4
ϕ2

2

+ 4ϕ2
2(γ̇ + α̇ cos β)α̇ cos β

+ C0

2
(β̇2 + α̇2 sin2 β) + �LNNLO, (23)
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with

�LNNLO = (β̇2 + α̇2 sin2 β)
[
D0ϕ

2
0 + F0ϕ̇0

2

+D2ϕ
2
2 + F2

(
ϕ̇2

2 + ϕ2
2 γ̇

2)]
+ 2(α̇2 sin2 β − β̇2)[D1ϕ0ϕ2 cos γ

+F1ϕ̇0(ϕ̇2 cos γ − ϕ2γ̇ sin γ )]

+ 4α̇β̇ sin β[D1ϕ0ϕ2 sin γ

+F1ϕ̇0(ϕ̇2 sin γ + ϕ2γ̇ cos γ )]. (24)

It is difficult to perform the Legendre transformation
rigorously on LNNLO, because �LNNLO admixes the
Nambu-Goldstone modes and quadrupole fields and the
velocity-momentum inversions always involve quadratic
terms. Fortunately, we do not need to perform the Legendre
transformation of the Lagrangian (23) exactly but rather can
employ perturbation theory for this task.

For this purpose we follow Fukuda and co-workers [50]
who applied perturbative Legendre transformations to several
physics problems [51,52]. Fukuda’s inversion method expands
the generalized velocities perturbatively order by order in the
small quantity ξ/�. For instance, ϕ̇0 is expanded as

ϕ̇0 = ˙
ϕ

(0)
0 + ˙

ϕ
(1)
0 + ˙

ϕ
(2)
0 + · · · . (25)

Here, ϕ̇0
(0) has the same order of magnitude as ϕ̇0 and is of

leading order. Higher-order corrections scale as

˙
ϕ

(i+1)
0 ∼ ˙

ϕ
(i)
0

ξ

�
. (26)

The key step consists of assuming the generalized momenta to
be of leading order (and with no further corrections). Thus, the
leading-order relation between the momenta and velocities of
the Lagrangian (23) is

p0 = ˙
ϕ

(0)
0 , p2 = 2 ˙

ϕ
(0)
2 , pγ = 2ϕ2

2 γ̇
(0),

(27)
pα = C0α̇

(0) sin2 β + 4ϕ2
2 γ̇

(0) cos β, pβ = C0β̇
(0).

It is straightforward to invert these equations. The higher-
order corrections of the velocities now fulfill homogeneous
equations (as the momenta consist only of leading-order terms)
and can be solved perturbatively to the desired order. In
what follows, we only present the result of the Legendre
transformation of the Lagrangian given by Eq. (23) using
Fukuda’s inversion method, and we refer the reader to Ref. [52]
for more details.

The Legendre transformation yields the Hamiltonian

HNNLO = HNLO − �L
(0)
NNLO. (28)

Here HNLO is the NLO Hamiltonian given in Eq. (15), and the
term �L

(0)
NNLO is from Eq. (24) with all leading-order velocities

re-expressed in terms of momenta (27) and all higher-order
velocities dropped in this term.

The eigenvalues of HNLO are given in Eq. (16) and the
small contribution of �L

(0)
NNLO to the spectrum can be worked

out in perturbation theory by computing the expectation value
of �L

(0)
NNLO in the eigenstates (18) of the Hamiltonian (15). For

computation of the expectation value 〈(α̇(0))2 sin2 β + (β̇(0))2〉

we note that

(α̇(0))2 sin2 β + (β̇(0))2

= 1

C2
0

(
1

sin2 β
(pα − 2pγ cos β)2 + p2

β

)

= 1

C2
0

[I (I + 1) − (2l2)2]. (29)

For the expectation values involving the quadrupole vibrations
we have

〈ϕ0〉 = 〈 ˙
ϕ

(0)
0 〉 = 0,〈

ϕ2
0

〉 = 1

ω0

(
n0 + 1

2

)
,

〈( ˙
ϕ

(0)
0 )2〉 = ω0

(
n0 + 1

2

)
, (30)

〈
ϕ2

2

〉 = 1

ω2
(2n2 + |l2| + 1),

〈
(ϕ̇2

(0))2 + ϕ2
2(γ̇ (0))2〉 = ω2

4
(2n2 + |l2| + 1).

Hence, we find

〈
�L

(0)
NNLO

〉 = I (I + 1) − (2l2)2

2C0

×
[(

n0 + 1

2

)
R + (2n2 + |l2| + 1)S

]
. (31)

Here, we used the shorthand notation

R ≡ 2

C0

(
D0

ω0
+ F0ω0

)
, S ≡ 2

C0

(
D2

ω2
+ 1

4
F2ω2

)
. (32)

Thus, the next-to-next-to-leading order correction to the ener-
gies (16) is the small shift (31) of O(ξ 2/�). This shift yields
corrections to the moments of inertia of the different rotational
bands and depends on the quantum numbers (n0, n2, l2) of the
bandhead. In particular, the moment of inertia of the β band
depends on R while that of the γ band depends on S. Thus, the
rotational bands of multi-phonon excitations have rotational
constants

Atheo = 1 − (
n0 + 1

2

)
R − (2n2 + |l2| + 1)S

2C0
. (33)

In practice it is useful to rewrite this expression as

Atheo = Ag.s. − aβn0 − aγ (2n2 + |K|/2). (34)

Here, Ag.s. is the rotational constant of the ground-state band,
and aβ and aγ denote the small corrections for bands built on
multi-phonon excitations. We used the relation (19). As usual,
Atheo[I (I + 1) − K2] describes the energy levels of rotational
bands. Note that the change in the rotational constants is linear
in the number of excited phonons. This is one of the main
results of this paper. The small correction to the moment of
inertia depends on the parameters aβ and aγ (or R and S) and
can be determined by a fit to data. Note that the terms in Eq. (24)
proportional to D1 and F1 do not affect the spectrum at next-
to-next-to leading order because of the zero expectation values
of the position ϕ0 and velocity ϕ̇0 of the harmonic oscillator.
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TABLE I. Experimental excitation energies E (in keV) and spins
K of γ vibrational bandheads in 168,166Er and 232Th. The rotational
constants A (in keV) are deduced from the first level spacing of the
rotational band. In the theoretical description, the γ vibrational states
have quantum numbers n0 = 0 = n2 and l2 = K/2. The theoretical
result Atheo (in keV) for the rotational constant is determined by a
fit to the K = 0 and K = 2 bands and is a prediction for the K = 4
states.

168Er 166Er 232Th

E 0 821 2056 0 786 2028 0 785 1414
K 0 2 4 0 2 4 0 2 4
A 13.17 12.33 11.37 13.43 12.25 10.56 8.23 7.38 7.27
Atheo 13.17 12.33 11.49 13.43 12.25 11.07 8.23 7.38 6.53

These terms will affect wave functions at the considered order
and spectra at the next higher order.

IV. COMPARISON BETWEEN THEORY AND DATA

Let us confront our predictions with data. The effective the-
ory we derived allows us to describe small deviations in the mo-
ment of inertia of the β band and the γ band with K = 2 by a fit
of R and S, respectively. The theory is thus sufficiently flexible
to accommodate the small differences between the observed
rotational constants for the ground-state band and the β and γ
bands of a deformed nucleus. This overcomes a deficiency of
the collective models (see, e.g., Refs. [38,40,42,43,46]). Table I
in Ref. [44] shows that aβ is positive for most deformed nuclei.
Once the low-energy constants C0, R, and S (or Ag.s., aβ , and
aγ ) are determined from the ground-state, the β, and the γ
bands, the effective theory predicts that the difference between
the rotational constants of multi-phonon vibrations and the
ground-state band depends linearly on the number of excited
phonons. There are only a few candidates for two-phonon exci-
tations in deformed nuclei (see Refs. [53,54] for a summary of
the status of the field in the early 1990s). Due to experimental
advances, there is now robust evidence for two-phonon γ vi-
brational excitations in 168Er [55–57], 166Er [58,59], and 232Th
[60,61]. For earlier theoretical discussions on multi-phonon
states in 168Er, we refer the reader to Refs. [38,49,62–64].
A microscopic computation of the moments of inertia of γ
vibrational bands in erbium isotopes can be found in Ref. [19].

Table I summarizes our results for 168,166Er and 232Th,
respectively. The table shows the excitation energy E of the
bandhead, its spin K , and the rotational constant A. The
latter was determined by computing the first level spacing
of the respective rotational bands according to the formula
A[I (I + 1) − K2]. For each nucleus, the theoretical rotational
constants Atheo are determined by adjusting the low-energy
constants Ag.s. and aγ of Eq. (34) to the rotational constants
of the ground-state band and the γ band. This yields aγ =
0.84 keV, aγ = 1.18 keV, and aγ = 0.85 keV for 168Er, 166Er,
and 232Th, respectively. These corrections are much smaller
(i.e., by about a factor ξ/�) than the rotational constants
Ag.s. = 13.17 keV, Ag.s. = 13.43 keV, and Atheo = 8.23 keV
of the respective ground-state bands. For K = 4, Atheo is a
prediction. These predictions are in good quantitative agree-
ment with data for 168Er and in semiquantitative agreement

TABLE II. Experimental excitation energies E (in keV) and spins
K of tentative γ vibrational bandheads in 162Dy. The rotational
constants A (in keV) are deduced from the first level spacing of the
rotational band. The theoretical result Atheo (in keV) for the rotational
constant is determined by a fit to the ground-state band (K = 0) and
the γ band (K = 2). It is a prediction for the tentative γ γ bands
with K = 4 (n0 = n2 = 0 and l2 = K/2) and with K = 0 (n0 = 0,
n2 = 1, and l2 = K/2).

162Dy

E 0 888 1536 1400
K 0 2 4 0
A 13.45 12.34 9.87 8.87
Atheo 13.45 12.34 11.23 11.23

with the data for 166Er and 232Th. More precisely, for 168Er, the
difference between data and theory is about 10% of aγ and thus
consistent with neglected higher-order corrections [which are
of O(ξ/�)]. For 166Er, the difference between data and theory
is about 43% of aγ . This difference is probably at the limit of
what one expects from estimates within the effective theory.
For 232Th, the difference between data and theory is about
87% of aγ and clearly larger than expected. Here, the effective
theory only describes correctly the trend that the rotational
constants decrease with increasing spin K of the bandhead.

Let us also discuss the nucleus 162Dy and follow
Aprahamian et al. [2]. This nucleus exhibits a γ vibrational
band at an excitation energy of E = 888 keV and two
candidate γ γ phonons at energies E = 1536 keV (with
K = 4) and E = 1400 keV (with K = 0). The candidate
γ γ vibrations have quantum numbers (n0 = 0 = n2,
l2 = K/2 = 2) and (n0 = 0, n2 = 1, l2 = K/2 = 0),
respectively. As expected for harmonic vibrations, these two
levels are approximately degenerate and reasonably close to
twice the excitation of the γ bandhead. However, only 12.5%
of the E2 transition strength from the K = 4 bandhead can be
associated with a double-phonon vibration. The candidate γ γ
vibration with K = 0 exhibits only about 15% of two-phonon
strength. Let us nevertheless apply our effective theory to this
case and compare experiment and theory for the rotational
constants of the tentative γ γ bands. Table II shows that the
effective theory correctly predicts the trend of decreasing
rotational constants, while the difference between theory
and data is larger than expected on theoretical grounds. As
discussed in Ref. [2], the evidence for γ γ phonons in 162Dy
is not strong, and it is thus not too surprising that the effective
theory does not quantitatively apply to this case.

Note that—at the considered order in the effective theory—
the variation in the rotational constants is not affected by
the omission of next-to-next-to-leading order corrections
in the potential of the vibrational degrees of freedom (ϕ0, ϕ2).
Those corrections introduce anharmonicities in the vibrational
spectrum (i.e., the energies of the bandheads), but they do
not influence the moments of inertia. Note also that the
effective theory—at the here considered order—yields the
rotational bands of the rigid rotor (which are proportional to
I (I + 1) − K2). At the next higher order, i.e., at order (ξ 3/�2),
corrections proportional to [I (I + 1) − K2]2 enter [25].
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V. ODD-MASS NUCLEI AT NEXT-TO-LEADING ORDER

Odd-mass nuclei have half-integer spins in their ground
states. We want to describe these nuclei in terms of vibrations
and rotations alone. The elimination of the odd nucleon as an
active degree of freedom leads to an important change in the
symmetry properties of the Lagrangian for the rotations and
vibrations. Due to the finite ground-state spin, the Lagrangians
of odd-mass nuclei are not invariant under time reversal, and
terms that are odd under time reversal need to be included
in the description. In Ref. [25], the effective theory for the
Nambu-Goldstone modes of odd-mass nuclei was considered
at leading order. Here, we go one step further and include
the vibrational degrees of freedom and consider the effective
theory for deformed odd-mass nuclei at next-to-leading order.

Let us start with the vibrational degrees of freedom. The
time-odd and rotationally invariant terms φ0Dtφ0 and φ2Dtφ−2

and its complex conjugate enter as additional building blocks
of the Lagrangian. Instead of decomposing φ2 in polar
coordinates as in even-even nuclei, we here decompose it
in Cartesian coordinates (mostly for its simplicity in gauge
transformation, which we will see later):

φ2 = x + iy. (35)

Hence,

φ2Dtφ−2 = xẋ + yẏ − i(xẏ − yẋ) + 2iEz(x
2 + y2),

φ0Dtφ0 = φ0φ̇0 = 1
2∂t

(
φ2

0

)
. (36)

The power counting equation (7) yields the scaling

φ2Dtφ−2 ∼ φ−2Dtφ2 ∼ φ0Dtφ0 ∼ O(1). (37)

All leading-order terms of the Lagrangian of even-even nuclei
[Eq. (9)] also enter for odd-mass nuclei. The leading-order
Lagrangian for odd-mass nuclei thus becomes

L
(odd)
LO = (Dtφ2)(Dtφ−2) + 1

2
ϕ̇2

0 + A

2
∂t (φ

2
0)

+ Ã

2
(φ2Dtφ−2 + φ−2Dtφ2)

+ iB

2
(φ2Dtφ−2 − φ−2Dtφ2). (38)

Here the parameters B, Ã, and A scale as

B ∼ Ã ∼ A ∼ �. (39)

Note that φ2Dtφ−2 and φ−2Dtφ2 are complex conjugate to each
other, so they appear as linear combinations to yield real values.
The terms proportional to A and Ã are total time derivatives
and can thus be dropped from the Lagrangian. However, it
is instructive to keep them for a moment, and we will soon
eliminate them by a gauge transformation. We employ Eq. (36)
and find in leading order

L
(odd)
LO = ẋ2 + ẏ2 + 1

2
ϕ̇2

0 + B(xẏ − yẋ)

+ A

2
∂t

(
φ2

0

) + Ã

2
∂t (x

2 + y2). (40)

Clearly, the nontrivial part of the Lagrangian describes a
particle in three dimensions in a constant magnetic field with

strength proportional to B. A Legendre transformation yields
the Hamiltonian

H
(odd)
LO = 1

2 (p0 − Aφ0)2 + 1
4 (px − Ãx + By)2

+ 1
4 (py − Ãy − Bx)2. (41)

Let us employ a gauge transformation with the phase function

λ(x, y, φ0) = Ã

2
(x2 + y2) + A

2
φ2

0 (42)

and gradient

�∇λ = (Ãx, Ãy,Aφ0) (43)

to gauge away the trivial terms proportional to A and Ã. This
yields

H
(odd)
LO = 1

2p2
0 + 1

4 (px + By)2 + 1
4 (py − Bx)2. (44)

At leading order, we thus have free motion in the direction of
ϕ0 and quantized Landau levels in the xy plane.

At next-to-leading order, the Lagrangian is

L
(odd)
NLO = L

(odd)
LO + C0

2
E+E− + qEz

= 1

2
ϕ̇0

2 + ẋ2 + ẏ2 + B(xẏ − yẋ)

+ C0

2
(α̇2 sin2 β + β̇2)

− [q − 4(xẏ − yẋ)]α̇ cos β. (45)

Here, we have dropped the irrelevant terms proportional to A
and Ã in Lodd

LO . We identify again the Lagrangian of a particle
on the sphere and note that the term qEz = −qα̇ cos β is
technically a Wess-Zumino term. Under rotations, this term
remains invariant up to a total derivative, and the parameter q
is related to the ground-state spin [25]. The coupling between
rotations and vibrations in the Lagrangian (45) stems from
the covariant derivative that appears in the leading-order
Lagrangian (40), and higher-order terms have been neglected.

Let us discuss the coupling of the nuclear spin to the
vibrations and rotations which is due to the time-odd terms
in the Lagrangian. The coupling of the ground-state spin to the
Euler angles can be viewed as a particle on the sphere coupled
to a magnetic monopole with charge 2q [65]. Technically,
the vibrations couple to the ground-state spin via an effective
magnetic field B that is generated by the ground-state spin.
Note that our approach takes the spin of the ground state as
a static quantity and not as a degree of freedom. This is an
approximation that we expect to be valid only for sizeable spins
and low energies. At higher energies, or for small ground-state
spins, the spin is a dynamical quantity and only the total spin,
i.e., the sum of ground-state spin and the spin I associated with
the Euler angles, is conserved. Our approach excludes terms
such as the “Coriolis coupling” [12] from the Lagrangian,
and it is well known that this coupling has an important, i.e.,
leading-order, contribution for ground states (or bandheads)
with spin 1/2 [5].

At this point, we add a leading-order harmonic potential

VLO = ω2
0

2
ϕ2

0 (46)
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in the ϕ0 vibrational degree of freedom (and the magnetic
field B is the leading-order contribution to the φ2 degrees
of freedom), and we perform the Legendre transformation to
obtain the Hamiltonian. One finds

H
(odd)
NLO = 1

2C0

[
p2

β + 1

sin2 β
[pα + (q − 2l2) cos β]2

]

+ 1

4

(
p2

x + p2
y

) + B2

4
(x2 + y2) − B

2
l2

+ 1

2
p2

0 + ω2
0

2
ϕ2

0 . (47)

Note that l2 = (xpy − ypx) is an angular momentum. In
the ϕ0 degree of freedom we have a harmonic oscillation.
Upon quantization, one finds the usual levels of the one-
dimensional harmonic oscillator. The φ2 = x + iy degrees of
freedom correspond to a charged particle moving in a plane
perpendicular to a strong magnetic field. This yields Landau
levels upon quantization. On top of each of these “vibrational”
states, one finds a rotational band due to the Euler angles.

The spectrum of the Hamiltonian for odd-mass nuclei at
next-to-leading order thus is

E
(odd)
NLO = ω0

(
n0 + 1

2

)
+ |B|

2
(2n2 + |l2| + 1)

− B

2
l2 + 1

2C0
[I (I + 1) − (q − 2l2)2]. (48)

The quantum numbers are n0 = 0, 1, 2, . . . for the harmonic
oscillation of ϕ0, n2 = 0, 1, 2, . . . , l2 = 0,±1,±2, . . . , from
the Landau levels, and I = |q − 2l2|, |q − 2l2| + 1, |q −
2l2| + 2, . . . for the rotational bands. The eigenfunctions are
essentially as in Eq. (18) for the even-even nuclei, but with
modification of the indices of the Wigner D function (and
again by rewriting φ2 = x + iy = ϕ2e

iγ ).
Thus, the spectrum exhibits a large level density close to

the ground state, in qualitative agreement with experimental
observations for odd-mass nuclei. The large degeneracy of the
lowest Landau level is split by the l2-dependent shift of the
bandhead. Next-to-leading order corrections to the vibrational
potential (that we neglected for convenience) would further
modify this picture. Note that q must be a positive or negative
half integer, and the ground state with spin |q − 2l2| is obtained
for the value of l2 that minimizes |q − 2l2| for fixed q. For
negative values of q (and positive values of B), this is achieved
for l2 = 0 in the lowest Landau level, and the spin of the ground
state is |q|. For positive values of q (again under the assumption
of positive B), the ground state has spin 1/2, and l2 is such that
|q − 2l2| = 1/2. We repeat that the effective theory derived in
this section is not valid for bandheads with spin 1/2 because
the assumption of a static spin is only warranted for sizable
spins.

Thus, the effective theory for odd nuclei is quite similar
to the effective theory for even-even nuclei. Both theories
predict a number of low-lying bandheads that are collective
vibrations. The comparison with experimental spectra shows
that considerable anharmonicities are required in practice; i.e.,
next-to-leading order corrections to the vibrational Lagrangian
must be significant. Within the effective theory, the higher level
density in odd deformed nuclei arises due to magnetic effects
and Landau-level physics.

It would of course be interesting to consider the spin as a
dynamic degree of freedom and to drive the effective theory
for odd-mass nuclei also to next-to-next-to-leading order.
However, many more time-odd terms contribute, and many
new parameters will appear, and this makes the description of
spectra less challenging. Instead, it might be more interesting
to couple electromagnetic fields to the effective theory and
confront low-order results with the considerable amount of
available data.

Note finally that the assumption of a static ground-state
spin is probably not valid for odd-odd nuclei due to the
weak coupling between the odd proton and neutron. Thus,
one cannot simply let q assume integer values and apply the
theory derived in this section to odd-odd nuclei.

VI. CONCLUSION

In summary, we computed higher-order corrections in
the effective theory for deformed nuclei, and we focused
particularly on the kinetic terms that couple rotations and
vibrations. In even-even nuclei, the next-to-next-to-leading
order corrections yield small corrections to the moments of
inertia that are linear in the number of excited phonons.
When applied to 166,168Er, the effective theory largely explains
the observed variations of the rotational constants of the
two-phonon γ vibrations. In 232Th, the theory explains the
trend that rotational constants decrease with increasing spin
of the bandhead. For odd nuclei, the effective theory at next-
to-leading order includes time-odd terms in the Lagrangian.
This approach introduces effective magnetic fields into the
Hamiltonian and qualitatively explains observed features such
as the high level densities.
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[60] W. Korten, T. Härtlein, J. Gerl, D. Habs, and D. Schwalm, Phys.
Lett. B 317, 19 (1993).

[61] A. Martin, P. E. Garrett, M. Kadi, N. Warr, M. T. McEllistrem,
and S. W. Yates, Phys. Rev. C 62, 067302 (2000).

[62] M. Matsuo, Prog. Theor. Phys. 72, 666 (1984).
[63] M. Matsuo and K. Matsuyanagi, Prog. Theor. Phys. 74, 1227

(1985).
[64] R. Piepenbring and M. Jammari, Nucl. Phys. A 481, 81 (1988).
[65] T. T. Wu and C. N. Yang, Nucl. Phys. B 107, 365 (1976).

034323-8

http://dx.doi.org/10.1016/0375-9474(71)90596-3
http://dx.doi.org/10.1007/BF01412656
http://dx.doi.org/10.1007/BF01412656
http://dx.doi.org/10.1103/PhysRevLett.35.1069
http://dx.doi.org/10.1103/PhysRevLett.43.679
http://dx.doi.org/10.1146/annurev.ns.40.120190.002255
http://dx.doi.org/10.1146/annurev.ns.40.120190.002255
http://dx.doi.org/10.1103/RevModPhys.73.463
http://dx.doi.org/10.1103/PhysRevC.61.031301
http://dx.doi.org/10.1103/PhysRevC.61.031301
http://dx.doi.org/10.1103/PhysRevC.48.R2158
http://dx.doi.org/10.1103/PhysRevC.48.R2158
http://dx.doi.org/10.1016/S0370-2693(97)01456-1
http://dx.doi.org/10.1016/S0370-2693(97)01456-1
http://dx.doi.org/10.1103/PhysRevC.77.034313
http://dx.doi.org/10.1103/PhysRevC.77.034313
http://dx.doi.org/10.1016/j.nuclphysa.2008.10.008
http://dx.doi.org/10.1016/j.nuclphysa.2008.10.008
http://dx.doi.org/10.1103/PhysRevC.83.034323
http://dx.doi.org/10.1103/PhysRevC.83.034323
http://dx.doi.org/10.1016/j.nuclphysa.2004.02.018
http://dx.doi.org/10.1103/PhysRevC.79.054304
http://dx.doi.org/10.1103/PhysRevC.79.054304
http://dx.doi.org/10.1088/0954-3899/37/6/064018
http://dx.doi.org/10.1016/j.nuclphysa.2010.12.013
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1103/PhysRevC.49.2932
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637
http://dx.doi.org/10.1016/j.ppnp.2005.09.002
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/S0375-9474(02)01270-8
http://dx.doi.org/10.1016/S0375-9474(02)01270-8
http://dx.doi.org/10.1016/j.nuclphysa.2008.06.003
http://dx.doi.org/10.1016/j.nuclphysa.2008.06.003
http://dx.doi.org/10.1007/s100510050165
http://dx.doi.org/10.1007/s100510050165
http://dx.doi.org/10.1103/PhysRevC.59.2052
http://dx.doi.org/10.1016/S0375-9474(00)00325-0
http://dx.doi.org/10.1016/S0375-9474(00)00325-0
http://dx.doi.org/10.1016/j.aop.2007.01.003
http://dx.doi.org/10.1016/j.aop.2007.01.003
http://dx.doi.org/10.1103/PhysRevC.24.1713
http://dx.doi.org/10.1103/PhysRevC.24.1713
http://dx.doi.org/10.1088/0031-8949/24/1B/033
http://dx.doi.org/10.1103/PhysRevC.38.2482
http://dx.doi.org/10.1103/PhysRevC.72.054323
http://dx.doi.org/10.1016/j.physletb.2009.01.054
http://dx.doi.org/10.1103/PhysRevC.83.064309
http://dx.doi.org/10.1103/RevModPhys.83.1467
http://dx.doi.org/10.1103/PhysRevLett.87.052502
http://dx.doi.org/10.1103/PhysRevLett.87.052503
http://dx.doi.org/10.1103/PhysRevLett.87.052503
http://dx.doi.org/10.1103/PhysRevC.70.011304
http://dx.doi.org/10.1103/PhysRevC.70.011304
http://dx.doi.org/10.1088/0031-8949/25/1A/005
http://dx.doi.org/10.1103/PhysRevLett.61.1549
http://dx.doi.org/10.1103/PhysRevB.46.10931
http://dx.doi.org/10.1143/PTP.92.833
http://dx.doi.org/10.1143/PTP.92.833
http://dx.doi.org/10.1016/0092-640X(91)90019-Z
http://dx.doi.org/10.1016/0092-640X(91)90019-Z
http://dx.doi.org/10.1016/0092-640X(92)90003-Z
http://dx.doi.org/10.1016/0092-640X(92)90003-Z
http://dx.doi.org/10.1103/PhysRevLett.66.691
http://dx.doi.org/10.1103/PhysRevC.52.3492
http://dx.doi.org/10.1007/s100500050117
http://dx.doi.org/10.1007/s100500050117
http://dx.doi.org/10.1016/S0370-2693(96)01203-8
http://dx.doi.org/10.1103/PhysRevLett.78.4545
http://dx.doi.org/10.1016/0370-2693(93)91563-3
http://dx.doi.org/10.1016/0370-2693(93)91563-3
http://dx.doi.org/10.1103/PhysRevC.62.067302
http://dx.doi.org/10.1143/PTP.72.666
http://dx.doi.org/10.1143/PTP.74.1227
http://dx.doi.org/10.1143/PTP.74.1227
http://dx.doi.org/10.1016/0375-9474(88)90474-5
http://dx.doi.org/10.1016/0550-3213(76)90143-7



