
PHYSICAL REVIEW C 87, 034307 (2013)

In-medium similarity renormalization group with chiral two- plus three-nucleon interactions
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We use the recently proposed in-medium similarity renormalization group (IM-SRG) to carry out a systematic
study of closed-shell nuclei up to 56Ni, based on chiral two- plus three-nucleon interactions. We analyze the
capabilities of the IM-SRG by comparing our results for the ground-state energy to coupled cluster calculations,
as well as to quasiexact results from the importance-truncated no-core shell model. Using chiral two- plus
three-nucleon Hamiltonians whose resolution scales are lowered by free-space SRG evolution, we obtain good
agreement with experimental binding energies in 4He and the closed-shell oxygen isotopes, while the calcium
and nickel isotopes are somewhat overbound.
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I. INTRODUCTION

The adaptation of renormalization group (RG) and effective
field theory (EFT) methods has led to many advances in
the treatment of the nuclear many-body problem in recent
years [1,2]. The similarity renormalization group (SRG), in
particular, has become the tool of choice to lower the resolution
scale of two- (NN ) and three-nucleon (3N ) interactions [3–5].
The improved convergence properties of the resulting effective
interactions make them an ideal input for many ab initio
methods [6–13]. As a consequence, the range of nuclei to
which such methods can be applied successfully has increased
significantly.

Recently, the in-medium SRG (IM-SRG) has been proposed
as a new ab initio many-body technique, which uses the power-
ful SRG flow-equation framework to directly calculate nuclear
structure observables, or to derive effective Hamiltonians for
shell model calculations, which can provide complete spec-
troscopic information for closed- and open-shell nuclei from
first principles [14,15]. Here, we use the natural capabilities
of the IM-SRG to include 3N interactions in normal-ordered
two-body approximation and present a systematic study of
closed-shell nuclei up to 56Ni, based on chiral NN and 3N
interactions.

In Sec. II, we give an overview of the IM-SRG formalism
and discuss its connection to many-body perturbation theory
(MBPT). Section III describes the Hamiltonians used in this
work and provides some technical details on our calculations.
In Sec. IV, we compare IM-SRG ground-state energies with
results from the nonperturbative coupled cluster (CC) method
at different truncation levels (see, e.g., Ref. [16]), as well
as the importance-truncated no-core shell model (IT-NCSM)
[17,18]. The IT-NCSM approach is a diagonalization of
the Hamiltonian in a Hilbert space spanned by importance-
sampled basis states. Aside from small uncertainties associated
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with the importance sampling and model space extrapola-
tions, the IT-NCSM results are exact, and particularly useful
for quantifying the uncertainties of our IM-SRG results
for closed-shell nuclei, which are presented at the end of
Sec. IV.

II. FORMALISM

A. Normal ordering

Our starting point is an intrinsic nuclear A-body Hamilto-
nian containing both NN and 3N interactions,

H =
(

1 − 1

A

)
T + T (2) + V (2) + V (3), (1)

where T (2) is the two-body part of the intrinsic kinetic energy
(see, e.g., Ref. [19]). Choosing a single Slater determinant |�〉
as the reference state, we can rewrite the Hamiltonian in terms
of normal-ordered operators,

H = E +
∑

12

f12 : a
†
1a2 : + 1

4

∑
1234

�1234 : a
†
1a

†
2a4a3 :

+ 1

36

∑
123456

W123456 : a
†
1a

†
2a

†
3a6a5a4 :, (2)

where the indices include all single-particle quantum numbers,
and the strings of creation and annihilation operators obey

〈�| : a
†
1, . . . , a2 : |�〉 = 0. (3)

It is convenient to work in the eigenbasis of the one-body
density matrix in the following, so that

ρab = naδab, na ∈ {0, 1}, (4)
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and the individual normal-ordered contributions in Eq. (2)
are

E =
(

1 − 1

A

)∑
a

〈a| T |a〉na

+ 1

2

∑
ab

〈ab| T (2)+V (2) |ab〉nanb

+ 1

6

∑
abc

〈abc| V (3) |abc〉nanbnc, (5)

f12 =
(

1 − 1

A

)
〈1| T |2〉 +

∑
a

〈1a| T (2)+V (2) |2a〉na

+ 1

2

∑
ab

〈1ab| V (3) |2ab〉nanb, (6)

�1234 = 〈12| T (2)+V (2) |34〉 +
∑

a

〈12a| V (3) |34a〉na,

(7)

W123456 = 〈123| V (3) |456〉. (8)

Owing to the occupation numbers in Eqs. (5)–(7), the sums
run over occupied (hole) states only. Note that the zero-, one-,
and two-body parts of the Hamiltonian all contain in-medium
contributions from the free-space 3N interaction. The normal-
ordered 3N contribution W is omitted in the following, leading
to the normal-ordered two-body approximation (NO2B),
which has been shown to be a very good approximation for
the nuclei considered in this work [10,11,20].

B. IM-SRG flow equations

The aim of the IM-SRG is to decouple the ground-state of
the Hamiltonian from all excitations by means of a continu-
ous unitary transformation. The transformed Hamiltonian is
defined as

H (s) = U †(s)H (0)U (s), (9)

which, upon taking the derivative with respect to the flow pa-
rameter s, yields the following first-order operator differential
equation:

d

ds
H (s) = [η(s),H (s)], (10)

with the generator formally defined by

η(s) = dU †(s)

ds
U (s) = −η†(s). (11)

When carried out exactly, the IM-SRG is a unitary trans-
formation in A-nucleon space, and consequently, η(s) and
H (s) are A-body operators. When Eq. (10) is integrated, every
evaluation of the commutator increases the particle rank of
H (s), e.g.,

[: a
†
1a

†
2a4a3 :, : a

†
5a

†
6a8a7 :] = δ35 : a

†
1a

†
2a

†
6a8a7a4 : + · · · .

(12)

All of these induced contributions will, in turn, contribute to the
parts of H (s) with lower particle rank in subsequent integration

steps. Because an explicit treatment of all contributions up to
the A-body level is clearly not feasible, we have to introduce
a truncation to close the system of IM-SRG flow equations.
The simplest approach is to truncate H (s) at a given particle
rank n � A, which is motivated by the cluster decomposition
principle for short-range interactions (see, e.g., [21]). It has
been shown that the omission of W , the residual 3N part of
the Hamiltonian (2), is a good approximation as long as the
in-medium contributions of the free-space 3N interaction are
accounted for by the normal-ordered zero-, one-, and two-body
interactions [10,11,20]. We therefore truncate both H (s) and
η(s) at the two-body level and refer to this truncation as IM-
SRG(2). An additional truncation which was motivated by a
perturbative analysis was proposed in Ref. [14], but will not
be considered in this work. For the Hamiltonians considered
in the following, the numerical results of the two truncation
schemes agree to within a few keV [14].

Note that the presence of the commutator in the flow
equation (10) guarantees the IM-SRG to be size-extensive, i.e.,
the IM-SRG wave function U (s) |�〉 can be expanded in terms
of linked diagrams only [22–24]. As a consequence, errors
which are introduced by truncating the many-body expansion
scale linearly with A [22,24], and we can, in principle, judge
the quality of the IM-SRG results in medium- or heavy-mass
nuclei based on comparisons with results from exact methods
such as the no-core shell model (NCSM) [25,26], which are
only available for light nuclei.

Because the focus of this work is on closed-shell nuclei,
we assume spherical symmetry. Single-particle indices collec-
tively represent the radial, angular momentum, and isospin
quantum numbers i = (kilijiτi) and do not depend on the
angular momentum projection mi . The matrix elements of
single-particle operators are diagonal in all but the radial
quantum numbers, e.g.,

f12 = f
l1j1τ1
k1k2

δl1l2δj1j2δτ1τ2 , (13)

and two-body matrix elements are coupled to good J and
independent of M . Suppressing all s dependence for brevity,
the resulting J -scheme flow equations read

dE

ds
=

∑
ab

ĵ 2
a ηabfba(na − nb)

+1

2

∑
abcdJ

Ĵ 2ηJ
abcd�

J
cdabnanb(1 − nc)(1 − nd ),

(14)
df12

ds
=

∑
a

η1afa2 − f1aηa2

+ 1

ĵ 2
1

∑
abJ

Ĵ 2(na − nb)
(
ηab�

J
b1a2 − fabη

J
b1a2

)

+ 1

2ĵ 2
1

∑
abcJ

Ĵ 2
(
ηJ

c1ab�
J
abc2 − �J

c1abη
J
abc2

)
× [nanb(1 − nc) + (1 − na)(1 − nb)nc], (15)
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d�J
1234

ds
=

∑
a

({
η1a�

J
a234 − f1aη

J
a234 − (−1)J−j1−j2 [1 ↔ 2]

}
− {

η3a�
J
12a4 − f3aη

J
12a4 − (−1)J−j3−j4 [3 ↔ 4]

})
+ 1

2

∑
ab

(
ηJ

12ab�
J
ab34 − �J

12abη
J
ab34

)
(1 − na − nb)

+
∑
abJ ′

(na − nb)

({
j1 j2 J

j3 j4 J ′

}

× (
ηJ ′

14̄ab̄
�

J ′

ab̄32̄ − �
J ′

14̄ab̄η
J ′
ab̄32̄

)
− (−1)J−j1−j2 [1 ↔ 2]

)
, (16)

where ĵ = √
2j + 1, indices with a bar indicate time-reversed

states, and the η and � matrix elements in the last line of
Eq. (16) are obtained by a generalized Pandya transform (see,
e.g., Ref. [27]),

O
J

12̄34̄ = −
∑
J ′

Ĵ ′2
{

j1 j2 J

j3 j4 J ′

}
OJ ′

1432. (17)

C. Choice of generator

The next step is to identify the “off-diagonal” part of the
Hamiltonian, which we wish to suppress by integrating the
flow equation. To this end, we consider the representation
of the flowing Hamiltonian H (s), truncated to two-body
operators, in a many-body basis consisting of up to A-particle-
A-hole (ApAh) excitations of the reference state |�〉, as
sketched in Fig. 1. The 0p0h reference state is coupled to
1p1h and 2p2h excitations by the matrix elements

〈�| H : a†
pah : |�〉 = fph, (18)

〈�| H : a†
pa

†
p′ah′ah : |�〉 = �pp′hh′ , (19)

and their Hermitian conjugates, which define the one- and
two-body pieces of the off-diagonal Hamiltonian H od. This

i|H(0) |j i|H(∞) |j

0p0h 1p1h 2p2h 3p3h 0p0h 1p1h 2p2h 3p3h

0
p
0
h

1
p
1
h

2
p
2
h

3
p
3
h

0
p
0
h

1
p
1
h

2
p
2
h

3
p
3
h

FIG. 1. Schematic representation of the initial and final Hamilto-
nians, H (0) and H (∞), in the many-body Hilbert space spanned by
particle-hole excitations of the reference state.

H od is now used to construct the generator [14,28],

η =
∑

ph

fph

〈ph| H |ph〉 − 〈�| H |�〉 : a†
pah :

+
∑

pp′hh′

�pp′hh′

〈pp′hh′| H |pp′hh′〉 − 〈�| H |�〉 : a†
pa

†
p′ah′ah :

− H.c.

=
∑

ph

fph

fp − fh − �phph
: a†

pah :

+
∑

pp′hh′

�pp′hh′

fp + fp′ − fh − fh′ + App′hh′
: a†

pa
†
p′ah′ah :

− H.c., (20)

where fp = fpp, fh = fhh, and

App′hh′ = �pp′pp′ + �hh′hh′ − �phph − �p′h′p′h′ − �ph′ph′ − �p′hp′h.

(21)

The energy denominators appearing in Eq. (20) represent a
link between the IM-SRG and MBPT, which is discussed
in Sec. II D. As suggested by White in Ref. [28], we
use the Epstein-Nesbet partitioning rather than the more
common Møller-Plesset partitioning [16] and construct energy
denominators using the diagonal matrix elements of H in
our chosen matrix representation (Fig. 1). This naturally
regularizes the generator in situations where the difference
of the single-particle energies might become small during the
IM-SRG flow.

Because η is now given by ratios of energies, f and �
only contribute linearly to the magnitude of the right-hand
side of the IM-SRG flow equations (14)–(16). This reduces
the stiffness of the flow equations significantly compared
to calculations with the canonical Wegner generator, η′ =
[H,H od] [29,30], where third powers of f and � appear.

The use of Eq. (20) also implies that the off-diagonal matrix
elements (18) and (19) are suppressed at all energy scales
simultaneously, i.e.,

H od(s) ∼ H od(0)e−s , (22)

in contrast to the canonical Wegner generator, which behaves
in a true RG sense and preferentially suppresses matrix
elements between states with large energy differences (see
the discussion for the free-space SRG in Ref. [1]). However,
because our aim is to solve the many-body problem via the
IM-SRG transformation, we are only interested in the limit
s → ∞, and then the White generator (20) must yield the
same result as the Wegner generator, up to truncation errors.
We have verified numerically that the energies obtained with
these generators differ at the single-keV level in the present
work (also see Ref. [14]).

D. Connection to perturbation theory

In the previous section, we have already indicated that
the White generator (20) reveals a clear connection between
IM-SRG and MBPT. If we substitute Eq. (20) into the flow
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d

ds
E = + + . . . = + + + + + . . .

FIG. 2. Schematic illustration of the energy flow equation (14) for the White generator (20) in terms of Hugenholtz diagrams (see text).
The gray vertices correspond to H (s), and the double lines indicate energy denominators calculated with f (s). On the right-hand side, the flow
equation is expanded in terms of H (s − δs) (simple black vertex) and the corresponding energy denominators from f (s − δs) (single lines).
The dots indicate omitted terms from the expansion of the Epstein-Nesbet energy denominator, as well as additional diagrams generated by the
integration step s − δs → s.

equation for the ground-state energy, Eq. (14), we obtain

dE

ds
= 2

∑
ph

ĵ 2
p

|fph|2
fp − fh

δjpjh

+
∑

pp′hh′
Ĵ 2

∣∣�J
pp′hh′

∣∣2

fp + fp′ − fh − fh′
+ O(�3), (23)

where we have expanded the Epstein-Nesbet energy denom-
inator as a Neumann series to make the connection with the
more commonly used Møller-Plesset partitioning clearer [16].
Equation (23) clearly has the structure of the second-order
MBPT correction to the ground-state energy, but note that f
and � both depend on the flow parameter s. Thus, the ground-
state energy is RG improved by including contributions from
higher-order diagrams into E(s).

The effect of integrating the energy flow equation (14) by
a single step s − δs → s is illustrated schematically in Fig. 2.
Second-order terms in H (s), which are added to E(s), contain
contributions from second- and third-order diagrams when
expressed in H (s − δs). Note that all topologies for third-
order diagrams are generated: The second line of the two-
body flow equation (16) adds particle-particle and hole-hole
ladder contributions of �(s − δs) to �(s), while the third line
adds particle-hole contributions, and upon insertion of �(s)
into the energy flow equation, we obtain the corresponding
Hugenholtz energy diagrams (see, e.g., Refs. [16,24]) in Fig. 2.
Thus, integrating the IM-SRG flow equations from s = 0 to
∞ corresponds to performing a partial resummation of the
MBPT series. This includes energy corrections for the initial
normal-ordered Hamiltonian (2) which are (at least) complete
to third order, as well as ladder, ring, and classes of ladder-ring-
interference diagrams to all orders. A detailed diagrammatic
analysis of the IM-SRG will be presented in a forthcoming
publication [31].

III. HAMILTONIANS AND IMPLEMENTATION

In this work, we consider two classes of Hamiltonians.
The first one, referred to as NN + 3N -induced, is based
on a chiral NN interaction at next-to-next-to-next-to-leading
order (N3LO) by Entem and Machleidt, with cutoff � =
500 MeV [32,33]. The resolution scale of this Hamiltonian is
subsequently lowered by means of a free-space SRG evolution
[4,7,8], and the induced 3N interactions are kept explicitly.

The second class of Hamiltonians is referred to as NN +
3N -full in the following, and supplements the aforementioned

initial NN Hamiltonian with a local chiral 3N interaction at
next-to-next-to-leading order (N2LO) [34]. For a cutoff � =
500 MeV, this Hamiltonian performs well in calculations for
s- and p-shell nuclei [8,26,35], but when it is evolved to lower
resolution scale to improve convergence for calculations in
the upper p shell and beyond, substantial 4N interactions are
induced [8,10]. Following Ref. [10], we reduce the cutoff of
the initial 3N force to � = 400 MeV and use the low-energy
constants cD = −0.2 and cE = 0.098 that have been refitted
to the 4He binding energy and triton β decay.

The SRG evolution of both types of Hamiltonians is carried
out in two- and three-body Jacobi harmonic oscillator (HO)
bases with large but finite dimension [7,36]. One has to ensure
that this model space captures all relevant contributions of the
initial Hamiltonian. For small HO frequencies, in particular,
the truncation of the model space at fixed HO excitation
energy, up to 40h̄
 in the present study, leads to additional
uncertainties (see Ref. [36] for a detailed discussion). For
this reason, the smallest oscillator parameters we use in the
following are h̄
 = 20 MeV in the oxygen isotopes, and
h̄
 = 24 MeV in heavier nuclei. This can be avoided in future
applications by either improving the SRG model space on
the HO basis [36] or by carrying out the 3N evolution in
momentum space [5].

The SRG-evolved NN + 3N Hamiltonian is subsequently
transformed to an angular-momentum coupled basis built from
single-particle spherical HO states with quantum numbers
e = 2n + l � eMax. For the 3N Hamiltonian, we introduce an
additional cut, e1 + e2 + e3 � E3Max < 3eMax, to manage the
storage requirements of the matrix elements. Throughout this
work, we use E3Max = 14. As shown in Ref. [11], pf -shell
nuclei are currently the upper limit of ab initio calculations
with 3N interactions, because interactions between nucleons
in higher shells are strongly affected or even entirely removed
by the E3Max cut. In actual IM-SRG(2) calculations, we find
that increasing E3Max from 10 to 12 and from 12 to 14 changes
the ground-state energies by 2% and 1%, respectively, in the
calcium isotopes, and less so in lighter nuclei, for resolution
scales λ = 1.88, . . . , 2.24 fm−1. For larger λ, the resulting
uncertainty of the ground-state energies grows significantly.

To obtain reference states, we solve the Hartree-Fock
(HF) equations using the code described in Ref. [37],
which has been extended to include 3N forces. The full
three-body Hamiltonian is used in our calculations at this
stage. Once a converged HF ground-state is obtained, the
nuclear Hamiltonian is normal-ordered with respect to this
solution, and the resulting in-medium zero-, one-, and

034307-4



In-MEDIUM SIMILARITY RENORMALIZATION GROUP . . . PHYSICAL REVIEW C 87, 034307 (2013)

20 24 28 32 36

−130

−128

−126

−124

−122

−120

.

E
[M

eV
]

(a) 16O
eMax

6

8

10

12

14

20 24 28 32 36
−170

−160

−150

−140

−130

.

(b) 24O

24 28 32 36
−380

−360

−340

−320

−300

−280

.

(c) 40Ca

24 28 32 36

Ω [MeV]

−450

−400

−350

−300

.

E
[M

eV
]

(d) 48Ca

24 28 32 36

Ω [MeV]

−350

−300

−250

−200

.

(e) 48Ni

24 28 32 36

Ω [MeV]

−500

−450

−400

−350

.

(f) 56Ni

FIG. 3. (Color online) Convergence of the IM-SRG(2) ground-state energy of closed-shell nuclei for the NN + 3N -full Hamiltonian (see
text), evolved to λ = 2.0 fm−1. The energies indicated by dashed lines are obtained with the extrapolation method proposed in Ref. [39].

two-body operators serve as the initial values for the IM-SRG
flow equations. As discussed above, the residual three-body
term is neglected. The flow equations are subsequently
integrated using the solver CVODE [38] until decoupling
is achieved. To check the convergence, we calculate the
energy correction from second-order MBPT for the flowing
Hamiltonian H (s), which is entirely attributable to the off-
diagonal part of the Hamiltonian as defined in Eqs. (18)
and (19). We assume that sufficient decoupling is achieved
once the perturbative contribution is smaller than 10−6 MeV,
corresponding to relative changes in the flowing ground-state
energy of 10−7 or less in medium-mass nuclei.

To illustrate the convergence of our calculations, we show
IM-SRG(2) ground-state energies as a function of the model
space size eMax and the oscillator parameter h̄
 for the SRG-
evolved NN + 3N -full Hamiltonian at λ = 2.0 fm−1 in Fig. 3.
The rapid convergence of these ground-state energies is also
representative for the NN + 3N -induced Hamiltonian in the
range of studied resolution scales λ = 1.88, . . . , 2.24 fm−1.
The dashed lines ins Fig. 3 indicate energies that were obtained
with an extrapolation to infinite HO spaces as proposed in
Ref. [39]. Note that the pf -shell nuclei, in particular 56Ni,
exhibit kinks in the energies around h̄
 = 24 MeV which
are caused by the free-space SRG model space truncation
discussed above. We come back to this subject when we
summarize our ground-state energies at the end of Sec. IV.

IV. RESULTS

In this section, we discuss IM-SRG results for the ground-
state energies of closed-shell nuclei. We first show how the

IM-SRG resums correlations into the ground-state energy
as we integrate the flow equations. Next, we compare IM-
SRG results to other nonperturbative methods to assess its
capabilities. Trends of the ground-state energies under the
variation of the resolution scale λ help us to identify and
quantify the uncertainties of our results. We conclude the
discussion by giving an overview of IM-SRG ground-state
energies for closed-shell nuclei up to 56Ni.

Let us now demonstrate how the IM-SRG resums the MBPT
series, as explained in Sec. II D. To this end, we show the
flowing 40Ca ground-state energy plus second- and third-order
MBPT corrections as a function of the flow parameter s in
Fig. 4, using both the bare NN Hamiltonian and the NN +
3N -induced Hamiltonian at a resolution scale λ = 2.0 fm−1.
Evidently, correlations are summed very rapidly into E(s), and
after only 25–30 integration steps (s ∼ 2–3), the size of MBPT
corrections is reduced to less than 1% of E(s). Note, however,
that the initial size as well as the efficiency of the resummation
strongly depends on the initial Hamiltonian. For the bare NN
Hamiltonian (see Sec. III), the reference state is unbound at
E(0) = 114 MeV and only the expansion of single-particle
wave functions in terms of HO states keeps the nuclei from
breaking apart. The initial second- and third-order contribution
are −434.1 and −14.2 MeV, respectively, but by comparing
with the final IM-SRG result E = −349.6 MeV, we find that
the resummed higher-order contributions are about −16 MeV,
i.e., larger than the third-order term. This indicates the poor
convergence properties of the MBPT series. For the soft NN +
3N -induced Hamiltonian with λ = 2.0 fm−1 (see Sec. III),
however, HF + second- and third-order MBPT is a good
approximation to the ground-state energy, and the higher-order
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FIG. 4. (Color online) IM-SRG(2) ground-state energy of 40Ca
as a function of the flow parameter s for the bare NN Hamiltonian
(top) and the NN + 3N -induced Hamiltonian with λ = 2.0 fm−1

(bottom). Shown are E(s) ( ) and E(s) plus second- ( ) and third-
order ( ) MBPT corrections for H (s). The dashed line indicates the
final value E(∞). All calculations were done with eMax = 10, at
optimal h̄
 = 32 MeV (top) and 24 MeV (bottom). For s > 1.5 we
only show every tenth numerical data point to reduce clutter.

corrections included via the IM-SRG only amount to about
−500 keV. Note, however, that even for soft Hamiltonians,
partial summations of the MBPT series to finite order do not
converge systematically, as demonstrated in Refs. [40,41].

Next, we compare our IM-SRG(2) results for the ground-
state energies of 4He, 16O, and 40Ca with other nonpertur-
bative methods. To this end, we consider energies from CC
calculations with single and double excitations (CCSD) and
�-CCSD(T) to assess contributions from triple excitations
[16,42,43]. The energies of both methods are obtained using
the NO2B approximation (see Sec. II) and E3Max = 14; i.e.,
the CC and IM-SRG results are based on exactly the same
input matrix elements. As a benchmark, we use energies from
the quasiexact IT-NCSM [17,18], which contain the complete
3N interaction. We note that the E3Max cut is naturally
compatible with the model-space truncation of the IT-NCSM
and therefore not a source of additional uncertainties in
IT-NCSM calculations. In Fig. 5, we show such a comparison
for the NN + 3N -induced and NN + 3N -full Hamiltonians
at various resolution scales λ.

Surveying the results, we observe that as λ decreases, the
differences between the IM-SRG(2), CCSD, and �-CCSD(T)
energies becomes smaller, and all three methods approach
the quasiexact IT-NCSM results in 4He and 16O. The only
deviation from a fairly uniform pattern occurs for 4He with
the NN + 3N -full Hamiltonian, where the difference between
CCSD and IT-NCSM seems to increase slightly, but here
the absolute value of the energy difference is quite small.
The improving agreement of IM-SRG and CC energies is, of
course, a manifestation of how the lowering of the resolution
scale improves not only the convergence with respect to the

NN + 3N -induced NN + 3N -full
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FIG. 5. (Color online) Ground-state energies of stable closed-
shell nuclei as a function of the resolution scale λ for the SRG-evolved
NN + 3N -induced (left column) and NN + 3N -full Hamiltonians
(right column), using different many-body methods: IM-SRG(2) ( ),
CCSD ( ), �-CCSD(T) ( ), and IT-NCSM ( ). IM-SRG and CC
results are obtained with eMax = 14, and the IT-NCSM results have
been extrapolated to infinite model space, with error bars indicating
the uncertainties of the importance truncation and the model space
extrapolation (for 4He, the error bars are smaller than the symbols).
The gray solid line for 4He in the top left panel is the result of a
converged NCSM calculation with the bare NN Hamiltonian, E =
−25.39 MeV (see, e.g., Ref. [4]). Dashed black lines are experimental
values from Ref. [44].

model space size, but also the convergence of the many-body
expansion itself, as observed in the discussion of Fig. 4 (also
see Ref. [11]).

Another interesting observation is that the IM-SRG(2) and
�-CCSD(T) energies are surprisingly close, as previously
observed in calculations with SRG-evolved NN Hamiltonians
in Ref. [14]. As discussed in Sec. II D, the IM-SRG can be
understood as a resummation of the perturbation series for
the ground-state energy, and the same is true for CC. We
have argued that the IM-SRG(2) energy contains (at least)
the complete third-order expressions, similar to CCSD, while
�-CCSD(T) is complete through fourth order [16]. Based
on this assessment and a superficial similarity between the
CC cluster operator and the IM-SRG generator η, one would
have expected IM-SRG(2) and CCSD to give similar results.
There are, however, differences between the two approaches:
For instance, the effective Hamiltonian is always Hermitian
in the IM-SRG, which implies that the method has more
in common with unitary CC (UCC) approaches rather than
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FIG. 6. (Color online) Ground-state energies of stable closed-
shell nuclei for the bare NN Hamiltonian (λ = ∞), using IM-SRG(2)
( ), CCSD ( ), and �-CCSD(T) ( ). IM-SRG and CC results are
obtained with eMax = 14. The gray solid line for 4He indicates the
result of a converged NCSM calculation, E = −25.39 MeV (see,
e.g., Ref. [4]). The open and solid orange arrows are converged CCSD
and �-CCSD(T) results from Refs. [6,45].

the traditional CC [46]. UCC converges more rapidly to
exact configuration interaction results than its traditional CC
counterpart at a given truncation level because it contains
additional many-body contributions; see, e.g., Ref. [47]. The
proximity of the IM-SRG(2) and �-CCSD(T) results in our
calculations suggests that the same is true for the IM-SRG.

For the NN + 3N -induced Hamiltonian, we can extend
our systematics to λ → ∞, i.e., the initial point of the
free-space SRG evolution, by performing calculations using
the bare NN Hamiltonian, with no induced 3N interactions.
The results of such calculations are shown in Fig. 6, along
with essentially converged CCSD and �-CCSD(T) results
in eMax � 18 spaces by Hagen et al. [6,45]. The difference
between these results and our eMax = 14 CC results illustrate
the slower convergence with respect to eMax for the bare NN
Hamiltonian in comparison to the SRG-evolved Hamiltonians
(cf. Sec. III).

The calculations with the bare NN Hamiltonian show that
the IM-SRG(2) energy lies below the exact NSCM result for
4He, which is possible because the method is not variational.
In fact, the IM-SRG(2) energy lies below the �-CCSD(T)
energy; i.e., the deviation from the exact result is larger
than for �-CCSD(T). The IM-SRG(2) energies for 16O, and
40Ca also lie below their �-CCSD(T) counterparts. There are
different mechanisms that might explain this observation: The
IM-SRG(2) might contain diagrams beyond �-CCSD(T) that
lead to an overestimation of the binding energy, or IM-SRG(2)
might lack diagrams compared to �-CCSD(T) that cancel
other contributions. A detailed diagrammatic analysis of the
IM-SRG which should clarify this issue is in progress and will
be a subject of a forthcoming publication [31].

It might be tempting to consider the differences between
IM-SRG and CC energies for 4He and the exact NCSM result
for the bare NN Hamiltonian as a measure of uncertainty for
the different many-body methods, because it only depends on
eMax and the many-body truncation. We emphasize that this is
not possible, because the quality of the many-body truncation

manifestly depends on the resolution scale λ, as discussed in
the context of Fig. 5 above. While the uncertainty owing to the
use of truncated methods such as IM-SRG and CC is reduced
for soft interactions, the omission of induced 4N, . . . , AN
interactions from the free-space SRG evolution, the omission
of the normal-ordered 3N interaction, and the E3Max cut in the
present work all introduce additional uncertainties, which are
hard to disentangle (also see Ref. [11]).

Let us focus on the NN + 3N -induced Hamiltonian first.
The IT-NCSM ground-state energies for 4He and 16O shown
in the left column of Fig. 5 exhibit almost no λ dependence
in the range from λ = 1.88 to 2.24 fm−1, which indicates
that omitted induced 4N, . . . , AN interactions are irrelevant
for these light nuclei [4,8]. The NO2B approximation, i.e.,
the omission of the normal-ordered 3N term in the initial
Hamiltonian (see Sec. II), causes an overestimation of the
CCSD binding energy by 2% in 4He, and 1% in the other
nuclei studied here [11]. This overestimation is independent
of λ. If we assume that this remains true for IM-SRG(2)
and �-CCSD(T) as well, the variation of the IM-SRG and
CC energies with λ must be caused by a combination of the
many-body truncation and the E3Max cut. Both of these effects
become weaker as λ decreases: The energy gain from including
additional many-body terms is reduced as the convergence of
the many-body expansion is improved, and the artificial energy
gain that is caused by the omission of repulsive 3N matrix
elements beyond the E3Max cut is reduced as well.

In 4He, the deviation between the IM-SRG(2) and IT-
NCSM ranges from 2.5% at λ = 2.24 fm−1 to 1% at λ =
1.88 fm−1. The effect of the E3Max cut is negligible here,
causing changes in the energy in the single-keV range. Thus,
the deviation is dominated by the 2% contribution of the NO2B
approximation, which amounts to an overestimation of the
exact NCSM energy by about 500 keV. If we take this into
account by shifting the IM-SRG and CC results upward, the
IM-SRG(2) energies lie within a band of 350 keV around
the NCSM result, which leads us to estimate the uncertainty
associated with the truncation to be on the order of 1–1.5%.

Size extensivity of the IM-SRG(2) implies that the relative
truncation error, defined as the deviation from the exact NCSM
result, should be of similar size in heavier nuclei. Adding
the uncertainties associated with the NO2B approximation
and the E3Max cut, which are both about 1% (see Sec. III),
the total estimated uncertainty for 16O and 40Ca is about
3.5%. For 16O, this estimate agrees very well with the largest
deviation between IT-NCSM and IM-SRG(2), which is 3.6%.
We emphasize, however, that these estimates rely on the
assumption that the effect of the NO2B approximation is the
same for IM-SRG(2) and �-CCSD(T) as for CCSD.

For the NN + 3N -full Hamiltonian (right column of
Fig. 5), we face the additional complication that the IT-NCSM
energies for 4He and 16O are themselves λ dependent, which
indicates that induced 4N, . . . , AN interactions are no
longer irrelevant. The underestimation of the experimental
4He binding energy in the IT-NCSM calculations with
the NN + 3N -full Hamiltonian is caused by the omitted
induced 4N interaction (the fit of the low-energy constants was
performed with the bare 3N interaction). Because the NN part
of the Hamiltonian is unchanged from the NN + 3N -induced
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case, we can conclude that 4N, . . . , AN interactions must
be generated by the SRG evolution of the initial 3N
interaction [8].

In 4He and 16O, the relative differences between the IT-
NCSM results and the IM-SRG and CC energies are reduced
in comparison to the NN + 3N -induced calculation, to about
1.5% and 3%, respectively. Interestingly, the IM-SRG(2)
energies now exhibit a weaker λ dependence than in the
NN + 3N -induced calculations. This is consistent with the �-
CCSD(T) results (also see Ref. [11]) and can be explained by
the influence of the E3Max truncation and the omitted induced
4N, . . . , AN interactions in the case of the NN + 3N -full
Hamiltonian. In 4He, the omitted induced interactions are
attractive and their effect on the IT-NCSM energies grows
only weakly as λ decreases. For 16O, however, the reduction of
the IT-NCSM ground-state energy with decreasing λ indicates
that the net effect of the omitted interactions is repulsive. As
mentioned above, for IM-SRG and CC we are also omitting
parts of the the repulsive 3N interaction by introducing the
E3Max cut. The λ dependence of the two effects is reverse: With
decreasing λ, the effect of omitted 4N, . . . , AN interactions
increases, but the contribution of matrix elements beyond
the E3Max cut decreases. This leads to an apparent reduction
of the λ dependence compared to the NN + 3N -induced
calculations.

We conclude the discussion of our results by giving an
overview of our IM-SRG(2) ground-state energies in Fig. 7;
the corresponding numbers are listed in Table I. With the
NN + 3N -full Hamiltonian, we obtain a good agreement with
experimental binding energies in the s- and p-shell nuclei,
while those of the sd- and pf -shell nuclei are overestimated
by 0.6–0.8 MeV per nucleon, keeping in mind the previously
discussed uncertainties of 3–4%. A striking feature of Fig. 7
is the improvement of the isotopic trends of the ground-state
energies with the inclusion of the initial 3N force, in particular
for the calcium isotopes. Because the effect of a λ variation on
the ground-state energies is mostly uniform, this improvement
appears to be a robust feature.

For the NN + 3N -full Hamiltonian, we also find that the
aforementioned cancellation which reduces the λ dependence
of the energies (cf. Fig. 5) extends to all nuclei studied in this
work. This stability over a wide mass range is quite contrary to
the growing λ dependence with A which is obtained without
the initial 3N Hamiltonian. It will be interesting to see if these
systematics extend to higher masses, but an extension of our
calculations beyond the pf shell will require significant devel-
opments in the practical handling of the 3N matrix elements.

Table I also contains energies which are extrapolated
to an infinite HO space, using the extrapolation method
proposed in Ref. [39] (also see Fig. 3). A big advantage

TABLE I. Ground-state energies for closed-shell nuclei from IM-SRG(2) calculations with NN + 3N -
induced and NN + 3N -full Hamiltonians at various values of λ. Ground-state energies for eMax = 14
are taken at the optimal value of h̄
. Extrapolated energies are obtained using the method proposed in
Ref. [39]. The uncertainties given in parentheses are solely attributable to the extrapolation and determined
by the largest difference between the eMax = 14 data for all h̄
 and the extrapolated values. Extrapolation
uncertainties in 4He which affect only the third decimal place are not listed.

λ ( fm−1) E ( MeV)

NN + 3N induced NN + 3N full

eMax = 14 Extrapolated eMax = 14 Extrapolated

4He 1.88 −25.65 −25.65 −28.32 −28.33
2.00 −25.75 −25.75 −28.38 −28.38
2.24 −25.98 −25.97(1) −28.51 −28.51

16O 1.88 −122.08 −122.02(7) −130.73 −130.6(1)
2.00 −122.80 −122.71(9) −130.57 −130.5(1)
2.24 −124.30 −124.1(2) −130.47 −130.3(2)

24O 1.88 −155.76 −155(1) −169.49 −169(1)
2.00 −157.15 −156.8(9) −169.47 −169(1)
2.24 −159.66 −159.4(6) −169.36 −169.1(9)

40Ca 1.88 −354.14 −354.1(10) −376.63 −376(1)
2.00 −358.50 −358.5(8) −376.26 −376.1(8)
2.24 −365.50 −365.7(8) −374.87 −374.9(7)

48Ca 1.88 −411.34 −409(4) −453.55 −451(4)
2.00 −418.23 −417(4) −454.36 −453(5)
2.24 −428.74 −429(5) −454.17 −453(5)

48Ni 1.88 −337.74 −336(3) −377.72 −375(4)
2.00 −344.30 −343(4) −378.36 −377(4)
2.24 −354.26 −354(5) −377.60 −377(5)

56Ni 1.88 −449.35 −453(3) −529.62 −530(4)
2.00 −460.10 −464(5) −532.79 −534(4)
2.24 −476.61 −481(7) −534.48 −536(6)
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FIG. 7. (Color online) IM-SRG(2) ground-state energy per nu-
cleon of closed-shell nuclei for NN + 3N -induced (top) and NN +
3N -full Hamiltonians (bottom) at different resolution scales λ.
Energies are determined at optimal h̄
 for eMax = 14. Experimental
energies (black bars) are taken from Ref. [44].

of this method is its ability to perform a simultaneous
extrapolation for all calculated energies with different eMax

and h̄
 and thereby better constrain the fit model than separate
extrapolations at each h̄
. We find the extrapolation works well
for the NN + 3N -induced and NN + 3N -full Hamiltonians
and all studied nuclei. As an error estimate, we include the
maximum value of the scatter of eMax = 14 results around the
extrapolated values E∞ in Table I. Because we are limited
to h̄
 � 24 MeV in the calcium isotopes as well as 48Ni,
the extrapolation uncertainties are somewhat larger than for
the lighter nuclei. Although the h̄
 = 24 MeV data for the
A = 48 nuclei exhibit signs of the artifact which is caused
by the truncation of the free-space SRG model space used
for the 3N evolution (see Sec. III and alsos Fig. 3), the
exclusion of these points from the fit data set does not affect
the extrapolation within its uncertainties. For 56Ni, however,
the effect is more pronounced; hence, we only include data
points for h̄
 � 28 MeV when we determine the extrapolated
energies in this case.

V. CONCLUSIONS

We have used the IM-SRG to perform a systematic study
of closed-shell nuclei using chiral NN + 3N Hamiltonians in
the normal-ordered two-body approximation. Our calculations
can be carried out in large HO bases of up to 15 major
shells owing to the polynomial scaling of the IM-SRG with
the single-particle basis size. We have demonstrated that the
SRG evolution of the initial NN or NN + 3N Hamiltonian
to a lower resolution scale is under control: Uncertainties
caused by the omission of induced 4N, . . . , AN forces
are outweighed by the improved convergence behavior of
the evolved Hamiltonian in many-body calculations, which
reduces truncation and extrapolation uncertainties.

With an initial Hamiltonian consisting of the N3LO NN
interaction with cutoff � = 500 MeV, and an N2LO 3N

interaction with a lowered cutoff � = 400 MeV, we achieve a
very good agreement of the IM-SRG(2) ground-state energies
with experimental data in light nuclei, while calcium and
nickel isotopes are overbound by 0.6–0.8 MeV per nucleon,
with minimal dependence on the SRG parameter λ. Our
IM-SRG ground-state energies are also in good agreement
with results from quasiexact IT-NCSM, as well as CCSD
and �-CCSD(T) calculations [8,10,11]. The similarity of our
results to the latter raises interesting questions regarding the
diagrammatic content of the IM-SRG method when it is
interpreted as a nonperturbative resummation of the MBPT
series. This aspect will be explored in depth in a forthcoming
publication [31].

Improving on the IM-SRG(2) truncation introduced in this
work is straightforward: As a next step, we plan to implement
the IM-SRG(3) flow equations, which contain explicit three-
body operators. While the computational treatment of 3N in-
teractions is expensive and requires additional approximations
such as the E3Max cut we discussed in the present work, it
should be feasible to perform calculations in light nuclei to
establish the convergence behavior of the IM-SRG hierarchy
of truncations. Effects in heavier nuclei can then be inferred
using size-extensivity arguments.

In the near term, we can use the existing technology to study
NN and 3N Hamiltonian at consistent cutoffs and orders of the
chiral expansion, in particular the recently completed N3LO
interactions [48,49]. We also plan spectroscopic applications
by using the final IM-SRG single-particle energies and residual
two-body interaction as input for traditional shell model
calculations [15]. In parallel, we will pursue the generalization
and direct application of the IM-SRG to open-shell nuclei
via a multireference formalism. There are indications from
quantum chemistry that a unitary method such as the IM-SRG
is more robust than traditional CC approaches in such cases
[46,50,51].
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