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Competition between T = 1 and T = 0 pairing in p f -shell nuclei with N = Z
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The pairing correlation energy for two-nucleon configurations with the spin-parity and isospin of J π = 0+,
T = 1 and J π = 1+, T = 0 are calculated with T = 1 and T = 0 pairing interactions, respectively. To this
end, we consider the (1f 2p)-shell-model space, including single-particle angular momenta of l = 3 and l = 1.
It is pointed out that a two-body matrix element of the spin-triplet T = 0 pairing is weakened substantially
for the 1f orbits, even though the pairing strength is much larger than that for the spin-singlet T = 1 pairing
interaction. In contrast, the spin-triplet pairing correlations overcome the spin-singlet pairing correlations for the
2p configuration, for which the spin-orbit splitting is smaller than that for the 1f configurations, if the strength
for the T = 0 pairing is larger than that for the T = 1 pairing by 50% or more. Using the Hartree-Fock wave
functions, it is also pointed out that the mismatch of proton and neutron radial wave functions is at most a few
percent level, even if the Fermi energies are largely different in the proton and neutron mean-field potentials.
These results imply that the configuration with J π = 0+, T = 1 is likely in the ground state of odd-odd pf -shell
nuclei even under the influence of the strong spin-triplet T = 0 pairing, except at the middle of the pf shell,
in which the odd proton and neutron may occupy the 2p orbits. These results are consistent with the observed
spin-parity J π = 0+ for all odd-odd N = Z pf -shell nuclei except for 58

29Cu, which has J π = 1+. The magnetic
moment of a (J π , T ) = (1+, 0) state is also discussed in order to show a manifestation of the change of the
shell-model scheme from jj coupling to LS coupling.
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I. INTRODUCTION

The role of neutron-proton (n-p) isoscalar spin-triplet (T =
0, S = 1) pairing interaction in finite nuclear systems has been
discussed for a long time [1–4]. It is known that the isoscalar
spin-triplet pairing interaction is stronger than the isovector
spin-singlet (T = 1, S = 0) pairing interaction in the nuclear
matter [5,6]. Nevertheless, the nuclei are observed to favor
the spin-singlet T = 1 pairing between identical particles. A
straightforward explanation for this puzzle is that most of
stable nuclei have different numbers of neutrons and protons,
and thus protons and neutrons occupy different single-particle
orbits near the Fermi surface, which leads to an inhibition of
a T = 0 pair.

Even in nuclei with the equal number of protons and
neutrons, the J = 1, T = 0 (n-p) pairing is not a favorable
correlation compared with the J = 0, T = 1 pairing as is
seen in the ground-state spins of odd-odd nuclei in the mass
region above A � 20 [2]. It has been suggested that the nuclear
spin-orbit field largely suppresses the spin-triplet pairing much
more than the spin-singlet pairing [7–9]. While so far no clear
evidence has been found which shows the role of T = 0 pairing
in the nuclear ground state, the manifestation of the spin-triplet
pairing has been discussed in the high-spin states [10,11]
and also in the Gamow-Teller giant resonances in N = Z
nuclei [12].

In this paper, we study the quenching of two-body matrix
elements for the T = 0 pairing interaction in the jj coupling
scheme in comparison with that for the T = 1 pairing
interaction. Its consequence on the correlation energies is
also discussed for the Jπ = 0+ and the Jπ = 1+ states in
the (1f 2p)-shell-model configurations by using Hartree-Fock

(HF) single-particle wave functions. The Coulomb interaction
is taken into account properly in the HF potential.

The paper is organized as follows: In Sec. II, we study the
two-body matrix elements for the T = 0 and T = 1 pairing
interactions. We also discuss the overlap of neutron and
proton HF single-particle states for the (1f 2p)-shell-model
configurations. The competition between the energy gains
for the T = 0 and T = 1 pairing interactions is studied in
Sec. III by diagonalizing the pairing Hamiltonian with the
1f and 2p configurations. In Sec. IV, the magnetic moment
of (Jπ = 1+, T = 0) state is calculated. A summary is then
given in Sec. V.

II. T = 0 and T = 1 TWO-BODY PAIRING INTERACTIONS

We adopt a separable form of the pairing interaction in this
paper. The spin-singlet T = 1 pairing interaction then reads

V (T =1)(r, r′) = −G(T =1)
∑
i,j

P
(1,0)†
i,i (r, r′)P (1,0)

j,j (r, r′), (1)

where the pair field operator is defined as

P
(T ,S)†
i,j (r, r′) = δli ,lj

√
2li + 1[a†

i a
†
j ](T ,S)ψi(r)∗ψj (r′)∗, (2)

with a single-particle wave function ψ(r). Here, a
†
i and ai are

the creation and annihilation operators for the single-particle
configuration i, respectively. The pairing strength G(T =1) is fit
to the empirical pairing gaps [6,8,13] and is given by

G(T =1) = 24

A
(MeV). (3)
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Even though the value in Eq. (3) is a reasonable choice for the
one major shell-model space calculations [6,8,13], the absolute
value of the pairing strength should not be taken seriously since
it depends on the model space adopted. It was pointed out in
Ref. [14] that the separable form of pairing interaction is quite
useful as much as nonseparable realistic Hamiltonians adopted
in shell-model calculations.

The spin-triplet T = 0 pairing is also given by a similar
separable form,

V (T =0)(r, r′) = −f G(T =1)
∑

i�i ′,j�j ′

P
(0,1)†
i,i ′ (r, r′)P (0,1)

j,j ′ (r, r′),

(4)

where the scaling factor f is varied between 1 and 2 for
the strength of the T = 0 pairing interaction. It should be
noticed that, for the T = 0 pairing, the pair configurations are

constructed not only with the same orbit with (li = li ′ , ji = ji ′)
but also with the spin-orbit partner orbits with (li = li ′ , ji =
ji ′ ± 1).

The two-body matrix element for the T = 1 pairing is
evaluated to be

〈(jiji)T = 1, J = 0|V (T =1)|(jj jj )T = 1, J = 0〉
= −√

(ji + 1/2)(jj + 1/2) G(T =1)I 2
ij , (5)

where Iij is the overlap integral given by

Iij =
∫

ψi(r)∗ψj (r)dr, (6)

with the HF single-particle wave function ψi(r). For the T = 0
pairing, the two-body matrix element involves the coefficient
for the transformation from the jj coupling scheme to the LS
coupling scheme and is given by

〈(j1j2)T = 0, J = 1|V (T =0)|(j ′
1j

′
2)T = 0, J = 1〉

= −
〈[(

l1
1

2

)j1
(

l2
1

2

)j2
]J=1∣∣∣∣

[(
l1l2

)L=0(1

2

1

2

)S=1]J=1〉〈[(
l′1

1

2

)j ′
1
(

l′2
1

2

)j ′
2
]J=1∣∣∣∣

[(
l′1l

′
2

)L=0(1

2

1

2

)S=1]J=1〉

×
√

2l1 + 1
√

2l′1 + 1√
1 + δj1,j2

√
1 + δj ′

1,j
′
2

f GT =1(Ij1j
′
1
Ij2j

′
2
+ Ij1j

′
2
Ij1j

′
2
), (7)

where 〈[(l1 1
2 )j1 (l2 1

2 )j2 ]J=1|[(l1l2)L=0( 1
2

1
2 )S=1]J=1〉 is the trans-

formation coefficient, and the overlap integral Iij involves both
the proton and neutron wave functions. The transformation
coefficient can be evaluated with the 9j symbol and the
explicit form is summarized in Table I. The square of the
transformation coefficient is 1/6 and 1/3 for j1 = j2 and j1 =
j2 ± 1 configurations, respectively, in the limit of large angular
momentum l → ∞. These values suggest large quenching of
the spin-triplet pairing correlations as well as that spin-orbit
partners contribute largely to the spin-triplet pairing matrix
elements. On the other hand, in the small-l limit l → 0 the
coefficient is unity for j = j ′ = l + 1/2, and the coefficients
are zero for the other three configurations. This suggests that
the spin-triplet pairing is as large as the spin-singlet pairing
for the pair configuration in the s1/2 orbit, and that it is still
substantially large for the configuration in the p3/2 orbit.

TABLE I. Transformation coefficient R between the jj cou-
pling and the LS coupling for pair wave functions, R =
〈[(l 1

2 )j (l 1
2 )j

′
]J=1|[(ll)L=0( 1

2
1
2 )S=1]J=1〉. � is defined as � ≡ 3(2l +

1)2.

j j ′ R l = 1 l = 3

l + 1/2 l + 1/2
√

(2l+2)(2l+3)
2�

1
3

√
10
3

2
√

3
7

l + 1/2 l − 1/2 −
√

4l(l+1)
�

− 2
3

√
2
3 − 4

7

l − 1/2 l − 1/2 −
√

2l(2l−1)
2�

− 1
3

√
1
3 −

√
5

7

l − 1/2 l + 1/2
√

4l(l+1)
�

2
3

√
2
3

4
7

The overlap integral Iij in Eqs. (5) and (7) for the n-p pairs is
estimated using HF wave functions obtained with the Skyrme
interaction SLy4 [15]. The single-particle energies for 56Ni are
shown in Fig. 1 for both neutrons and protons. As is seen in
Fig. 1, the Fermi energies in the proton and neutron mean-field
potentials are largely different, by about 9 MeV. Nevertheless
the proton and neutron wave functions have rather similar
radial shapes and the overlap integrals Iij are close to 1.0,
deviating at most 3%, as shown in Table II. Thus the quenching
due to the mismatch of proton and neutron wave functions in
the spin-triplet pairing matrix is rather small compared with
that due to the transformation coefficient from the jj to LS

FIG. 1. (Color online) Single-particle energies of the proton and
neutron orbits in 56Ni, obtained with the Skyrme interaction SLy4.
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TABLE II. Overlap integrals of proton and neutron Hartree-Fock
wave functions, obtained with Skyrme-Hartree-Fock calculations
with SLy4 interaction for 48Cr, 56Ni, and 64Ge. The values are given
in units of percent.

ν π 48Cr 56Ni 64Ge

1f7/2 1f7/2 99.9 100. 99.9
1f7/2 1f5/2 97.7 98.9 99.1
1f5/2 1f7/2 99.4 99.7 99.8
1f5/2 1f5/2 99.6 99.8 99.9
2p3/2 2p3/2 99.6 99.7 99.7
2p3/2 2p1/2 98.2 99.1 98.9
2p1/2 2p3/2 99.8 99.6 99.9
2p1/2 2p1/2 99.1 99.6 99.6

couplings. For this reason, we hereafter neglect the mismatch
effect of the radial wave functions and the overlap integrals are
taken to be unity. Notice that the overlap integrals of the pair
wave functions appear also in the case of a short-range δ-type
n-p pairing interaction, for which four radial wave functions
are involved in the integrals.

III. PAIRING CORRELATION ENERGY FOR p f -SHELL
CONFIGURATIONS

Let us next discuss the energy gain due to the pairing
correlation; that is, the pairing correlation energy. Figure 2
shows the pairing gain energies for the p-orbit (l = 1) and
the f -orbit (l = 3) configurations as a function of the scaling
factor f for the T = 0 pairing. The energies for both the
Jπ = 0+ state with the isospin T = 1 and the Jπ = 1+ state
with the isospin T = 0 are shown in the figure. To this
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FIG. 2. (Color online) Pairing correlation energies for lowest
(J π = 0+,T = 1) and (J = 1+,T = 0) states with l = 3 and l = 1
configurations as a function of scaling factor f for T = 0 pairing.
The strength of the spin-singlet T = 1 pairing interaction is fixed
to be G(T =1) = 24/A MeV with a mass A = 56, while the strength
for the spin-triplet T = 0 pairing, G(T =0), is varied with the factor f

multiplied to G(T =1).

end, we diagonalize the pairing Hamiltonians separately for
the p- and f -orbit configurations in order to disentangle
the role of the pairing and the spin-orbit interactions in a
transparent way. For the l = 1 case, the (2p3/2)2 and (2p1/2)2

configurations are available for the Jπ = 0+ state, while the
(2p3/22p1/2) configuration is also available for the Jπ = 1+
state. In a similar way, the (1f7/2)2 and (1f5/2)2 configurations
participate to the Jπ = 0+ state in the l = 3 case, and the
(1f7/21f5/2) configuration is also involved in the Jπ = 1+
state.

In constructing the pairing Hamiltonian, we use the spin-
orbit splitting parametrized as

�εls = −Vls(l · s), (8)

where the strength is taken to be [16]

Vls = 24

A2/3
(MeV). (9)

This spin-orbit potential reproduces well the empirical spin-
orbit splitting �ε = 7.0 MeV between the 1f7/2 and 1f5/2

states in 41Ca [17]. The uncertainly of this strength, Eq. (9),
would be less than 20% in the sd- and pf -shell regions even
when we adopt other empirical information on the spin-orbit
splittings.

As one can see in Fig. 2, the lowest-energy state with Jπ =
0+ for the l = 3 case gains more binding energy than the
Jπ = 1+ state for the strength factor f < 1.5. In the strong
T = 0 pairing case; that is, f � 1.6, the Jπ = 1+ state obtains
more binding energy than the lowest Jπ = 0+ state. These
results are largely due to the quenching of the T = 0 pairing
matrix element by the transformation coefficient from the jj to
LS coupling schemes, as we discussed in the previous section.
This quenching never happens for the T = 1 pairing matrix
element, since the mapping of the two-particle wave function
between the two coupling schemes is simply implemented by a
factor

√
j + 1/2 in Eq. (5). For the l = 1 case, the competition

between the Jπ = 0+ and the Jπ = 1+ states is also seen
in Fig. 2. Because of the smaller spin-orbit splitting in this
case, the couplings among the available configurations are
rather strong, and the lowest Jπ = 1+ state gains more binding
energy than the Jπ = 0+ state in the case of f � 1.4. These
results are consistent with the observed spins of N = Z odd-
odd nuclei in the pf shell, where all the ground states have
the spin-parity Jπ = 0+, except for 58

29Cu. The ground state
of 58

29Cu has Jπ = 1+, since the odd proton and odd neutron
occupy mainly the 2p orbits, where the spin-orbit splitting is
expected to be much smaller than that of 1f orbits, as is seen
in Fig. 1.

The mass-number dependence of the spin-orbit splitting
is approximately determined by Eq. (9). Since the strength
of the spin-orbit potential and the largest angular momentum
in each major shell are proportional to A−2/3 and A1/3 [16],
respectively, the spin-orbit splitting of the largest angular
momentum states is roughly proportional to A−1/3. On the
other hand, the pairing correlation energy would be propor-
tional to A−1/2 as is seen in the pairing gap systematics
[6,18]. Thus, the spin-orbit splitting decreases slower than the
pairing correlation energy as a function of the mass number
A. As a result, it is expected that the spin-orbit splitting
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hinders more effectively the spin-triplet pairing correlations
in medium-heavy nuclei with N = Z > 30 compared with
lighter nuclei with N = Z < 30. We mention that, in reality,
the spin-orbit splitting decreases even more slowly than the
A−1/3 dependence; that is, 6.2 MeV for the l = 1 states in 16O,
5.5 MeV for the l = 2 states in 40Ca, 7.0 MeV for the l = 3
states in 56Ni, and 7.0 MeV for the l = 4 states in 100Sn [19,20].

It is shown that the shell-model matrix elements give
the strength factor f in Eq. (4) in the range of 1.6–1.7
for both sd-shell and pf -shell configurations [9,21,22]. In
Ref. [8], the ratio 1.5 is adopted to analyze the spin-triplet
pairing correlations in the N = Z nuclei with the shell-model
calculations. These adopted values of f , together with the
results shown in Fig. 2, suggest that, in the odd-odd N = Z
nuclei, the configuration with Jπ = 1+ is favored in the
ground state rather than the Jπ = 0+ one, especially when the
p3/2 orbit is the main configuration for the valence particles.
However, the implementation of spin-triplet pair condensation
will not be guaranteed immediately by the spin of the ground
state and may need a careful examination of many-body
wave functions obtained by HF-Bogoliubov or large-scale
shell-model calculations [23].

IV. MAGNETIC MOMENT

The magnetic moment may provide important information
on the ground-state correlations in N = Z nuclei [24]. For the
isoscalar pairing correlations, the magnetic moment will show
the isospin character of the ground state and also a transition
of the shell-model scheme between jj and LS couplings. The
magnetic moment can be evaluated by using our model wave
function for a Jπ = 1+ state with 6j symbols:

μ = 〈J,M = J, T = 0|μ̂|J,M = J, T = 0〉
=

∑
(j1,j2),(j ′

1,j
′
2)

1√
6
C(j1,j2)C(j ′

1,j
′
2)

×
(

(−)j1+j2 3

{
j1 1 j2

1 j ′
1 1

}
〈j1||μ̂||j ′

1〉δj2,j
′
2

+ (−)j1+j ′
2 3

{
j2 1 j1

1 j ′
2 1

}
〈j2||μ̂||j ′

2〉δj1,j
′
1

)
, (10)

where C(j1,j2) is the amplitude of the (j1, j2) configuration,
while 〈j ||μ̂||j ′〉 is the reduced matrix element for the angular
momentum. The magnetic-moment operator is defined as

μ̂ = gss + gl l, (11)

with g
p
s = 5.58, gn

s = −3.82, gp
l = 1.0, and gn

l = 0.0 in units
of nuclear magneton μ0. For a T = 0 state, the isoscalar
(IS) g factors gIS

s = 0.88 and gIS
l = 0.5 only give the finite

contribution to the magnetic moment.
The calculated magnetic moments are shown in Fig. 3

as a function of the scaling parameter f for the T = 0
pairing. We adopt the p-shell configurations (p3/2, p1/2) in
the calculations. The magnetic moment is gradually increasing
when the T = 0 pairing is stronger. This is due to the fact the
p-shell wave function is gradually changing from jj coupling
to the LS-scheme coupling since the magnetic moment
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FIG. 3. (Color online) Magnetic moment μ for lowest (J π , T ) =
(0+, 1) state with the l = 1 configuration as a function of scaling
factor f for T = 0 pairing. The strength of the spin-singlet T = 1
pairing interaction is fixed to be G(T =1) = 24/A MeV with a mass
A = 56, while the strength for the spin-triplet T = 0 pairing, G(T =0),
is varied with the factor f multiplied to G(T =1). The spin g factor gs is
renormalized by 0.7 as the effective operator in the results shown by
the dashed line, while the bare gs factor is used in the results shown
by the dotted line. The solid line denotes the experimental data of
58Cu taken from Ref. [25].

is μ = 0.627μ0 for the (p3/2p3/2)J=1,T =0state in the jj -
coupling scheme while it becomes 0.88μ0 in the (L = 0, S =
1)J=1,T =0-coupling scheme of the p-shell configuration [24].
We also notice a quenching factor 0.7 for the spin g factor gives
a good fit to the experimental value which is often used in the
shell-model calculations [26]. For the IS g factor of N = Z
odd-odd nuclei, the large-scale shell-model calculations do
not always improve the agreement with the experimental data.
Especially for 58Cu, a large-scale shell-model result [24] gives
exactly the same g factor as that of the single-particle limit:
g = 0.63. Thus, we need about 20% quenching of the g factor
in the large-scale shell model in comparison with the empirical
one g(expt.) = 0.52. We should also notice that the effective g
factor for IS channel was pointed out to be different from the
IV one [24,27]. For example, the empirical IS g factor for 6Li
is much larger than the Schmidt value, which never happened
in the case of the IV g factor.

V. SUMMARY

We studied the spin-singlet and the spin-triplet pairing
correlations in the pf -shell-model configurations for nuclei
with the same proton and neutron numbers, N = Z. We
pointed out that the spin-triplet pairing matrix element is
largely quenched by the projection of the pair wave function
in the jj scheme onto the S = 1 state. On the other hand,
there is no quenching in the spin-singlet interaction since
the Jπ = 0+ pair in the jj coupling scheme always has total
spin S = 0 and the projection does not involve any quenching
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factor. The mismatch of the proton and neutron radial wave
functions due to the large difference of the Fermi energies has
also been studied by using the HF wave functions. While the
difference between the proton and neutron Fermi energies is
quite large, as much as 9 MeV in the N = Z = 28 nucleus,
the overlap integral I between the proton and neutron wave
functions in the spin-triplet pairing matrix have been found
to be rather close to unity; the deviation being at most 3%.
By diagonalizing the pairing Hamiltonian, we have shown
that the spin-triplet pairing correlation energy in the 1f -shell
configuration becomes larger than the spin-singlet pairing
when the strength of the spin-triplet pairing is larger than that
of the spin-singlet pairing by a factor of 1.6 or more. On the
other hand, for the 2p configuration, the spin-triplet pairing
correlation becomes dominant even with the factor f of around
1.4. We studied the magnetic moment of a (Jπ , T ) = (1+, 0)
state with a 2p configuration. The calculated value increases
when the T = 0 pairing increases according to the change of
the shell-model scheme from jj coupling to LS coupling.

In this paper, we studied one n-p pair in the pf -shell
configuration. It was pointed out recently that the maximum
spin-aligned configuration plays an important role in many
n-p pair configurations and competes with the minimum
spin-aligned configuration [28]. It is an interesting future
problem to study the competition between the minimum and
the maximum aligned configurations in the ground and excited
states in N ∼ Z nuclei.
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