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Number of spin-I states for three identical particles in a single- j shell

H. Jiang,1,2,3,* F. Pan,4 Y. M. Zhao,2,5,† and A. Arima2,6

1School of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China
2Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China

3Department of Physics, Royal Institute of Technology, SE-10691 Stockholm, Sweden
4Department of Physics, Liaoning Normal University, Dalian 116029, China

5Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China
6Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533, Japan

(Received 5 February 2013; revised manuscript received 22 February 2013; published 11 March 2013)

In this paper we derive the analytical formulas of the number of spin-I states (denoted as DI ) for three identical
particles, in a unified form for both fermions and bosons. This is done by using n̄ virtual bosons with spin 3/2,
where n̄ equals 2j − 2 if one studies fermions in a single-j shell or 2l if one studies bosons with spin l. We first
obtain a reduction rule from U(4) to O(3) for such virtual bosons and thereby derive the formulas of DI . The
formulas thus obtained are proved to be consistent with previous empirical formulas.
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To enumerate the number of spin-I states (denoted as DI )
for n identical particles in a single-j shell is a fundamental
practice in nuclear structure theory. A straightforward way
to obtain DI is to subtract the combinatorial number of the
angular momentum projection M = I + 1 from that with M =
I , in the m scheme [1]. One may also obtain DI by the seniority
scheme [2] and the generating functions [3,4].

There have been many efforts to obtain algebraic expres-
sions of DI [5–11]. The first effort was made by Ginocchio
and Haxton [5], who obtained a simple formula of D0

for n = 4 in studies of the fractional quantum Hall effect.
In Ref. [6], two of the present authors, Zhao and Arima,
found empirical formulas for three and four particles and
some of five particles. Zamick and Escuderos revisited the
Ginocchio-Haxton formula for I = 0 with n = 4 by a careful
consideration of the combinatorial number (in the m scheme)
to form I = j with n = 3 [7], which equals DI (n = 4). In
Ref. [8] Talmi derived recursion formulas for DI of n fermions
in a j orbit in terms of n, n − 1, n − 2 fermions in a (j − 1)
orbit, and thereby proved the empirical formulas for three
fermions in Ref. [6]. In Refs. [9,10] the studies of n = 3 and
4 were extended to the number of states with given spin I and
isospin T . In Ref. [11], Talmi’s recursion formulas [8] was
further generalized to boson systems and applied to prove the
empirical formula for n = 5 bosons given in Ref. [6]. Very
interestingly, the number of spin-I states, DI , was found to
be closely related to the sum rules of many six-j and nine-j
symbols, and coefficients of fractional parentage [9,12–18].

In Ref. [19], it was proved that DI for n fermions in a
single-j shell or bosons with spin l equals the DI of another
“boson” system with spin l′ = n/2, the boson number (denoted
by n̄) of which equals either 2j + 1 − n (if one studies DI

for n fermions in a j shell) or 2l (if one studies DI for n
spin-l bosons). For convenience of readers, this conclusion
is explained as follows. DI equals the combinatorial number
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(denoted by CI ) of M = m1 + m2 + · · · + mn = I (with the
requirement j � m1 > m2 > · · · > mn � −j for fermions or
l � m1 � m2 � · · · � mn � −l for bosons) subtracted by that
of MI+1, and this practice (called process A) can be carried out
in an equivalent process as follows. We define I ′ = Imax − I ,
where Imax = Mmax = nj − n(n−1)

2 for fermions or nl for
bosons. Let P (n,I ′) be the number of partitions of I ′ =
i1 + i2 + · · · + in, with 2j + 1 − n � i1 � i2 � · · · � in � 0
for fermions or 2l � i1 � i2 � · · · � in � 0 for bosons, with
the convention that P (n,0) = P (n,1) = 1. One can prove that
P (n,I ′) equals the combinatorial number of M = I = Imax −
I ′, and thus DI = P (n,I ′) − P (n,I ′ − 1). This method is
called process B here. Now we denote P (n,I ′) by using a series
of Young diagrams, with the first row i1 boxes, the second
row i2 boxes, . . . , the n row in boxes. The number of such
Young diagrams is equal to that of their conjugate diagrams
with n columns, with the first column i1 boxes, the second
column i2 boxes, . . . , the n column in boxes. An example of
such one-to-one correspondence is shown in Fig. 1 for i1 = 4,
i2 = 2, and i3 = 1. The number of rows for these conjugate
diagrams is 2j + 1 − n for fermions or 2l for bosons. These
conjugate diagrams correspond to P (n̄,I ′) for bosons with
spin n/2. This means DI = P (n̄,I ′) − P (n̄, I ′ − 1), and we
call this method process C. Therefore, DI of n fermions in
a single-j shell or n bosons with spin l can be alternatively
studied by using n̄ bosons with spin n/2. This equivalence
also leads to an interesting conclusion that DI of n fermions
in a single-j shell always equals that of n bosons with spin
l = j − n−1

2 . This conclusion was applied to four fermions
and bosons in Ref. [19], where DI of n = 4 was derived by
studying DI of d bosons. In Table I we exemplify the processes
A, B, and C by using four fermions in a j = 7/2 shell, to
illustrate how these three different processes give the same DI .

The purpose of this paper is to derive the formulas of DI

for n = 3 by the above identity, i.e., DI of n identical particles
equals that of n̄ bosons with spin n/2. Although the formulas
for n = 3 are known, they were obtained empirically and
proved by induction with respect to j . Therefore it would be
desirable if they were derived. These formulas are understood
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FIG. 1. The Young diagram of P (n,I ′) and its conjugate Young
diagram of P̃ (n,I ′) = P (n̄,I ′), for i1 = 4, i2 = 2, and i3 = 1. n̄ =
2j + 1 − n for fermions or n̄ = 2l for bosons. The Young diagram of
P (n,I ′) corresponds to n identical particles (fermions in a single-j
shell or bosons with spin l), and P (n̄,I ′) = P̃ (n,I ′) corresponds to n̄

bosons with spin n/2.

deeply only if they are analytically obtained in a unified way
for both fermions and bosons.

For n = 3, however, we should deal with n̄ bosons with
spin 3/2 which are not realistic. We call such “bosons” virtual
bosons. Below we first come to the reduction rule of symmetric
representation from U(4) to O(3). [We note that reduction
U(n) ⊃ SO(n) ⊃ SO(3) for bosons was studied in Refs. [20–
22].] Then we construct the analytical formulas of DI for n̄
virtual bosons with spin 3/2. Finally we show that the results
of this work are consistent with those in Ref. [6].

Let us first denote the creation and annihilation operators
of our virtual bosons with spin 3/2 by a

†
m and am (m =

TABLE I. Processes A, B, and C for four fermions in a single-j shell (j = 7/2). Here n̄ = 2j + 1 − 4 = 4. In process A we tabulate
combinatorial numbers of M = m1 + m2 + m3 + m4 = I with 7/2 � m1 � m2 � m3 � m4 � −7/2; in process B, we tabulate combinatorial
numbers of I ′ = Imax − I = i1 + i2 + · · · + in with 2j + 1 − n � i1 � i2 � · · · � in � 0. In process C, i1, i2, · · · in̄ are given by conjugate
partitions in process B. One sees that CI = P (n,Imax − I ) = P (n̄,Imax − I ). Therefore the three processes yield the same results of DI .

A B C DM=I

M CI 2m1 2m2 2m3 2m4 I ′ P (n,I ′) i1 i2 i3 i4 P (n̄,I ′) i1 i2 i3 i4

8 1 7 5 3 1 0 1 0 0 0 0 1 0 0 0 0 1
7 1 7 5 3 −1 1 1 1 0 0 0 1 1 0 0 0 0
6 2 7 5 1 −1 2 2 1 1 0 0 2 2 0 0 0 1

7 5 3 −3 2 0 0 0 1 1 0 0
5 3 7 3 1 −1 3 3 1 1 1 0 3 3 0 0 0 1

7 5 1 −3 2 1 0 0 2 1 0 0
7 5 3 −5 3 0 0 0 1 1 1 0

4 5 5 3 1 −1 4 5 1 1 1 1 5 4 0 0 0 2
7 3 1 −3 2 1 1 0 3 1 0 0
7 5 − 1 −3 2 2 0 0 2 2 0 0
7 5 1 −5 3 1 0 0 2 1 1 0
7 5 3 −7 4 0 0 0 1 1 1 1

3 5 5 3 1 −3 5 5 2 1 1 1 5 4 1 0 0 0
7 3 − 1 −3 2 2 1 0 3 2 0 0
7 3 1 −5 3 1 1 0 3 1 1 0
7 5 − 1 −5 3 2 0 0 2 2 1 0
7 5 1 −7 4 1 0 0 2 1 1 1

2 7 5 3 − 1 −3 6 7 2 2 1 1 7 4 2 0 0 2
5 3 1 −5 2 2 2 0 3 3 0 0
7 1 − 1 −3 3 1 1 1 4 1 1 0
7 3 − 1 −5 3 2 1 0 3 2 1 0
7 3 1 −7 3 3 0 0 2 2 2 0
7 5 − 3 −5 4 1 1 0 3 1 1 1
7 5 − 1 −7 4 2 0 0 2 2 1 1

1 7 5 1 − 1 −3 7 7 2 2 2 1 7 4 3 0 0 0
5 3 − 1 −5 3 2 1 1 4 2 1 0
5 3 1 −7 3 2 2 0 3 3 1 0
7 1 − 1 −5 3 3 1 0 3 2 2 0
7 3 − 3 −5 4 1 1 1 4 1 1 1
7 3 − 1 −7 4 2 1 0 3 2 1 1
7 5 − 3 −7 4 3 0 0 2 2 2 1

0 8 3 1 − 1 −3 8 8 2 2 2 2 8 4 4 0 0 1
5 1 − 1 −5 3 2 2 1 4 3 1 0
5 3 − 3 −5 3 3 1 1 4 2 2 0
5 3 − 1 −7 3 3 2 0 3 3 2 0
7 1 − 3 −5 4 2 1 1 4 2 1 1
7 1 − 1 −7 4 2 2 0 3 3 1 1
7 3 − 3 −7 4 3 1 0 3 2 2 1
7 5 − 5 −7 4 4 0 0 2 2 2 2
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3/2, 1/2,−1/2,−3/2). They follow

[am,am′ ] = [a†
m,a

†
m′ ] = 0, [am,a

†
m′ ] = δmm′ .

The 16 bilinear forms, {a†
mam′ }, or equivalently (a† × ã)(f )

μ

[f = 0, 1, 2, 3, and ãμ = (−)3/2−μa−μ], generate the U(4)
algebra; (a† × ã)(f )

μ with f = 1 and 3 generate the Sp(4)
algebra; and (a† × ã)(1)

μ generate the SO(3) algebra. These
algebras form a group chain U(4) ⊃ Sp(4) ⊃ SO(3). Let us
denote symmetric irreducible representation of U(4) and
Sp(4) by [n̄,0̇] ≡ [n̄, 0, 0, 0] and 〈n̄,0〉, respectively. By using
angular momentum coupling and recoupling techniques [23],
or straightforwardly by expanding in terms of Clebsch-Gorden
coefficients, one can prove that

(a† × a†)(f )
μ = 0 for f = 0 or 2,

(a† × a†)(3)
3 ∼ (a†

3/2)2, (a† × a† × a†)(1/2)
μ = 0,

(a† × a† × a†)(5/2)
5/2 ∼ a

†
3/2(a† × a†)(1)

1 ,

(a† × a† × a†)(9/2)
9/2 ∼ (a†

3/2)3.

Therefore one may use the following four linearly independent
operators A = a

†
3/2, V = (a† × a†)(1)

1 , S = (a† × a† × a†)(3/2)
3/2 ,

and U = (a† × a† × a† × a†)(0)
0 to construct the basis vectors

(up to a normalization constant)

|[n̄, 0, 0, 0], 〈n̄, 0〉, α, I, I 〉 = An1V n2Sn3Un4 |0〉. (1)

Because the particle number is a conserved quantity, it is ob-
vious that n̄ = n1 + 2n2 + 3n3 + 4n4. Furthermore, because
A,V, S, and U are rank 3/2, 1, 3/2, and 0 irreducible tensor
operators of O(3) with maximal angular momentum projection
onto the z axis, directly using commutation relations of J 2

operator of O(3) with A,V, S, and U , one can prove that the
total spin of Eq. (1) is

I = 3
2n1 + n2 + 3

2n3. (2)

For example, we have [Jz,A
n1 ] = 3n1

2 An1 ; since the Casimir
operator J 2 = J−J+ + Jz(Jz + 1), and [J+,J−] = 2Jz, and
[Jz,J±] = ±J±, one has [J 2,An1 ] = 3n1

2 ( 3n1
2 + 1)An1 . Similar

commutation relations follow for V n2 , Sn3 , and Un4 . In Eqs. (1)
and (2), n1 = 0, 1, 2, . . . , n̄; n2 = 0, 1, 2, . . . , [n̄/2]; n3 =
0, 1, and n4 = 0, 1, 2, . . . , [n̄/4]. [ ] means to take the largest
integer not exceeding the value inside. α is multiplicity in the
reduction Sp(4) → O(3). Since S2 ∼ A2U , only n3 = 0 or 1
cases should be considered when S and A are used to construct
Eq. (1).

Let us define λ = n1 + 2n2 + 3n3. Equation (2) can be
rewritten as

n̄ = 4n4 + λ, I = 3
2λ − 2n2 − 3n3 = 1

2λ + n1. (3)

This is the key to obtaining the DI for n = 3 here. According
to Eq. (3), the allowed spin I is given by

I = 3
2λ, 3

2λ − 2, 3
2λ − 3, . . . , 1

2λ, (4)

for a given λ defined in Eq. (3). One sees that there is no I = 1
2

state for three fermions in a single-j shell, because λ = 1
presents the I = 3

2 state, and the 3
2λ − 1 state is missing.

Our process to obtain DI of n̄ virtual bosons with spin 3/2
is explained in three steps:

(i) Let us define

k = [n̄/4], κ = n̄ mod 4.

Apparently, κ = 0, 2 correspond to bosons, and κ = 1, 3
correspond to fermions (because n̄ = 2j − 2 for fermions and
2l for bosons). λ = n̄ − 4n4 = 4(k − n4) + κ .

(ii) According to Eq. (4), for a given spin I , the allowed λ
follow

2
3I � λ � 2I for I � n̄/2,

(5)
2
3I � λ � n̄ for I � n̄/2,

with λ 	= 2(I + 1)/3. Because λ = n̄ − 4n4 = 4(k − n4) + κ ,
we obtain

2I − 3κ

12
� k − n4 � 2I − κ

4
for I � n̄/2,

(6)
2I − 3κ

12
� k − n4 � k for I � n̄/2,

with 2I 	= 12(k − n4) + 3κ − 2.
(iii) DI equals the number of allowed (k − n4) for a given

spin I . From Eq. (6), one obtains that for I � n̄/2,

DI =
[

2I − κ

4

]
−

[
2I − 3κ

12

]
+ δ1 − δ2, (7)

with

δ1 = δτ,3κ , δ2 =
{

δτ,3κ−2 for κ = 1, 2, 3,

δτ,3κ+10 for κ = 0.

Here τ is equal to (2I mod 12). τ and κ are odd for fermions
and even for bosons, respectively. The δ1 term arises when

TABLE II. Numbers of spin-I states (i.e., DI ) for three identical fermions in a single-j shell, with j = 3/2, 5/2, 7/2, 9/2 here. n̄ = 2j − 2
(odd numbers), k = [n̄/4], κ = n̄ mod 4. n4 = 0, 1, 2, . . . , k, and λ = n̄ − 4n4 = 4(k − n4) + κ . The allowed values of total spin I are given
by 3

2 λ, 3
2 λ − 2, 3

2 λ − 3, . . . , 1
2 λ.

j n̄ k κ (n4,λ) DI

2I = 1 3 5 7 9 11 13 15 17 19 21

3/2 1 0 1 (0,1) – 1
5/2 3 0 3 (0,3) – 1 1 – 1
7/2 5 1 1 (0,5), (1,1) – 1 1 1 1 1 – 1
9/2 7 1 3 (0,7), (1,3) – 1 1 1 2 1 1 1 1 – 1
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TABLE III. Same as Table II except for three identical spin-l bosons, with l = 1, 2, 3, 4 here. n̄ = 2l (even numbers).

l n̄ k κ (n4,λ) DI

I = 0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 0 2 (0,2) – 1 – 1
2 4 1 0 (0,4), (1,0) 1 – 1 1 1 – 1
3 6 1 2 (0,6), (1,2) – 1 – 2 1 1 1 1 – 1
4 8 2 0 (0,8), (1,4), (2,0) 1 – 1 1 2 1 2 1 1 1 1 – 1

2I−3κ
12 equals an integer. The δ2 term arises from the condition

that I 	= 3
2λ − 1. For I � n̄/2,

DI = k −
[

2I − 3κ

12

]
+ δ1 − δ2. (8)

Equations (7) and (8) are our final results of DI . They are in
unified form for both fermions and bosons.

In Tables II and III, we tabulate DI for three fermions in
a single-j shell with j = 3/2, 5/2, 7/2, 9/2 and three spin-l
bosons with l = 1, 2, 3, 4, respectively. For the convenience
of readers, we also list the corresponding n̄, k, and κ as well
as the allowed values of n4 and λ. For each given λ, one finds
the allowed values of total spin I , and from which one finally
obtains DI .

We finally prove that Eqs. (7) and (8) are consistent
with previous formulas obtained empirically in Ref. [6] for
n = 3. We exemplify this by using three fermions in a
single-j shell. Here n̄ = 2j − 2 and τ is an odd number
below 12 (1, 3, 5, . . . , 11). For I � n̄/2 = j − 1, Eq. (7) is
reduced to

DI = 2I0 +
[
τ − κ

4

]
−

[
τ − 3κ

12

]
+ δ1 − δ2

=

⎧⎪⎨
⎪⎩

2I0 for τ = 1

2I0 + 1 for τ = 3, 5, 7

2I0 + 2 for τ = 9, 11

= 2I0 +
[
τ + 3

6

]
=

[
2I + 3

6

]
, (9)

where I0 = [2I/12] = [I/6]. This is Eq. (1) of Ref. [6].

For I � n̄/2 = j − 1, Eq. (8) is reduced to

DI = k − I0 −
[
τ − 3κ

12

]
+ δ1 − δ2

= k − I0 +
[

3κ − τ

12

]
+ 1 − δ2

=
[

3n̄ − 2I

12

]
+ 1 − δ2 =

[
Imax − I

6

]
+ δI , (10)

where δI was defined in Ref. [6]:

δI =
{

0 if(Imax − I ) mod 6 = 1,

1 otherwise.

This is Eq. (2) of Ref. [6] for three fermions in a single-j shell.
To summarize, in this paper we derive the analytical

formulas for the number of spin-I states, DI , for three fermions
in a single-j shell and three bosons with spin l, by using
a reduction rule from the U(4) to the O(3) group chain,
U(4) ⊃ Sp(4) ⊃ O(3), for n̄ virtual bosons which follow the
U(4) symmetry (i.e., spin 3/2). n̄ = 2j − 2 for fermions and
n̄ = 2l for bosons. We are able to obtain analytical formulas
of three bosons and fermions in a unified form and on a unified
footing. We show that the new formulas are consistent with
previous empirical formulas.
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