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Background: Nuclei located in the neutron-deficient Pb region have a complex structure, rapidly evolving as a
function of neutron and proton numbers. The most famous example is 186Pb where the three lowest levels are
0+ states, the two excited 0+ states being located at low excitation energy around 600 keV. Coexisting structures
with different properties are found in the neighboring nuclei. Many experiments have been performed over the
last few years in which in-band and out-of-band γ -ray transition probabilities have been measured.
Purpose: A detailed interpretation of experimental data requires the use of a method going beyond a mean-field
approach that permits to determine spectra and transition probabilities. Such methods have already been applied to
selected isotopes in this mass region. Our aim is to provide a systematic investigation of this mass region in order
to determine how well experimental data can be understood using a state-of-the-art method for nuclear structure.
Method: The starting point of our method is a set of mean-field wave functions generated with a constraint on the
axial quadrupole moment and using a Skyrme energy density functional. Correlations beyond the mean field are
introduced by projecting mean-field wave functions on angular-momentum and particle number and by mixing
the symmetry-restored wave functions as a function of the axial quadrupole moment.
Results: A detailed comparison with the available data is performed for energies, charge radii, spectroscopic
quadrupole moments, and E0 and E2 transition probabilities for the isotopic chains of neutron deficient Hg, Pb,
Po, and Rn. The connection between our results and the underlying mean field is also analyzed.
Conclusions: Qualitative agreement with the data is obtained although our results indicate that the actual energy
density functionals have to be improved further to achieve a quantitative agreement.
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I. INTRODUCTION

The study of the low-energy spectrum of neutron-deficient
nuclei around 186Pb has unveiled a rich variety of collective
levels. In particular, several 0+ states coexist at low excitation
energy, which are in several cases the band head of a
rotational sequence. This experimental result is interpreted as
a manifestation of “shape coexistence”; i.e., a condition where
states at similar excitation energy have distinctly different
intrinsic shapes [1–5]. Many data support this interpretation.
Direct evidence is, indeed, provided by the systematics of
α-decay fine structure [4,6,7], by the moments of inertia
of the rotational bands built on several 0+ states [4], by
in-band and intraband transition probabilities [8], by g-factor
measurements [9,10], and by charge radii [11,12].

Let us first recall how the low-energy spectrum of the
Pb isotopes around N = 104 is interpreted in terms of
deformation. For all isotopes, much experimental evidence
indicates that the ground states are predominantly spherical
[5]. The two lowest excited 0+ states have been associated
with two deformed structures: an oblate one lower in energy
in the isotopes above 188Pb and a prolate one that is lower in
lighter Pb nuclei. The crossing of these two structures in the
excitation spectrum leads to the unique situation where the
three lowest levels in 186Pb are 0+ states [7].

By contrast, the ground states of the Hg isotopes down to
180Hg are interpreted as being oblate and weakly deformed

with β ≈ −0.15 [13,14]. From 198Hg down to 190Hg, the yrast
states for a given angular momentum have almost constant
excitation energies and are interpreted as the members of a
rotational band based on the oblate ground state [15]. This
simple pattern is distorted for the lighter even isotopes through
the intrusion of a strongly deformed prolate band with β ≈
0.25 [3,4]. The excitation energies of the states in the prolate
band evolve in a nearly parabolic manner as a function of the
neutron number, cf., for example, Fig. 1 in Ref. [16] or Fig. 10
in Ref. [5].

The production rates of light Po isotopes are much smaller
than those of the corresponding Hg and Pb isotones; hence, less
experimental data have been collected, but they give a clear in-
dication for an even more complex evolution of their structure
as a function of neutron number. The heavier Po isotopes down
to 196Po have near-spherical ground states [5]. For 188–192Po,
the analysis of their α-decay fine structure indicates that the
ground-state wave function contains a significant contribution
from deformed configurations [17]. Similar conclusions have
been drawn from charge radii that indicate an increasing
softness of the nucleus against quadrupole deformations with
decreasing neutron number [18].

Our study will be limited to even-even nuclei. Let us,
however, mention that data for odd-mass nuclei, where the
low-lying spectrum can often be interpreted by the coupling
of one particle to the low-lying states of the adjacent even-even
nucleus, corroborate the interpretation of the spectral data
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obtained for the light even-even isotopes of Hg, Pb, Po, and
Rn [5].

There are two different approaches to interpret the complex
and rapidly changing structure of nuclei in this mass region.
One is based on the shell model, where the emergence of low-
energy intruder states is interpreted as resulting from proton
excitations across the Z = 82 closed shell [3,19,20]. Although
the shell model including np-mh excitations across the shell
gaps provides a consistent and microscopic description of the
phenomenon of shape coexistence throughout the nuclear chart
[5], the high dimensionality of the corresponding model space
renders calculations for heavy open-shell nuclei untractable.
For such nuclei, however, the np-mh excitations can be
handled within the algebraic framework of the interacting-
boson model, which truncates the shell-model space through
the approximation of J = 0 and J = 2 coupled nucleon pairs
treated as bosons [21,22].

An alternative and intuitive approach is based on mean-field
methods, which provide a description of these structures in
terms of shapes and deformed shells. In this framework, the
low-lying spectrum is explained by the presence of multi-
ple local minima in the deformation-energy surface. These
minima can in turn be related to gaps in the single-particle
spectrum. Although shape coexistence can be interpreted
within pure mean-field models, a detailed description of the
spectrum requires “going beyond the mean field” by means
of symmetry restoration and taking into account fluctuations
in the deformation degrees of freedom. The beyond-self-
consistent mean-field method that has been developed by
several groups combines the projection techniques with the
generator coordinate method (GCM) [23–29].

Throughout this work, we use the axial quadrupole moment
as a collective variable. Mean-field wave functions are con-
structed by Hartree-Fock (HF) + BCS calculations. They are
projected on angular-momentum and particle number to form a
basis of states that are mixed by the GCM. The interaction used
here is the SLy6 parametrization of the Skyrme interaction
that describes well the systematics of low-lying states of
neutron-deficient Pb isotopes [30,31]. Selected results for
some of the nuclei discussed here have already been published
earlier [14,18,32–34].

The paper is organized as follows: In Sec. II, we give a
brief outline of the method used to calculate the spectroscopic
properties of low-lying states. In Sec. III, the calculated defor-
mation energy curves, low-energy excitation spectra, charge
radii, kinetic moments of inertia, and electric monopole and
quadrupole transition strengths are presented and discussed
in comparison with results of our previous study of Pb
isotopes and the available data. A summary of our findings
and conclusions is given in Sec. IV.

II. THE METHOD

As in our previous works [31], the starting point of our
method is a set of self-consistent mean-field wave functions
|q〉 generated with a constraint on the axial mass quadrupole
moment q ≡ 〈q|2z2 − x2 − y2|q〉. Dynamic correlations as-
sociated with symmetry restorations and fluctuations in the

shape degree of freedom are introduced by particle-number
and angular-momentum projection in the framework of the
GCM. Limiting ourselves to axially symmetric configurations,
the final wave function for the correlated state |JM; k〉 is given
by the superposition of symmetry-restored mean-field wave
functions

|JM; k〉 =
∑

q

f J
k (q)|JMq〉, (1)

where k = 1, 2, . . . labels different collective states for a given
angular momentum J . The variable q is the generic notation
for the deformation parameters. The symmetry-restored mean-
field wave function is constructed as

|JMq〉 = 1

NJ,M,q

∑
K

gJ
KP̂ J

MKP̂ ZP̂ N |q〉, (2)

where NJ,M,q is a normalization factor. P̂ J
MK projects out

eigenstates of Ĵ 2 and Ĵz with eigenvalues h̄2J (J + 1) and
h̄M in the laboratory frame or h̄K in the intrinsic frame,
respectively, whereas P̂ N and P̂ Z project out eigenstates of
the particle-number operator for neutrons and protons with
eigenvalues Nτ , τ = n, p.

The weight functions f J
k (q) and the energies EJ

k of the
states |JM; k〉 are the solutions of the Hill-Wheeler-Griffin
(HWG) equation [35]∑

q ′

[HJ (q, q ′) − EJ
k N J (q, q ′)

]
f J

k (q ′) = 0. (3)

The ingredients of Eq. (3) are the norm kernel N J (q, q ′) =
〈JMq|JMq ′〉 and the energy kernel HJ (q, q ′), which in
our calculation is given by a multireference energy density
functional that depends on the mixed density matrix [36]. The
formulas used to evaluate the energy and the norm kernels
have been presented in Ref. [24].

The weight functions f J
μ (q) in Eq. (1) are not orthogonal.

A set of orthonormal collective wave functions gJ
k (q) can be

constructed as [37,38]

gJk(q) =
∑
q ′

(N J )1/2(q, q ′)f J
k (q ′). (4)

It has to be stressed, however, that the |gJk(q)|2 quantity does
not represent the probability to find the deformation q in the
GCM state |JM; k〉. In addition, in the absence of a metric
in the definition of the correlated state |JM; k〉, Eq. (1), the
values of gJk(q) for a converged GCM solution still depend on
the discretization chosen for the collective variable q, which is
not the case for observables such as the energies or transition
probabilities.

Since the correlated states |JM; k〉 have good angular
momentum, their spectroscopic quadrupole moments

Qs(Jk) =
√

16π

5

(
J 2 J

J 0 −J

)

×
∑
q ′,q

f J∗
k (q ′)〈Jq ′||Q̂2||Jq〉f J

k (q) (5)
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and the reduced electric quadrupole (E2) transition strengths
between them,

B(E2; Ji, ki → Jf , kf )

= 1

2Ji + 1

∣∣∣∣∑
q ′,q

f
Jf ∗
kf

(q ′)〈Jf q ′||Q̂2||Jiq〉f Ji

ki
(q)

∣∣∣∣
2

, (6)

are calculated directly in the laboratory frame without ap-
proximation. The reduced matrix elements entering both
expressions are determined as

〈Jf q ′||Q̂2||Jiq〉

= (2Jf + 1)(2Ji + 1)

2NJf ,q ′NJi ,q

+2∑
M=−2

(
Jf 2 Ji

0 M −M

)

×
∫ π

0
dθ sin(θ )dJi∗

−M0(θ )〈q ′|e−iθ Ĵy Q̂2MP̂ NP̂ Z|q〉, (7)

where Q̂2M ≡ er2Y2M is the electric quadrupole moment
operator. To relate the moments in the laboratory frame
to intrinsic deformation parameters, one can define two
dimensionless quadrupole deformations in the same way as
in the static rotor model. The first one, β(s), is related to the
spectroscopic quadrupole moment (for states in a K = 0 band)
by

β(s)(Jk) =
√

5

16π

4π

3ZR2

(
−2J + 3

J

)
Qs(Jk), (8)

and the second, β(t), is related to the reduced E2 transition
strength:

β(t)(Ji, ki → Jf , kf ) = 4π

3ZR2

√
B(E2; Ji, ki → Jf , kf )

e2〈Ji020|Jf 0〉2
.

(9)

The radius R appearing in both expressions is given by R =
1.2A1/3 fm, with A being the mass number and 〈Ji020|Jf 0〉
is a Clebsch-Gordan coefficient. The nuclear matrix element
entering the electric monopole decay from |JM; k〉 to |JM; k′〉
through the emission of conversion electrons is determined by

ρ2
E0(Jk → Jk′) =

∣∣∣∣ 〈JM; k′|e ∑
p r2

p|JM; k〉
eR2

∣∣∣∣
2

, (10)

where p is an index running over all proton single-particle
states. Since the electric transition matrix elements are calcu-
lated in the full model space of occupied single-particle states,
there is no need to introduce effective charges, and we use the
bare charge for protons instead.

As in our previous works [31], pairing correlations are
treated to the BCS approximation, including the Lipkin-
Nogami (LN) prescription to avoid a collapse of pairing
correlations when the density of single-particle levels is too
low. The mean-field wave functions are discretized on a
three-dimensional cartesian mesh, with a distance between
mesh points of 0.8 fm sufficient to have an accuracy much
better than 100 keV on energy curves. The number of points
considered in the solution of the HWG equation is also large
enough (up to 50 points in the most complicated topographies)

not to affect any of our conclusions on spectra and transition
probabilities. The parametrization SLy6 [39] of the Skyrme
interaction and a density-dependent zero-range pairing force
with the same strength of −1250 MeV fm3 for neutrons and
protons and a soft cutoff at 5 MeV above and below the
Fermi energy as defined in Ref. [40], are adopted in the con-
struction of mean-field wave functions and the configuration
mixing calculations. As required by the SLy6 parametrization,
the full two-body center-of-mass correction is included in the
variational equations to generate the mean field and in the
calculation of the projected GCM energies.

III. RESULTS AND DISCUSSION

A. General comments

In mean-field models, self-consistent and non-self-
consistent ones alike, there is an intimate relation between
the total binding energy and the density of levels around
the Fermi energy in the Nilsson diagram of single-particle
energies. This is obvious for non-self-consistent macroscopic-
microscopic models, where the extra binding from shell
structure is explicitly calculated as a “shell correction” to the
total binding energy, and, therefore, can be easily isolated,
but the same mechanism is hidden in the total energy of self-
consistent mean-field models. A lower-than-average density of
single-particle levels around the Fermi energy results in extra
binding, whereas a larger-than-average value reduces binding.
Therefore, large gaps near the Fermi energy in the Nilsson
diagram often correspond to minima in the deformation energy
curve, whereas a large bunching of levels close to the Fermi
energy usually corresponds to barriers between such minima.
The Fermi energy does not have to be located exactly at the
gap, but might be slightly below or above it. With increasing
distance of the Fermi energy from the gap, however, the shell
effect can be expected to become less pronounced. In any
event, shape coexistence is the fingerprint of a variation of
shell structure around the Fermi energy that opens or closes
gaps with deformation.

To have near-degenerate collective states with the same
quantum numbers but different deformations, there has to be
a mechanism that prevents their mixing. As states of different
deformations are a priori not orthogonal, the diagonalization
of the Hill-Wheeler-Griffin equation (3) can easily produce
collective wave functions spread over a large range of defor-
mations. Large nondiagonal energy kernels will amplify this
effect. Therefore, the sole presence of a large barrier between
the minima is not sufficient to prevent mixing. To achieve a
weak coupling between mean-field configurations, the matrix
elements of the overlap and the energy kernels between them
must be small. A mechanism leading to such suppression
of the matrix elements is provided by intruder states; i.e.,
single-particle levels that are downsloping with deformation
from the next major shell and, therefore, have a parity opposite
to that of the levels at the Fermi energy. Assuming conserved
parity and neglecting pairing correlations, two HF states
with a different number of positive-parity and negative-parity
single-particle levels do not overlap and are weakly coupled in
the GCM. This is no longer the case when pairing correlations
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FIG. 1. (Color online) Nilsson diagram of the eigenvalues of the
single-particle Hamiltonian for neutrons in 190Po as a function of the
axial deformation parameter β, obtained with the Skyrme interaction
SLy6; see Eq. (11).

are taken into account, but one can expect that the overlap
between the mean-field wave functions remains small.

The detailed results of this extensive study are available
in the Supplemental Material [41]. They include excitation
energies, charge radii, spectroscopic quadrupole moments,
and electric monopole and quadrupole transition strengths for
the low-lying states that were computed for total angular-
momentum values up to J = 10h̄, in the neutron-deficient
176–194Hg, 180–194Pb, 186–210Po, and 194–204Rn isotopes. We
focus here on the evolution of low-lying states with neutron
and proton number and discuss the similarities and differences
between these four isotopic chains.

B. Nilsson diagrams

Figures 1 and 2 display the Nilsson diagram of neutron and
proton single-particle energies as a function of a dimensionless
quadrupole deformation parameter β. This parameter is related
to the intrinsic mass quadrupole moment q of the HF + BCS
states by the relation

β =
√

5

16π

4π

3AR2
q. (11)

FIG. 2. (Color online) Same as Fig. 1, but for the protons.

There is a large number of gaps visible in the Nilsson diagram
for neutrons. First, there is a spherical one at N = 100, below
the 1i13/2+ intruder level. There are many deformed gaps
of slightly varying size on the oblate side for every even
neutron number from N = 102 to N = 110 at increasingly
large deformations up to β 	 −0.2. These gaps are all located
between the spreading magnetic substates of the 1i13/2+ shell.
There are also gaps of varying size for every even neutron
number between N = 98 and N = 108 on the prolate side.
Due to the downsloping K = 1/2 level from the 2g9/2+ shell
above and the upsloping levels from the 1h9/2− shell below,
however, they correspond to configurations with a different
number of occupied intruder levels. Because of several level
crossings, the deformations of the gaps on the prolate side are
not ordered according to N . The largest ones are N = 106 for
β 	 0.3 and N = 104 for β 	 0.5, respectively.

For the protons, there is a large spherical shell gap
at Z = 82, a gap at Z = 80 extending from sphericity to
an oblate shape with β values down to −0.2 as well as a smaller
oblate Z = 82 gap at β 	 −0.25. At normal deformation,
there are no significant proton gaps on the prolate side that
come close to the Fermi energy, except for a small Z = 86 one
at β 	 0.5.

At the deformation corresponding to the deformed neutron
gaps, the downsloping high-j proton intruder orbitals have
dropped to energies close to the Fermi energy, in most
cases even well below, and thus have a sizable occupa-
tion. For this reason, some single-particle orbitals compos-
ing the corresponding deformed mean-field wave function
are very different from those of the spherical configura-
tion and the overlap between both is small. As discussed
above, a small overlap creates favorable conditions for a
decoupling between configurations corresponding to different
shapes.

We have checked that the Nilsson diagrams of both protons
and neutrons change only marginally for the nuclei covered in
the present study.

C. Systematics of deformation energy curves

The energy curves obtained after projection onto particle
numbers are presented in Fig. 3. The mean-field ground states
for all neutron-deficient Pb isotopes are spherical. The same
result has been obtained in calculations using the parametriza-
tion D1S of the Gogny force [42]. However, it can be modified
by a lower pairing strength [43] or the use of a different
pairing functional [44]. For all Pb isotopes except 180–182Pb, the
curves also display an oblate minimum with β 	 −0.20. The
excitation energy of this minimum decreases from 0.76 to 0.50
MeV for N going from 112 to 108, and increases again up to
1.63 MeV when decreasing the neutron number further down
to 102. The well depth follows a similar evolution. It starts from
0.46 MeV for N = 112, is maximal at 0.93 MeV for N = 108,
and decreases again down to 0.49 MeV for N = 102. On the
prolate side, the energy curves present an inflexion point at
β 	 0.30 for N � 110 and a minimum for lower N values
down to 100. The excitation energy of this minimum decreases
from 1.47 MeV in 190Pb down to 0.61 MeV in 184Pb and rises
up again to 0.82 MeV in 182Pb.
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FIG. 3. (Color online) Energy curves for the particle-number-
projected HF + BCS states (N&Z) for 176–194Hg, 180–194Pb, 186–204Po,
and 194–204Rn as a function of the intrinsic quadrupole deformation
parameter β. All energies are normalized to the spherical shape
(β = 0), but with an additional energy shift of 1 MeV between two
neighboring isotopes. The lowest configuration of a given nucleus in
the deformation region of interest is indicated with a bullet.

The deformation of the prolate minima of the Pb isotopes
follows closely the neutron gaps in the Nilsson diagram. Their
deformation is β2 	 0.32 for N = 100 increases slightly at
N = 102, and then decreases up to N = 106. For 108 � N �
112, this prolate minimum disappears as the Fermi energy
approaches a region with densely bunched levels in the Nilsson
diagram.

There are no spherical minima for the Hg, Po, and Rn
isotopes discussed here. The minima of the deformation
energy curves for these nuclei are not always in a one-to-one
correspondence with the gaps in the Nilsson diagram. This
is because the gap for one nucleon species is often located
at a deformation corresponding to densely bunched levels for
the other. Hence, the minima correspond to the most favorable
compromise between the shell effects for neutrons and protons.

The ground states that we obtain for the Hg isotopes
are oblate above N = 106 and prolate below this neutron

number. At N = 106, the oblate and prolate minima are nearly
degenerate. The energy curves are very shallow for N = 98
and 96. The deformation of the oblate minimum corresponds
to the Z = 80 proton gap for all values of N , whereas the
prolate minima of the isotopes with N � 98 correspond to the
many gaps obtained in the neutron Nilsson diagram around
β 	 0.3. For the soft N = 96 isotope, the prolate minimum
is shifted to a weakly deformed configuration with β 	 0.13,
close in energy with the weakly deformed oblate minimum.
The oblate minimum is very rigid for N = 114 and becomes
softer with decreasing N . Such a behavior can be related to
the neutron single-particle levels close to the Fermi energy.
For N � 108, the density of neutron levels is high and their
energy is rapidly increasing when β becomes more negative.
The situation changes at N = 106 and below, where the density
of neutron levels is low and the energy varies more slowly with
deformation.

The energy curves of the Po isotopes evolve in a way
similar to those of the Hg isotopes. In particular, the
transition between oblate and prolate ground states appears
at the same neutron number. However, there are differences
in the details. The oblate minimum is always shallower, and
the oblate deformation of the ground state increases steadily
with decreasing N . For N = 108, which corresponds to the
lightest Po isotope with an oblate ground state, the deformation
parameter β is significantly larger for Po than for Hg. By
contrast, for 102 � N � 106 the prolate ground states have
a smaller deformation for Po than for the corresponding Hg
isotopes.

The energy curves of the Rn isotopes evolve in a way similar
to those of the Po isotopes, but with deeper oblate and prolate
minima.

Our calculations are limited to axial deformations. One
cannot exclude, however, that in some cases the minima
appearing in the axial deformation energy curves actually
correspond to saddle points of the energy surface in the full β-γ
plane. Several scenarios are possible. First, the axial minima
can be separated by a barrier with the energy rising all the way
from both sides, such that they are true minima. In Ref. [31], we
have checked that this is the case for the spherical, prolate, and
oblate minima found in the 182–194Pb isotopes studied there.
But there could be cases where there is no barrier between the
axial minima. A second possibility is that the energy changes
monotonically from γ = 0◦ to 60◦. Then, the higher-lying
minimum is in fact a saddle point. This happens for many
well-deformed nuclei, and also for many γ -soft ones. A third
case occurs when there is a triaxial minimum between the
two axial ones. In this case, depending on the appearance of
barriers, one or even both minima in the axial energy curve
might be saddle points.

The Gogny interaction D1s very often gives deformation
energy surfaces very similar to those obtained with the Skyrme
interaction SLy6 used here. A systematic survey of energy
surfaces in the β-γ plane using D1s can be found in Ref. [45].
For the nuclei studied here, the study of Ref. [45] indicates that
minima found in a calculation restricted to axial shapes have
to be suspected to be saddle points when the ground state and
the secondary minimum in the axial energy curve are nearly
degenerate and are obtained for similar values for |β|.
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FIG. 4. (Color online) Quadrupole deformation energy surface
for 184Hg, normalized to the absolute minimum and projected on
particle numbers. Each contour line is separated by 0.2 MeV. The
inset shows the energy as a function of γ deformation along the path
joining the two axial minima.

Two examples of particle-number projected energy surfaces
in the full β-γ plane obtained with SLy6 are displayed in Fig. 4
for 184Hg and Fig. 5 for 200Po. The variation of the energy as
a function of γ for a path going from the oblate to the prolate
minimum is shown as an inset in the figures.

Figure 4 illustrates the case where there is small barrier
between the two minima. For 200Po, the absolute minimum
is obtained for a nonaxial configuration, with β ≈ 0.1 and
γ ≈ 10◦. This nucleus is a rare case where both minima found
in an axial energy curve actually correspond to saddles in the
full β-γ plane [46]. The prolate saddle is at almost the same |β|
value as the nearby triaxial minimum and is located just about
100 keV higher, whereas the oblate saddle is at somewhat
smaller |β| values and higher excitation energy. The heaviest
Po and Rn studied here can be expected to have deformation
energy surfaces of similar γ -soft topography, although not
necessarily with a triaxial minimum.

FIG. 5. (Color online) Same as Fig. 4 for 200Po.

FIG. 6. (Color online) Same as Fig. 3, but with projections onto
both particle numbers and angular momentum J = 0.

D. Effects of angular-momentum projection on energy curves

The energy curves projected on J = 0 are given in Fig. 6.
The energies are drawn at the intrinsic quadrupole moment (or
the β value) of the mean-field wave function that is projected.
This is the most convenient way to plot the results obtained
after projection on angular momentum. However, it has to be
kept in mind that, after angular-momentum projection, it is
only at large deformation and for J > 0 that the β value of
Eq. (11) provides a rough estimate for the values obtained
through Eqs. (8) or (9) from observable quadrupole moments.
At small deformations, the intrinsic deformation does not
have a relation to an observable. Therefore, the interpretation
of these energy curves requires some caution [31,42]. The
energy 	Erot ≡ EJ=0(β) − E(β) gained from the restoration
of rotational symmetry is displayed on the bottom panel of
Fig. 7 for 186Hg, 188Pb, and 190Po. The spherical configuration
is purely a J = 0 configuration; hence, projection on J = 0
does not bring any gain of energy. A slight deformation of
the mean-field is sufficient to introduce higher J components
(or, in a shell-model language, particle-hole excitations) in the
mean-field wave function. Projection on J = 0 gives then an
energy gain, which at small deformation is almost symmetrical
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FIG. 7. (Color online) Effect of projection on J = 0 on topogra-
phy of deformation energy curves at small deformation. Top panel
shows energy curves after projection on particle numbers (N&Z)
and on angular momentum J = 0 as a function of β for 186Hg, 188Pb,
and 190Po. Lower panel shows the corresponding energy gained from
projection on J = 0; 	Erot(β) = EJ=0(β) − E(β).

around the spherical point and increases rapidly (in absolute
value) to reach about 3 MeV around |β| ≈ 0.1. At larger
deformation, the energy gain still increases further, but at a
slower rate, as illustrated in Fig. 7. For nuclei with deformed
minima, this generic behavior usually makes the energy curve
more rigid at small deformation values and softens it at larger
ones. For nuclei with a spherical minimum in the mean-field
energy surface, such as the Pb isotopes, the minimum is shifted
to small absolute values of the deformation β for all values
of γ , forming a kind of “Mexican hat” around the spherical
point.

Neither the mean-field wave functions nor the wave
functions obtained for a given set of quantum numbers after
symmetry restoration are orthogonal. The overlap between
J = 0 wave functions is large for all small deformation values
of the mean field. It turns out that the states “at the bottom of
the mexican hat” are not only almost degenerate, but also
have very large overlaps close to one, meaning that after
projection they describe the same physical state. We will
call a state in this very particular minimum a “correlated
spherical state”. This state has the property to appear only
for J = 0 values, but not for higher angular momenta;
therefore, it is not the head of a rotational band. This allows
us to distinguish the correlated spherical states from “truly
deformed” minima at small deformation that appear at all
J and lead to the appearance of a rotational band. In any
event, at small deformation, the labeling of projected wave
functions by a mean-field deformation has a very limited
meaning.

The main findings for the effect of projection on J = 0 on
the energy curves of the nuclei discussed here are

(i) Using the definition of a correlated spherical state, the
ground state is spherical for all Pb isotopes. A prolate
minimum around β 	 0.3 is obtained for the lightest
isotopes up to N = 106. The oblate minimum that was
obtained before projection on angular momentum for
isotopes above N = 106 is not clearly visible anymore,
as it merges with the spherical minimum.

(ii) For the Hg, Po, and Rn isotopes, angular-momentum
projection does not modify the topography of the energy
curves significantly. Both the prolate and the oblate
minima become more bound with respect to the energy
of the spherical point. For some nuclei, the minimum
is also shifted to slightly larger deformation.

(iii) For Po isotopes with 112 � N � 120, the absolute
minimum of the energy curves moves from an oblate
to a prolate shape after projection on J = 0. These Po
nuclei are the only ones where projection results in a
change of the sign of the deformation.

When triaxial shapes are included, angular-momentum
projection shifts the deformed minima from axial shapes
to slightly nonaxial ones [26–28], in the same manner
as the spherical minimum is shifted to slightly deformed
intrinsic shapes. For light nuclei, symmetry-restored GCM
calculations including triaxial shapes have been performed
and this shift does not qualitatively change the interpretation
of the minima. Because of their high computational cost, such
calculations have not been performed yet for nuclei as heavy
as the ones discussed here within an energy-density-functional
framework.

While the mean-field ground states are at normal deforma-
tion for all nuclei considered here, we have to note that after
angular-momentum restoration, the ground states of 186,188Po
and 194,196Rn correspond to the projection of a superdeformed
configuration beyond the range of deformations displayed in
Fig. 6. A similar result for the lightest Po and Rn isotopes is
also obtained when using the Gogny D1s force and adding a
rotational correction [45]. This finding is the consequence of
the energy gain from angular-momentum projection growing
with deformation, cf. Fig. 7. It is in contradiction with the
data and is an artefact of the low surface-energy coefficient
asurf = 17.7 MeV of the parametrization SLy6. We have
checked that, with the SLy4 parametrization, which has a
slightly larger surface-energy coefficient of asurf = 18.4 MeV,
the deformation energy curves are stiffer such that the
superdeformed minima remain above the normal deformed
ones after projection. On the other hand, at the mean-field
level, the relative excitation energies of the various minima in
the Pb region are much better described by SLy6 because,
overall, SLy4 gives excitation energies that are too large.
A similar result has been found for 240Pu in Ref. [29].
This points to the need to fit dedicated parametrizations for
beyond-mean-field calculations in the future. We have limited
our configuration mixing calculations to deformations up to
β ≈ 0.6. We have checked that the normal- and superdeformed
states are sufficiently decoupled that the low-lying states at

034322-7



J. M. YAO, M. BENDER, AND P.-H. HEENEN PHYSICAL REVIEW C 87, 034322 (2013)

normal deformation discussed here are not affected by using
these restricted configurations.

E. Systematics of low-lying 0+ states

1. Collective wave functions

The collective wave functions gJ
k (q), as defined by Eq. (4),

are spread over a large range of deformed mean-field wave
functions. However, it is often still possible to classify them
as spherical, oblate, or prolate by looking at the dominant
configurations. Such a classification is greatly helped by
studying the mean deformation of the mean-field components
of a collective wave function defined by

β̄J k ≡
∑

q

β(q)|gJk(q)|2. (12)

This quantity has to be taken with a grain of salt. First, because
of the nonorthogonality of the basis of projected mean-field
states, |gJk(q)|2 does not represent the probability to find a
given mean-field state |q〉 in the projected GCM state |JM; k〉.
Second, β̄J k cannot be expected in general to correspond
to a deformation deduced from electromagnetic transitions
or spectroscopic moments. Still, this quantity turns out to
be useful when analyzing the mixing of oblate, spherical,
and prolate wave functions. For simplicity, we will label the
collective states as oblate, prolate, or spherical when the mean
deformation β̄J k has a value close to the deformation of the
mean-field state with the largest weight in the collective wave
function. When this is not the case, the state will be denoted
as “spread”.

The collective wave functions gJk(q), Eq. (4), of the lowest
J = 0 states are plotted in Figs. 8–11 as a function of the
deformation β for 180–194Pb, 176–194Hg,186–204Po, and 194–204Rn,
respectively. The third 0+ is displayed only when it presents
a special interest. The β̄0k value is indicated for each state by
the symbols •(0+

1 ), �(0+
2 ), and �(0+

3 ), respectively.
For all Pb isotopes, the GCM ground state is predominantly

spherical, in agreement with the data. The two lowest excited
states are dominated by either oblate or prolate components.
As we shall see below, the prolate state is lower in energy
for the lighter isotopes up to N = 106 and the oblate one
is lower above this value while they are nearly degenerate
for N = 106. Although they are not separated by a sizable
barrier, the spherical and oblate states are well separated.
The occupation of intruder single-particle states in the oblate
configuration seems to prevent a mixing. Indeed, at β 	
−0.15, the downsloping K = 7/2 intruder orbital from the
2f7/2− shell above the spherical Z = 82 shell closure crosses
the upsloping 3s1/2+ orbital. In the same way, the prolate state
does not mix significantly with the spherical and oblate states
because its dominant contributions have a large occupation of
several downsloping intruder levels on the prolate side.

The mean deformation β̄01 [Eq. (12)] for the ground states
of 176Hg and 178Hg displayed in Fig. 9 is close to zero. Indeed,
the small value of β̄01 is the result of a cancellation between the
contributions of oblate and prolate configurations. This large
mixing of different shapes can be related to flat energy curves

FIG. 8. Collective wave functions for the first two (solid and
dashed curves) and some selected third (dash-dotted curves) 0+

states in 180–194Pb. The mean deformations β̄Jk ≡ ∑
q β(q)|g0k(q)|2

are indicated with the symbols •(0+
1 ), �(0+

2 ), and �(0+
3 ).

given for these two isotopes in Fig. 3. For both isotopes, the
first excited 0+ state is prolate.

In fact, from the discussion of triaxial energy surfaces
above, one can assume that both of these nuclei are soft in
the γ degree of freedom that is not explicitly considered
here. However, we recall that in symmetry restored GCM,

FIG. 9. Same as Fig. 8, but for 176–194Hg.
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FIG. 10. Same as Fig. 8, but for 186–204Po.

prolate and oblate configurations are directly mixed by the
Hill-Wheeler-Griffin equation, Eq. (3), independently of the
height of a barrier on the axial path between them. Therefore, in
an axial GCM calculation, as done here, one cannot distinguish
the wave function of a γ -soft nucleus from that resulting from
large mixing of two minima separated by a barrier.

For the Hg isotopes 100 � N � 104, the prolate configu-
ration is the ground state in contradiction with the data, as we
shall see below, and the first excited 0+ state is a spread state.
The balance between oblate and prolate configurations in the
ground state is reversed above N = 104, with a larger weight
on the oblate side for the heaviest isotopes represented in the
figure. The first excited 0+ state is predominantly prolate for

FIG. 11. Same as Fig. 8, but for 194–204Rn.

FIG. 12. (Color online) Systematics of excitation energy of first
three 0+ states in Hg, Pb, Po, and Rn isotopes. Lines connect the states
with similar dominant configurations. The available experimental
data [16,47,48] for the low-lying 0+ states are plotted for comparison.

N = 96, 98, 106, and 108 and has a large spreading above
108. The second-excited state is oblate for N = 106 and 108.

For the Po isotopes, the ground states for N = 102 and 104
are the only ones to be dominated by prolate configurations.
The ground states of the heavier isotopes have a large
spreading. Figure 5 indicates that, for these isotopes, the almost
equal mixing of prolate and oblate configurations results from
the γ softness of their energy surface. The mean deformation
β̄J k of excited states for 102 � N � 106 is small, reflecting
the nearly equal weight of oblate and prolate configurations.
From N = 108 to the heaviest Po isotopes studied here, the
first excited 0+ state is dominated by oblate components,
whereas the second excited one is prolate for N = 108 and
110. Experimentally, the ground states of the Po isotopes are
interpreted as being spherical down to N = 112. The lighter
isotopes are inferred to posses deformed ground states [5].

The collective wave functions of the Rn isotopes behave in
a way similar to those of their Po isotones.

2. Excitation energies

The evolution of the energy of the first excited 0+ states
is compared to the experimental data in Fig. 12. The main
findings are as follows:

(i) Going from N = 120 down to N = 108, the 0+
2 and

0+
3 excitation energies decrease rapidly in all the four

isotopic chains, in agreement with the data.
(ii) As discussed above, the states 0+

2 and 0+
3 in Pb isotopes

all have a well-defined shape, the 0+
2 level being oblate

above N = 106 and prolate below. The oblate and
prolate configurations cross at N = 106; in this nucleus
the excitation energies of the 0+

2 and 0+
3 states are quite

close and below 1 MeV.
(iii) The evolution of the energy of the 0+

2 state in Hg iso-
topes is in agreement with the data. In our calculations,
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this state can be called prolate only for N = 96, 98,
106, and 108; for all other isotopes, it has a very spread
character. Also, for 100 � N � 104, the agreement
between calculations and data is fortuitous, since our
calculations do not reproduce the shape of the ground
state deduced from the data.

(iv) For Po isotopes, the calculations overestimate the
excitation energy of the 0+

2 level but reproduce the slope
of the variation of the energy with N . For all isotopes
for which data exist, our calculations predict the 0+

2
state to be oblate.

3. Variation of mean-square charge radii

The variation of the calculated mean-square charge radii
is compared in Fig. 13 with the values deduced from the
measured isotopic shifts. Our results for the Pb isotopes
obtained with the SLy6 and SLy4 Skyrme parametrizations,
each used with a different pairing strength, have already been
compared with the data in Ref. [33]. In Ref. [18], results
obtained with the SLy4 parametrization and two different
values of the pairing interaction strength have been confronted
with data. In both cases, it was observed that charge radii are
extremely sensitive to the amount of mixing of mean-field
wave functions corresponding to different shapes, which in
turn is very sensitive to the pairing strength.

A sudden increase of the charge radii is obtained at N = 104
in our calculation for the Hg isotopes. It is related to the
shape transition seen in Figs. 3 and 9 that is, however, not
corroborated by the data. By contrast, a jump of similar size
has been observed in odd-A Hg [11,13]. This observation
indicates that two states based on either prolate or oblate shapes
indeed coexist but that our calculations do not predict correctly
their relative position. Above N = 104, the ground-state wave
functions are weakly oblate, but become strongly peaked

FIG. 13. (Color online) (Upper panel) Variation of the charge
radii δ〈r2

ch〉 for the lowest 0+ states in Hg [normalized to the ground
state (g.s.) of 194Hg], Pb (normalized to the g.s. of 194Pb), Po
(normalized to the g.s. of 210Po), and Rn (normalized to the g.s.
of 204Rn) isotopes, compared to the the experimental data for ground
states taken from Refs. [18,49].

at prolate shapes for 100 � N � 104, as shown in Fig. 9.
However, this onset of large prolate deformation in the ground
state is in contradiction with the experimental data. Clearly, the
dominant configuration of the ground state should not change
much down to at least N = 102.

The calculated charge radii overestimate the experimental
ones below N = 112. The origin of this discrepancy has been
discussed in Ref. [18] where we have shown that charge
radii are very sensitive to the amount of mixing of different
shapes in the collective wave function. A slight modification of
this mixing could reduce the discrepancy between theory and
experiment but it is unfortunately not possible to determine
which component of the effective interaction has to be
modified.

In the Rn isotopes, the kink at N = 112 in the calculated
values of δ〈r2

ch〉 is due to the onset of weakly oblate deforma-
tions in the ground state at N = 110, cf. Figs. 9 and 12.

4. Monopole transition strength

Figure 14 displays the E0 strength ρ2
E0, Eq. (10), between

the 0+
2 and the 0+

1 states. This electric monopole transition
strength is correlated to the size of the deformation and to the
amount of mixing between configurations corresponding to
different shapes [2]. In general, large E0 strength arises from
a strong mixing between states with different radii.

Compared to the very sparse experimental data that exist
for some Hg, Pb, and Po isotopes, our calculated ρ2

E0 values
are too large by an order of magnitude. According to Ref. [2],
this indicates an excessively strong mixing of configurations
with different deformation in at least one of the two 0+ states.

F. Low-lying states in N = 106 isotonic chain

After the discussion of the J = 0 states, we will now turn to
the properties of states with finite angular momentum. Before
looking at their systematics, let us first analyze how these

FIG. 14. (Color online) Electric monopole transition strengths
ρ2

E0 for the transitions between the first excited 0+ state and the ground
state (cf. Fig. 12) in Hg, Pb, Po, and Rn isotopes. Experimental data
are taken from Ref. [50].
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FIG. 15. (Color online) Deformation energy curves projected
onto particle number (N&Z), or additional onto angular momentum
(J = 0, 2, . . . , 8), as well as the projected GCM states in the
N = 106 186Hg, 188Pb, and 190Po isotones. The projected energy
curves are plotted as a function of the intrinsic deformation β of the
mean-field states. The energies of projected GCM states are indicated
by bullets and horizontal bars placed at the average deformation β̄Jk .
All energies are normalized to the 0+ ground state.

levels group into bands in the case of the N = 106 isotones.
For this neutron number, our calculations predict three nearly

degenerate 0+ levels for Hg, Pb, and Po, cf. Figs. 8-10, which
makes these isotopes the ideal laboratory for this purpose.

The projected energy curves are plotted in Fig. 15 for 186Hg,
188Pb, and 190Po. The energy of the correlated GCM states are
indicated by bars located at their mean deformation β̄J k . The
energy curves projected only on particle numbers are also
provided for comparison. There is no rotational band on top
of the ground state of 188Pb, which confirms our interpretation
that this level is a correlated spherical state. However, the
mean deformations β̄J k and energies of the GCM states, as
well as the systematics of B(E2) values and spectroscopic
quadrupole moments to be discussed below, indicate two
rotational bands in this nucleus, one of prolate and the other
of oblate deformation. Similar bands are found for 186Hg and
190Po. For both bands and in all three isotones, the 0+ band
head is strongly perturbed.

The energy of the 0+ band head is even pushed above
that of the 2+ state for the oblate band in Hg and Po
and quasidegenerate in Pb. For larger-J values the bands,
however, become more regular with a steady increase of the
mean deformation β̄J k as a function of J . This means that
deformation follows closely the minimum of the projected
energy curve for the oblate bands, whereas it is becoming
larger for the prolate sequences. In any event, a third low-lying
0+ state that cannot be associated with a rotational band is also
found for 186Hg and 190Po.

The theoretical spectra of the three nuclei are compared with
the experimental data in Fig. 16. Note that the experimental
data do not enable us to relate the two experimental excited
0+ levels in 188Pb to one of the two rotational bands that
can be clearly visible at higher spins. As already discussed in
previous studies [31], the calculated spectra are too expanded.
However, the overall trends of experiment are rather nicely
reproduced. The intraband E2 transition strength B(E2 : J +
2 → J ) increases steadily with angular momentum, which
is consistent with the picture shown in Fig. 15 that the
collective wave functions are mainly built from either purely
prolate or oblate mean-field states as soon as J � 2. Both

FIG. 16. (Color online) Comparison between the calculated and the measured low-lying spectra for 186Hg, 188Pb, and 190Po. The B(E2)
values are given in e2b2 units. The experimental data are taken from Refs. [8,17,51–55].
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FIG. 17. (Color online) Systematics of calculated (upper panel)
and experimental (lower panel) low-lying 0+, 2+, and 4+ states in the
Hg isotopes. The experimental data for the lowest 6+ and 8+ states
are given as well to indicate the evolution of the band structure.

the experimental B(E2) values within and out of bands are
reproduced satisfactorily by our calculation.

G. Systematics of 2+ and 4+ states

The variation as a function of N of the excitation energies of
the low-lying 0+, 2+ and 4+ states are presented in Figs. 17–20
for the Hg, Pb, Po, and Rn isotopes. The experimental data are
taken from Refs. [16,47,48,56,57]. Lines join levels with a
similar structure in two successive isotopes.

As already discussed for the N = 106 isotones, the spectra
are expanded too much. There can be several sources to this
deficiency: a variational space that is better suited to optimize

FIG. 18. (Color online) Same as Fig. 17, but for the Pb isotopes.

FIG. 19. (Color online) Same as Fig. 17, but for the Po isotopes.

the 0+ ground state than the excited states, triaxiality effects,
the treatment of pairing correlations, or deficiencies of the
energy density functional. We will focus on the evolution of
the relative position of the rotational bands as a function of N
(and sometimes of Z), for which the spacing between levels in a
band is in general not crucial. The main findings are as follows:

(i) The experimental trends are reasonably well repro-
duced by our calculations for the Hg and the Pb isotopic
chains. In Pb, the prolate and the oblate bands cross
between N = 108 and N = 106, in agreement with
the data. For the Hg isotopes, there is an exchange of
structure between the ground state and the first excited
0+ level in such a way that we obtain a prolate ground
state at N = 104 to 100, in contradiction with the data.
However, the first two 0+ states remain close in energy
for these three isotopes.

FIG. 20. (Color online) Same as Fig. 17, but for the Rn isotopes.
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FIG. 21. (Color online) Quadrupole deformations β (s) [cf. Eq.(8)]
of the two lowest J = 2 states calculated from the corresponding
spectroscopic quadrupole moments as functions of the neutron
number.

(ii) In Hg and Pb, the mixing between the 0+ levels is
usually too large in the calculations, distorting too
much the rotational character of bands at low spin.
Experimentally, the energy of the first 2+ level is nearly
constant over the entire isotopic Hg chain, whereas its
variation is much larger in our calculations. The energy
difference between the 2+ and 4+ levels varies in a
manner more similar to the data than the excitation
energy of the 2+ level.

(iii) In the Hg and Pb isotopic chains, the calculated
excitation energies of the 2+

1 and 4+
1 levels reach their

lowest value at N = 102. This result agrees with the
experimental data for the Hg isotopes. For the Pb
isotopes, the lowest excitation energy for these levels
is obtained in the experimental data at N = 104, but
the calculated results at N = 102 and 104 are only
marginally different.

(iv) There is a clear disagreement between calculations
and experimental data for the heavy Po isotopes. The
overestimation of energies is close to a factor of two
and much larger than for other nuclei. In particular,
the near-constant value of the experimental 2+ level
energy between N = 120 and 112 is not reproduced
at all. Being close to the N = 126 shell closure, these
isotopes are probably not collective and would require
to include np-mh excitations that are not generated by
a constraint on deformation. The calculated spectra are
more realistic for the isotopes with 106 � N � 116.

(v) The disagreement with the data is not as strong for
the Rn isotopes. In particular, the energy difference be-
tween the 2+ and 4+ levels is closer to the experimental
value.

The quadrupole deformation parameters determined from
the spectroscopic quadrupole moment, β(s) [cf. Eq.(8)], are
plotted as a function of the neutron number in Figs. 21 and
22 for the lowest two 2+ and 4+ states, respectively. This
parameter, which is directly related to an observable, permits

FIG. 22. (Color online) Same as Fig. 21, but for the J = 4 states.

a much less ambiguous assignment of a prolate or an oblate
character to the levels than the mean deformation β̄J k of
the wave functions. A crossing between oblate and prolate
configurations takes place at N = 106 for the Hg, Pb, and Po
isotopes, at N = 108 for Rn. Again, this result is not confirmed
by the data for the Hg isotopes. For the heaviest Po, and Rn
isotopes, β(s) is very small. This is a sign that the 2+ and 4+
are probably not based on a deformed state but would be better
described by np-mh excitations of the kind already mentioned
above. This could also be at the origin of the much-too-large
excitation energies that we have obtained for these 2+ and 4+
states (see Figs. 19 and 20); our purely collective GCM basis
not being well suited to describe these states.

The quadrupole deformations β(t)(2+
k → 0+

k′ ) [cf. Eq.(9)],
corresponding to the electric quadrupole transition strengths
B(E2 : 2+

k → 0+
k′ ) are plotted in Fig. 23 for the transitions from

the two first 2+ to the 0+ ground state and the 0+
2 level, together

FIG. 23. (Color online) Systematics of the deformations β (t)

derived from the reduced E2 strengths for the transition from the
predominant prolate and oblate 2+ states to the first two 0+ states as a
function of neutron number. The data for transition from the 2+

1 state
to the ground state are taken from Refs. [8,14,58–61].
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with the available experimental data. The assignment of oblate
and prolate labels to the 2+ states are based on spectroscopic
moments and are, thus, nonambiguous. The main findings are
as follows:

(i) For 180,182,184Hg, the experimental β(t)(2+
1 → 0+

1 ) val-
ues are in good agreement with the calculated values
for the transition from the oblate 2+ level to the
oblate 0+

2 state. It shows also that theoretical transition
probabilities can be accurate in spite of the fact that the
energies and the order of levels are not reproduced.

(ii) For the Pb isotopes with N = 104 and 106, the
experimental β(t)(2+

1 → 0+
1 ) value is in good agreement

with the calculated transition from the oblate 2+ state to
the spherical 0+

1 state. It suggests that, with decreasing
neutron number, the 2+

1 state keeps predominantly
an oblate character down to N = 104, beyond which
the prolate 2+ state becomes the yrast state in the
calculations.

(iii) For the N = 116 Po isotope, the experimental
β(t)(2+

1 → 0+
1 ) value is reproduced quite well by the

calculation. It corresponds to a transition from the
oblate 2+

1 level to the spherical 0+
1 state. As the neutron

number decreases to N = 112 and 110, the transitions
calculated to the oblate 0+

2 state are in better agreement
with the experimental β(t)(2+

1 → 0+
1 ) values than the

transitions to the spherical 0+
1 state. This indicates

an onset of oblate deformation already at N = 112,
which is consistent with the observation made from the
experimental isotope shifts (cf. Fig. 13).

(iv) There are no experimental data for the B(E2) values in
the Rn isotopes discussed here.

H. Kinetic moment of inertia along yrast band

The variation of the moment of inertia along a band can be
an indicator of its nature. There are well-established generic
properties of the moments of inertia such as their increase with
deformation, or that for the same value of |β| the moment of
inertia is larger for prolate deformations than for oblate ones.
The kinetic moment of inertia �(1) is defined as

�(1)(J ) = h̄
√

J (J + 1)

ω(J → J − 2)
, (13)

and the frequency ω,

h̄ω(J → J − 2) = 1
2 [Ex(J ) − Ex(J − 2)]. (14)

The kinematic moments of inertia for transitions along the
yrast line are plotted in Figs. 24–27 for transitions from
J = 2, 4, . . . , 10 to J − 2 in Hg, Pb, Po, and Rn isotopes,
respectively. As discussed above, the calculations underes-
timate the moment of inertia (cf. Fig. 16). To make the
comparison with the experimental data easier, we have divided
the calculated rotational frequency by a factor 1.50.

There are several common features in the four isotopic
chains:

(i) For a static rotor, the kinematic moment of inertia is
constant. The only nuclei in our sample which came

FIG. 24. (Color online) Kinematic moment of inertia �(1)(J ) for
Hg isotopes as a function of frequency ω(J → J − 2) for transitions
along yrast line. For the calculated values on the right, h̄ω has been
scaled by a factor 1.50. Data on the left panel are taken from Ref. [47].

close to this idealized case are the Hg isotopes with N =
112 and 114, at least up to J = 8 in both calculation
and experiment. For all other nuclei the pattern is more
complex.

(ii) The kinematic moment of inertia �(1) for J = 2 is
significantly different from those corresponding to
transitions from higher spins. This can be attributed
to the ground-state configuration that in most cases
is dominated neither by an oblate nor by a prolate
configuration. In the Pb isotopes, the ground state is a
correlated spherical state, with a very different structure
from the first 2+ state. In any case, the ground state
cannot be considered as the band head of a rotational
band.

(iii) The kinematic moments of inertia �(1) of states with
spin J � 4 can be divided into two groups: the isotopes
with N � 106 have a prolate configuration and a larger
�(1), whereas the isotopes with N > 108 are oblate
and have a smaller �(1). This feature is present in both
the calculations and the data. This confirms again that

FIG. 25. (Color online) Same as Fig. 24, but for the Pb isotopes.
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FIG. 26. (Color online) Same as Fig. 24, but for the Po isotopes.

prolate configurations dominate the yrast states below
N = 108.

(iv) For many nuclei, the calculated �(1) moments take
almost constant values for the highest angular momenta
studied here. Such behavior, however, is almost never
seen in the data. This discrepancy can be expected to
have the same origins as the overall expansion of the
spectra (cf. Sec. III G).

IV. SUMMARY AND OUTLOOK

We have shown that a detailed comparison between the
results obtained by a beyond mean-field method and ex-
perimental spectroscopic data can be performed for a large
number of nuclei. This comparison can be carried out without
ambiguities when restoring quantum numbers and thereby
selection rules for transitions. The region around the neutron-
deficient Pb isotopes is of particular interest for such studies
because it presents a very rich variety of phenomena, and the
structure of these nuclei varies rapidly as a function of the
neutron number.

The results of our model are in qualitative agreement with
the experimental data. We obtain the coexistence of several

FIG. 27. (Color online) Same as Fig. 24, but for the Rn isotopes.

low-lying 0+ levels showing mixing between oblate, prolate,
and spherical configurations. The order of these levels is
sometimes different from that deduced from the analysis of
the data for α-decay hindrance, radii, moments of inertia, and
electromagnetic transition densities. However, the theoretical
B(E2) values within a rotational band of given prolate or oblate
nature are usually described well even though the relative
position of the band heads is not correct.

We find that labeling states as oblate or prolate might
not always be adequate, especially for nuclei in this mass
region. In particular, the 0+ and 2+ states often result
from a mixing between symmetry-restored mean-field wave
functions corresponding to shapes spread over a wide range
of deformations. The role of the mixing diminishes with
increasing angular momentum, such that the spectra have more
apparent rotational or vibrational character at high spin.

Our study has been limited to the mixing of particle-number
and angular-momentum restored time-reversal invariant axial
configurations. Tools to extend such calculations to triaxial
shapes have been set up recently [26–28,62–64]. However, the
presently available computational resources do not yet allow
for their systematical application to very heavy nuclei. We have
seen that triaxial configurations might play a role for some of
the lightest Hg and some of the heaviest Po and Rn isotopes
studied here. The absence of this degree of freedom is one of
the reasons for the systematically too-expanded theoretical
excitation spectra. To further improve the description of
excited states, a second extension of the variational space to
be considered in the future is the projection and mixing of
time-reversal invariance-breaking mean-field states. On the
one hand, starting from cranked Hartree-Fock-Bogoliubov
(HFB) states that are optimized for finite angular momenta will
incorporate the rotational alignment of single-particle states
and the weakening of pairing correlations at high spin that
comes with it. And on the other hand, the use of so-called
blocked HFB states of the broken-pair type will provide a nat-
ural starting point to describe the noncollective states that can
be suspected to dominate the low-lying excitation spectra of
the heaviest Po and Rn isotopes discussed here. Developments
in both directions are underway but, again, first applications
will be limited to light nuclei for computational reasons.

The energy density functionals currently used do not
permit us yet to reach an accurate quantitative description
of spectroscopic data. However, we recall that the energy
density functional used here has quite a simple form and that
its parameters have been adjusted on the mean-field level to
bulk properties of nuclear matter and magic nuclei. Hence,
the overall good qualitative description of the rapidly evolving
collective states of the nuclei studied here should be viewed
as a success. This can be partially attributed to the generic
features of the single-particle level schemes that remain
an efficient tool to qualitatively analyze also results from
beyond-mean-field calculations, as has been shown by our
discussion. In addition to the well-known correlation between
the opening and closing of gaps around the Fermi energy in
the Nilsson diagram and the appearance of the various minima
in the deformation energy surfaces, we have also seen that
the spread of the correlated collective wave functions over
different deformations is correlated with the deformations
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at which the intruder levels cross the single-particle levels
occupied in the spherical configuration. In general, we find
that the mixing of states with a different number of occupied
intruder levels is disfavored, which is consistent with the
usual classification of shape coexisting states in the interacting
shell model. A better quantitative description of fine details
of shape coexistence, such as the relative energy between
oblate and prolate band heads in the Hg isotopes below
N = 108, will require improved single-particle energies; cf.
also the discussion in Ref. [65]. First explorative studies in
this direction indicate, however, that it is unlikely to obtain a
significantly better description of single-particle energies by
a refit within the current standard form of the energy density
functionals [66,67], and that extensions are needed. Work in
this direction is also underway.
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