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Pygmy and giant electric dipole responses of medium-heavy nuclei in a self-consistent
random-phase approximation approach with a finite-range interaction
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The pygmy dipole resonance (PDR) is studied in various medium-heavy nuclei by using a Gogny interaction
in a self-consistent Hartree-Fock plus random phase approximation method. We compare the details of the PDR
structure with those of the giant dipole resonance (GDR). In the PDR protons and neutrons vibrate in phase, and
the main contributions are given by particle-hole excitations involving the neutrons in excess. On the contrary,
in the GDR protons and neutrons vibrate out of phase, and all the nucleons are involved in the excitation. The
values of the parameters we used to define the collectivity of an excitation indicate that the PDR is less collective
than the GDR. We also investigate the role of the residual interaction in the appearance of the PDR and we find
a subtle interplay with the shell structure of the nucleus.
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I. INTRODUCTION

The pygmy dipole resonance (PDR) is an electric dipole
excitation located at energies close to the nucleon emission
threshold, and called pygmy since its strength is much smaller
than that of the well-studied giant dipole resonance (GDR)
[1,2]. The reasons of the interest in the presence of the PDR
can be grouped in three categories.

A first type of motivation is related to nuclear astrophysics.
The presence of a PDR in neutron rich nuclei, would increase
the neutron capture cross section by orders of magnitude [3,4],
and, consequently, also the rate of nucleosynthesis r-process.
This effect could clarify the present discrepancy between
simulations and observed abundance of medium-heavy nuclei
in the solar system [5].

A second type of reasons inducing the interest in the
PDR is due to the relation between the presence of this
resonance and the nuclear matter symmetry energy, and
consequently, the connection with the neutron skin, the static
dipole polarizability, and the values of the Landau’s parameters
of the effective nucleon-nucleon interaction [6–10].

Finally, the third set of reasons to be interested in the
PDR is related to a genuine curiosity about this new type of
nuclear excitation. There are many aspects of this excitation
to be clarified. For example, if the PDRs are present in all
the medium and heavy nuclei or if this type of excitation is
peculiar of neutron rich nuclei only. Another question to be
answered is whether these resonances are the low energy tail
of the GDR or if they represent a different type of excitation.
It also remains to be clarified if the PDRs are produced by
collective nuclear motions or if they are generated by single
particle (s.p.) excitations related to the specific shell structure
of nuclei with neutron excess, i.e., N > Z.

Our work has been mainly inspired by this last type of mo-
tivations. We have investigated the presence and the structure
of the PDR in various medium-heavy nuclei, representative
of different regions of the nuclear chart. The theoretical tool

we have used in our study is the random phase approximation
(RPA) theory.

The first results of our study have been presented in
Ref. [11] where we used a phenomenological RPA approach.
The s.p. basis was generated by using a Woods-Saxon well.
The parameters of this well were fixed, for each isotope chain,
in order to reproduce some empirical properties of the most
investigated doubly magic nucleus of the chain. This implied
that s.p. wave functions and energies were the same for each
isotope of the chain. The effective nucleon-nucleon interaction
used in those RPA calculations was a density dependent zero-
range Landau-Migdal force, whose parameters were chosen
to reproduce the energies of the low-lying 3− states and the
centroid energies of the GDR in 16O, 40Ca, and 208Pb nuclei.
The main result of that investigation was the observation of
dipole strength at energies lower than those of the GDR that
increased with the neutron excess. In that region proton and
neutron dipole transition densities were in phase, while they
were out of phase in the GDR region.

From the theoretical point of view the main limitations of
the previous investigation were the large number of parameters
to be selected, and the rigid use of a s.p. basis within a given set
of isotopes. We overcome these difficulties in the present study
by adopting a self-consistent Hartree-Fock (HF) plus RPA
approach. The effective interaction used in HF calculations to
generate the s.p bases is also used in the RPA calculations.

Recently, we have proposed two parametrizations of the
finite-range Gogny interaction containing also tensor terms
[12,13]. However, since the presence of these terms is relevant
only in magnetic excitations [14], in the present study we used
the well tested D1S [15] and the more modern D1M [16]
Gogny forces that do not include tensor terms. The parameters
of these two interactions have been selected to reproduce
some global nuclear properties, therefore each interaction is
built to be used to investigate every nucleus in each region
of the nuclear chart. Contrary to what has been done in
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Ref. [11], in the present approach each nucleus has its own
s.p. basis. The two parametrizations produce similar results
whose differences are not large enough to induce to different
conclusions. For this reason we have restricted our presentation
to the results obtained with the D1M parametrization only.

For our investigation we have selected a variety of nuclei
with closed subshells and, therefore, with spherical symmetry.
In this way, not only, we have avoided deformation problems,
but we have also minimized the eventual pairing effects. We
have chosen isotope chains containing at least a nucleus where
experimental evidence of presence of PDR has been found:
22O [17], 48Ca [18], 68Ni [19], 132Sn [20], and 208Pb [21,22].

The paper is organized as follows. In Sec. II we briefly
present the main features of our self-consistent HF + RPA
model. In Sec. III we present, and discuss, our results and in
Sec. IV we draw our conclusions.

II. THE MODEL

The first step of our procedure consists in constructing the
s.p. basis by solving the HF equations. The technical details
concerning the solution of the HF equations can be found in
Refs. [23,24]. In the second step, the wave functions obtained
in the HF calculation are used to solve the RPA equations by
considering, without approximations, the fact that the main
part of the s.p. wave functions above the Fermi surface lies in
the continuum. We have labeled continuum RPA (CRPA) the
results obtained in these calculations. The technique used to
solve the CRPA equations, which takes care of both direct and
exchange matrix elements in the RPA, is based on expansions
on a basis of Sturm-Bessel functions. The details of this
approach can be found in Refs. [25,26]. The number of the
integration points and of the Sturm-Bessel functions to be used
is easily determined by observing the numerical stability of the
results (see Refs. [25,26]). Apart from that, CRPA calculations
are parameter free because the interaction is fixed.

Unfortunately, CRPA calculations have two drawbacks. A
first one is that the CRPA equations are formulated with very
involute expressions which make very difficult to disentangle
the role of the various ingredients of the calculations, for ex-
ample the relevance of specific particle-hole (p-h) excitations.
The second problem is that the calculations are numerically
very involved and, for large nuclei our technique suffers of
numerical instability. For these reasons, together with the
CRPA calculations, we carried out RPA calculations where
only a discrete set of s.p. wave functions is used. We call
discrete RPA (DRPA) this last type of calculations. The
discrete configuration space is obtained in the HF calculation
when the iterative procedure has reached the minimum value
of the binding energy. At this point, we calculate the s.p.
wave functions for all the states below the Fermi surface, the
hole states, and those for a large number of states above it,
the particle states. This calculation is done by assuming that
the system is confined in a spherical box with infinite walls.

As it is traditionally done [27], in this DRPA approach
the secular equations written in matrix form are solved by
diagonalizing the RPA matrix. The dimensions of this matrix
are given by the number of the p-h pairs contributing to the
excitation. Therefore, the results of these DRPA calculations

depend on both the size of the box considered for the HF
calculations and the number of particle states composing the
configuration space. The choice of the values of these two
parameters has been done by controlling the centroid energies
of the giant dipole responses. We have chosen a box radius
of 30 fm for the calculations in oxygen, calcium and nickel
isotopes, of 40 fm for zirconium and tin isotopes, and of 45 fm
for lead. For all the nuclei, but 208Pb, we have selected
a configuration space such as the maximum p-h excitation
energy is 100 MeV. For 208Pb this would have generated
matrices with too large dimensions, therefore we have chosen
a maximum value of 60 MeV. We have taken care that the
centroid energies did not change by more than 0.5 MeV when
either the box size, or the configuration space were enlarged.

In our self-consistent HF plus RPA approach, the spurious
center of mass motion, showing up as an isoscalar 1− excita-
tion, should appear at zero energy [28]. This is what happens in
the CRPA calculations where we do not observe any effect due
to the presence of this spurious excited state. On the contrary,
this spurious state is present in all our DRPA results. This is
due to the truncation of the configuration space. In the great
majority of the cases we have investigated this state is easily
identifiable and is well isolated form the other ones. On the
other hand, we observe that for the 28O, 48Ni 100Sn, and 208Pb
nuclei the spurious state appearing in the range 1.5–3.0 MeV
is mixed with other excited states. In the DRPA results which
will be presented in the next section, the spurious states
have been eliminated by hand. In the study of the isoscalar
excitations, and of the transition densities, we subtracted the
contribution of the spurious state by using the prescriptions of
Refs. [29,30] and we found that, from the quantitative point
of view, the two procedures are equivalent. In any case, a
comparison with the transition densities obtained without the
subtraction of the spurious states does not show numerically
relevant differences.

III. RESULTS AND DISCUSSION

A. Comparison between CRPA and DRPA

The nuclei we have considered are listed in Table I. As
already pointed out, in these nuclei, the s.p. levels are fully
occupied, and this implies a spherical shape. Furthermore, the
pairing effects are negligible. These features are confirmed
by the deformed Hartree-Fock-Bogoliubov calculations of
Refs. [31,32].

In Ref. [33], we used the oxygen, calcium, nickel and tin
isotopes indicated in Table I to compare the results obtained
with various microscopic mean-field models describing their
ground states. We found a remarkable agreement between the
results obtained with our HF approach and those generated by
Skyrme HF and relativistic Hartree calculations.

We show in Figs. 1–5 the total photoabsorption cross
sections obtained in our calculations of the dipole responses.
In these figures the vertical bars show the results obtained with
DRPA. For all the isotopes lighter than tin, we show with solid
blue lines the cross section obtained with CRPA. As explained
above, for the four tin isotopes (Fig. 5) and also for 208Pb
[Fig. 4 (b)] we have DRPA results only.
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TABLE I. Nuclei considered in our calculations. For each nucleus
we show the energy used to separate the PDR and GDR regions,
ωsep, and the energies ωPDR and ωGDR of the discrete states we
consider representative of these two regions. All the energy values
are expressed in MeV.

ωsep ωPDR ωGDR

16O 15.5 13.71 25.11
22O 15.0 8.94 24.22
24O 13.5 6.85 21.42
28O 12.0 7.32 19.32
40Ca 13.0 12.49 21.16
48Ca 12.0 11.12 21.72
52Ca 11.0 8.73 18.61
60Ca 11.0 9.07 18.54
48Ni 12.0 10.52 19.06
56Ni 13.5 13.08 18.95
68Ni 12.0 10.93 18.05
78Ni 11.5 10.60 18.90
90Zr 12.5 11.60 17.61
100Sn 11.0 10.74 17.12
114Sn 11.0 10.16 19.32
116Sn 12.0 8.90 16.47
132Sn 11.0 9.01 16.50
208Pb 10.0 8.34 14.47

For 16O, 40Ca, and 208Pb nuclei we compare the results of
our calculations with the experimental data of Ref. [34]. This
comparison emphasizes the well-known merits and faults of
the RPA calculations in the description of the giant resonances
[35–37]. The presence of a peak generated by the collective
excitation of the nucleus is predicted by our calculations. The
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FIG. 1. (Color online) Total photoabsorption cross sections cal-
culated with CRPA (continuous blue lines), and DRPA (solid vertical
lines). The dotted vertical lines indicate the ωsep energies chosen
to separate the regions of the pygmy and giant strengths. We have
indicated in dashed red the discrete levels corresponding to the ωPDR

and ωGDR energies. The total photoabsorption data in the 16O panel
have been taken from Ref. [34]. The gray region in the 22O panel
indicates the empirical PDR region found in Ref. [17].
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FIG. 2. (Color online) The same as Fig. 1, for the calcium isotopes
we have considered. The data in the 40Ca panel are from Ref. [34].
The gray area in the 48Ca panel indicates the PDR region identified
in Ref. [18].

position of the main peaks is reasonably well reproduced.
The CRPA centroid energies for 16O and 40Ca are 24.8 and
22.0 MeV to be compared with the experimental values of 22.9
and 20.0 MeV, respectively. In 208Pb the DRPA centroid energy
is 15.84 MeV and the experimental value is 14.7 MeV. Since
in these calculations the position of the GDR is dominated
by the isospin dependent part of the interaction [38,39],
these discrepancies may indicate that this term of the D1M
interaction is too strong.

The RPA calculations satisfy the energy weighted sum
rule, which can be calculated by integrating the cross sections
presented in the figures. For the 16O, 40Ca, and 208Pb nuclei we
obtained the values of 336, 834, and 4420 mb MeV, respec-
tively. These values should be compared with those obtained
by using the Thomas-Reiche-Khun (TRK) sum rule corrected
by the enhancement factor related to the isospin-dependent,
and eventually tensor, terms, of the interaction used. The
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FIG. 3. (Color online) The same as Fig. 1, for the nickel isotopes
we have considered. The gray area in the 68Ni panel indicates the
PDR identified in Ref. [19].
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FIG. 4. (Color online) The same as Fig. 1, for the 90Zr and the
208Pb nuclei. In the 208Pb panel, the experimental data are from Ref.
[34] and the gray area indicates the PDR region identified in Ref. [21].

enhancement factors should be calculated for each nucleus
considered. For the purposes of the present paper we used a
simple estimation based on the values published in Ref. [40]. In
the case of the D1M interaction we have used a value of 0.51.
The TRK values corrected for this enhancement factor are 360,
900, and 4470 mb MeV for 16O, 40Ca, and 208Pb, respectively,
indicating a reasonable agreement with the CRPA values.

The CRPA calculations consider only the escape width
of the resonance and do not take into account the spreading
width. As a consequence of this fact we observe that the
strength is too concentrated in the resonance region. This
drawback becomes more important the heavier is the nucleus
when the second type of width dominates. We observe a
reasonable agreement in 16O, but in 40Ca the width of the

0

100

200

300

400

500

0 10 20 30 40
0

100

200

300

400

500

0 10 20 30 40

σ
(m

b
)

σ
(m

b
)

ω (MeV) ω (MeV)

100Sn 114Sn

116Sn 132Sn

)b()a(

)d()c(

FIG. 5. (Color online) The same as Fig. 1, for the tin isotopes we
have considered. The gray area in the 132Sn panel indicates the PDR
region identified in Ref. [20].
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FIG. 6. Comparison between CRPA (open squares) and DRPA
(full circles) results. In (a) we show the ratio between the energy
weighted sum rule obtained by integrating the cross sections of
Figs. 1–5 and the values obtained by considering the TRK sum rule
plus an estimated 0.5 enhancement factor. In (b) and (c) we compare
the R values defined in Eq. (1) calculated for the GDR and the PDR
regions, respectively. In (d) we show the GDR and PDR centroid
energies as given by Eq. (6).

resonance is not correctly reproduced. This feature has been
discussed in more detail in Ref. [26].

We want to discuss the reliability of the DRPA results as
compared to the CRPA ones. This comparison is important to
have confidence on the DRPA results in lead and tin isotopes
where we could not perform CRPA calculations. The results
shown in Figs. 1–5 indicate a good agreement between the
position of the peaks in the two types of calculations.

We have calculated the sum rule exhaustion of both types of
calculations for all the nuclei, and we present them in panel (a)
of Fig. 6. The important information given in this figure is the
comparison between results of the CRPA, open squares, and
those obtained in DRPA calculations, full circles. To simplify
the presentation, these values are divided by the TRK values
corrected with the unique 0.51 enhancement factor. The scale
of the figure emphasizes the differences between CRPA and
DRPA results, but we observe that most of our results are
within a range of 5% around the expected theoretical values.
The largest deviations between CRPA and DRPA results are
found in the double-closed shell nuclei 40Ca, 48Ca, 48Ni, 56Ni,
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and 90Zr. Also in these cases, however, the differences are at
most 10%.

The behavior of the DRPA values seems more regular
than that of the CRPA results. Remarkable deviations from
this behaviour are shown by the 114Sn and 116Sn nuclei. It is
possible that, in these cases, shell effects are important in the
evaluation of the enhancement factors.

We further carried on the comparison between the CRPA
and DRPA results by separately analyzing the pygmy and the
giant resonance regions. For this reason, we divide the dipole
response in two regions representative of the PDR and GDR.
The values of the energies that separate these two regions,
ωsep, are given in Table I for all the isotopes studied, and are
indicated by the vertical dotted lines in Figs. 1–5. We checked
that the values of the quantity

R =

∫ ωf

ωi

B(E1; ω) dω∫ ∞

0
B(E1; ω) dω

, (1)

calculated with CRPA and DRPA were approximately the same
in each of the two regions, obviously for all those isotopes
where the CRPA calculations have been done. In our approach,
the B(E1; ω) value is calculated as

B(E1; ω) =
∣∣∣∣∣∣

Nph∑
ph=1

bph(E1; ω)

∣∣∣∣∣∣
2

, (2)

where the relation with the usual X and Y RPA amplitudes is
given by

bph(E1; ω) = eeff[Xph(ω) − Yph(ω)]
∫

dr r3 ρph(E1; ω, r) .

(3)

In the above equation, we used the common definition of the
effective charge for the electric dipole excitation

eeff =

⎧⎪⎪⎨
⎪⎪⎩

N

A
e, for protons

−Z

A
e, for neutrons

. (4)

The p-h transition density is defined as

ρph(E1; ω, r) =
√

3

4π
(−1)jp+ 1

2
√

(2jp + 1)(2jh + 1)

×
(

jp 1 jh

1
2 0 − 1

2

)
Rp(r) Rh(r) , (5)

where R(r) indicates the radial part of the s.p. wave function,
j is the total angular momentum and we have used the
traditional symbol to indicate the Wigner 3-j coefficient. The
above expression has been obtained by using the |l 1

2j 〉 angular
momentum coupling.

In Eq. (1) we used ωi = 0 and ωf = ωsep for the PDR, while
for the GDR region we used ωi = ωsep and ωf = 40 MeV
for the oxygen isotopes and ωf = 30 MeV for all the other
nuclei. The results of our calculations are shown in panels (b)
and (c) of Fig. 6 for GDR and PDR, respectively. The values

obtained with CRPA are indicated by the open squares, and
those obtained with DRPA by the full circles. We remark a
good agreement between these results.

We further tested the reliability of the DRPA results as
compared to the CRPA ones, and also the validity of our
choices in selecting the ωsep values, by calculating the centroid
energies of the two regions, with the usual expression

ωc =

∫ ωf

ωi

ω B(E1; ω) dω∫ ωf

ωi

B(E1; ω) dω

. (6)

The values obtained are shown in panel (d) of Fig. 6. We
find, again, a good agreement between the results of the two
calculations.

In the DRPA results, for each isotope, we have selected two
states which are representative of the main characteristics of
the PDR and GDR regions. In Figs. 1–5 these states are iden-
tified by the dashed red vertical lines and the corresponding
excitation energies are indicated in Table I as ωPDR and ωGDR.

B. Photoabsorption cross sections

The photoabsorption cross sections for the four oxygen
isotopes we have selected are shown in Fig. 1. In 16O the
number of protons and neutrons is the same. When the number
of neutrons increases, also the strength below ωsep increases.
This is also evident in panel (c) of Fig. 6, where it can be seen
how the ratio R, calculated for the PDR region, increases with
the number of neutrons for the oxygen isotopes. In any case,
the maximum value of R is around 5% of the total strength.

The gray area in panel (b) of Fig. 1 indicates the region
empirically identified as PDR in Ref. [17]. We observe that the
value of ωPDR is compatible with these experimental findings.

We show in Fig. 2, the results for the calcium isotopes. Also
in this case, we observe that the presence of dipole strength
in the low energy region, below ωPDR, increases together with
the neutron number. This is evident by observing the behavior
of R in panel (c) of Fig. 6 which increases up to a maximum
value of about 5% for 60Ca.

The PDR region empirically identified in Ref. [18] in the
48Ca [see panel (b) of Fig. 2] is lying at energies smaller than
those predicted by our model. We remark, however, that we do
not observe much PDR strength in 48Ca. The corresponding
value of R in panel (c) of Fig. 6 is smaller than 1%. As we
mentioned in the Introduction, we have carried out the same
calculation with the D1S interaction, and obtained similar
results. This indicates that the discrepancy with the observed
PDR strength should not be attributed to some specific features
of the interaction. The most probable source of this discrepancy
is related to the intrinsic limitations of the RPA calculations,
specifically to the fact that only one-particle–one-hole (1p1h)
configurations are considered. In fact, the RPA results shown in
Ref. [18], are similar to ours, while some dipole strength
appears at low energies when configurations beyond 1p1h
were considered within the framework of the extended
theory of finite Fermi systems [41]. The relevance of effects
beyond RPA in the PDR region has been confirmed by the
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self-consistent second RPA results of Ref. [42], obtained with
a Skyrme interaction.

We show in Fig. 3 the results for the nickel isotopes. Also
in this case, we observe features analogous to those found in
the two previous figures. We should remark that 48Ni has a
neutron deficit, and 56Ni is the isotope with the same number
of protons and neutrons. In the latter isotope the PDR strength
is almost negligible.

The energy range of the empirical PDR in 68Ni [19] includes
the very sharp peak at 10.93 MeV, which identifies the pygmy
region. In the case of the nickel isotopes, the relation between
the appearance of a PDR and the increase of the neutron
number is not any more as straightforward as in the previous
cases as it is shown in panel (c) of Fig. 6. The shell structure
of each individual isotope plays a remarkable role.

We show in Fig. 4 the results for 90Zr and 208Pb. The nucleus
90Zr is the heaviest isotope where we could perform our CRPA
calculations without losing numerical accuracy. We observe
again a good agreement with the DRPA results. There is dipole
strength below ωsep carrying slightly less than 2% of the total
strength.

As already mentioned before, for the 208Pb nucleus we per-
formed only DRPA calculations. We have already commented
that in this nucleus the spreading width is more important
than the escape width, this latter one well described by the
CRPA theory. In analogy to what we found for the 48Ca
nucleus, the pygmy strength empirically identified [21] is lying
in a region where our calculations do not predict relevant dipole
strength. On the contrary, self-consistent RPA calculations
where Skyrme interactions are used find remarkable strength
in this region [30,43]. In 208Pb the excitations beyond RPA are
even more important than in 48Ca.

We conclude this general view of the RPA dipole strengths
by discussing the results obtained for the tin isotopes and
shown in Fig. 5. Our calculations have been done with DRPA
only. Also in this case, we observe an increase of the pygmy
strength with increasing neutron number. However, the relative
contribution of the PDR with respect to the global strength is
of the order of 1–2%, as can be seen in panel (c) of Fig. 6.
The empirical PDR region identified in the 132Sn nucleus [20]
includes some of the strength found in our DRPA calculations.

C. Collectivity of the resonances

One of the main questions concerning the structure of the
PDR is up to which extent it can be considered as a collective
excitation of the nucleus. The identification of the parameters
which can define the degree of collectivity is not an easy task.
In a RPA approach one should consider parameters related to
the number of the p-h pairs participating to the excitation, and
also to the degree of coherence of the excitation.

In DRPA, the X and Y amplitudes of a given excited state
at energy ω must verify the normalization relation

Nph∑
ph=1

[
X2

ph(ω) − Y 2
ph(ω)

] = 1 , (7)

where Nph indicates the total number of p-h excitations. To
estimate the collectivity of a DRPA excited state we used the

ratio [11]

D(ω) = N∗

Nph
, (8)

where N∗ is the number of p-h configurations such as[
X2

ph(ω) − Y 2
ph(ω)

]
� 1

Nph
. (9)

The two extreme values of D are 1 in the fully collective case,
and 1/Nph when the excitation is produced by a single p-h pair.

To study the relative contribution of protons and neutrons
to the excitation, we have also considered the index

N(ω) =
Nph∑

ph=1

δph,ν

[
X2

ph(ω) − Y 2
ph(ω)

]
, (10)

which indicates the contribution of the neutron p-h pairs to the
normalization given in Eq. (7).

These two indexes are related to the relevant number of
p-h pairs in the excitation of the resonance. In order to clarify
the degree of collectivity it is important to consider also the
coherence of the excitation, as pointed out in Ref. [44]. To this
purpose we have defined the index

C(ω) = B(E1; ω)

⎛
⎝ Nph∑

ph=1

|bph(E1; ω)|
⎞
⎠

−2

. (11)

The second term of the above expression calculates the value
of B(E1; ω) that would be obtained if all the contributions of
the various p-h pairs would add coherently. The maximum,
and global, coherence of the RPA p-h pairs provides C = 1.

In the present study, we have averaged the indexes D, N, and
C in both the pygmy and giant regions by using the expression:

J =

ωf∑
ωi

B(E1; ω) J(ω)

ωf∑
ωi

B(E1; ω)

, (12)

where, for each region, ωi and ωf have been defined in
Sec. III A and the values are given in Table I. In Fig. 7 we show
the indexes D, N, and C calculated for both the giant (open
circles) and pygmy (solid squares) regions. In the figure, the
lines joining the symbols have been drawn to guide the eyes.

The values of D depend on the dimension of the s.p.
configuration space, therefore a comparison among the dif-
ferent nuclei is not very meaningful. On the other hand, the
comparison of the results obtained in the same nucleus is
relevant. The important result is that, as we observe in panel (a)
of Fig. 7, the values of D for the GDR are always larger than
those obtained in the pygmy region.

To have an indication of the degree of collectivity we have
calculated the value of D(ω), Eq. (8), for the collective low-
lying 3− states of the 16O, 40Ca, 132Sn, and 208Pb nuclei. The
gray band gives the upper and lower bounds of these values.
While the values of D for the GDRs are always larger, or
compatible, with the 3− band, those of the PDRs are usually
smaller, with the exceptions of the 28O, 40Ca, 100Sn, and 208Pb,
where they are inside the band.
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FIG. 7. Collectivity indexes for the giant and pygmy regions. In
each panel, the open circles indicate the results related to the GDR
and the full squares those related to the PDR. We show in (a) the
values of D, in (b) those of C, and in (c) those of N. The gray band in
(a) represents the range of values of D obtained for the low-lying 3−

states of 16O, 40Ca, 132Sn, and 208Pb. The values of C we obtained for
these states are above 0.9. The lines have been drawn to guide the eyes.

We show in panel (b) of Fig. 7 the values we obtained for C.
For the 3− states mentioned above, the values of C are larger
than 0.9, well above than the values obtained for the GDR that,
on the other hand, are always larger than those related to the
PDR. The combined results of D and C indicate that the PDRs
are less collective than the GDRs.

We show in panel (c) of Fig. 7 the values of N for the
PDR and GDR regions. In the GDR case (see open circles),
we found the values of N between 0.2 and 0.8, with the only
exceptions of the 24O and 28O nuclei which have larger values.
This fact indicates that, in general, both protons and neutrons
contribute to the excitation of the GDR. Each nucleus has its
own peculiarities according to the closure of the neutron shells.
In general, in nuclei with neutrons in excess, the neutron contri-
bution is larger than that of the protons. The situation changes
for the PDR (see full squares). In this case, all the nuclei with
neutron excess, except 90Zr and 208Pb, show values of N close
to 1. We observe few cases where the N values for the GDR are
larger than for the PDR. This happens for the N = Z nuclei
16O, 40Ca, 56Ni, and 100Sn, and for the Z > N nucleus 48Ni.
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FIG. 8. (Color online) Transition densities, as given by Eq. (13),
for protons (dashed-dotted red lines) and neutrons, full black lines.
The black dotted curves show the contributions of the neutrons of
the core, while those of the neutrons in excess are shown by the
black dashed lines. The number in each panel indicates the excitation
energy ωPDR (left panels) or ωGDR (right panels), in MeV, of the
specific states studied.

D. Transition densities

The DRPA calculation allows a detailed study of the p-h
structure of each excited state. We have exploited this feature
by calculating the dipole transition density

ρ(E1; ω, r) =
Nph∑

ph=1

[Xph(ω) − Yph(ω)] ρph(E1; ω, r) , (13)

where ρph(E1; ω, r) is given in Eq. (5). The calculations have
been done for those states that were selected to characterize
the pygmy and giant regions. The excitation energies of these
states, ωPDR and ωGDR, are listed in Table I, and the related
photoabsorption cross sections are indicated by the dashed red
vertical lines in Figs. 1–5.

In Fig. 8 we present the dipole transition densities, multi-
plied by r2, for those nuclei with an empirical indication of
PDR. Similar results have been found for all the other nuclei
we have considered. In the figure, the dashed-dotted red and
solid black lines have been obtained by considering only the
contribution to the p-h sum in Eq. (13) of the protons and
neutrons, respectively. The neutron transition densities have
been further analyzed by separating the contribution of the
neutrons of the core, represented by the dotted black lines,
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and that of the neutrons in excess, indicated by the dashed
black lines. The numbers in each panel indicate, in MeV, the
excitation energy. The states in the left column belong to the
PDR region, those in the right column to the GDR one.

All the results we have obtained present common trends.
In the PDR states proton and neutron transition densities are
in phase, while they are out of phase in the GDR states. This
statement is clear in the lighter nuclei, 22O and 48Ca. In heavier
nuclei the number of the nodes of the two transition densities is
different, therefore the situation is more involved. For the PDR
it is evident, however, that at the nuclear surface both transition
densities are always in phase. The transition densities related to
the GDR do not show this kind of ambiguities. In these cases
proton and neutron transition densities are evidently always
out of phase.

There is another feature common to all the results pre-
sented in Fig. 8. In the transition densities of the GDR, the
contribution of the neutrons in excess is comparable to that of
the neutrons of the core. On the contrary, the PDR transition
densities are dominated by the neutrons in excess.

E. Role of the residual interaction

The results we presented so far indicate that the structures
of the pygmy and of the giant dipole excitations are different.
We studied whether the different structures imply different
sensitivities to the various terms of the effective nucleon-
nucleon force. In Fig. 9, for three nuclei where we have clearly
identified the presence of pygmy dipole strength, we compare
the CRPA results with those obtained by completely switching
off the residual interaction. We call continuum independent
particle model (CIPM) this last type of calculations.

As we have done in Figs. 1–5, we indicate the separation
between the PDR and GDR regions with a dotted vertical
line located at ωsep energies. In all the cases presented in
the figure the CIPM cross sections are larger than the CRPA
ones in the PDR region. We observe the largest difference
in the 22O nucleus, where the large and wide peak of the
CIPM result is due to the (f7/2)(1d5/2)−1 neutron transition. In
the RPA calculation the residual interaction moves the main
contribution of this p-h pair in the GDR region. The results for
the 52Ca and 68Ni nuclei are less extreme.

These results indicate a remarkable sensitivity of the dipole
strength to the presence of the residual interaction in the RPA
calculations. To identify the components of the interaction to
which the PDR is more sensitive, we adopted the strategy
to switch on and off the various terms of the interaction.
Unfortunately, when a finite range interaction is used, each
term of the interaction contributes to the other channels via
exchange terms. We simplify our study by constructing a zero
range interaction to be used by considering only direct RPA
matrix elements. In this case, we can completely switch off
and on the contributions of the individual terms of the force
and observe their effect on the RPA results. We constructed a
zero-range interaction of Landau-Migdal (LM) type:

vLM(r1 − r2) = [F + G σ (1) · σ (2) + F ′ τ (1) · τ (2)

+G′ σ (1) · σ (2)τ (1) · τ (2)]δ(r1 − r2), (14)
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FIG. 9. (Color online) Total photoabsorption cross sections ob-
tained with CRPA calculations (full blue lines) and by switching off
the residual interaction, CIPM (dashed red lines). The black dotted
vertical lines indicate the ωsep energies of Table I.

where F , F ′, G, and G′ are constants whose values have
been chosen to reproduce, approximately, the DRPA responses
obtained with the D1M Gogny interaction.

We discuss here only the results we have obtained for the
68Ni case. We show in Table II the centroid energies, ωc, for
the pygmy and giant regions obtained in DRPA calculations

TABLE II. Centroid energies, ωc, in MeV, of the PDR and GDR in
68Ni obtained with different types of calculations. The D1M results
indicate the values obtained in the HF+DRPA calculation with the
D1M interaction. The values listed in the LM row show the results
obtained by using, in DRPA calculations, the vLM interaction of
Eq. (14) with F = −100, F ′ = 400, G = 200, and G′ = 300 MeV
fm3. The last two rows show the values obtained by setting F = 0
and F ′ = 0.

PDR GDR

D1M 10.49 20.54
LM 10.69 19.65
LM (F = 0) 10.91 19.64
LM (F ′ = 0) 10.37 13.67
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with various interactions. As we can see, the values obtained
with the complete LM interaction reproduce rather well the
centroid energies found with the D1M force.

By setting to zero the G and G′ constants, we have verified
that the electric dipole response is essentially insensitive
to the spin dependent terms of the interaction. We present
in Table II the results obtained by setting to zero F and F ′.
The calculations done with F = 0 do not modify the centroid
energy of the GDR, and increase that of the PDR by only
the 2%. The calculations with F ′ = 0 lower the PDR centroid
energy by 3%, but reduce the centroid energy of the GDR
by 30%. We observed similar results in all the cases we have
investigated. The PDR has a small sensitivity to the scalar
and isospin channels. The contribution of the scalar term is
attractive, i.e., it lowers the values of ωc, while that of the
isospin channel is repulsive.

IV. CONCLUSIONS

We have investigated the pygmy and giant dipole excitations
in a set of 18 spherical nuclei in various mass regions.
We have conducted our study by doing self-consistent RPA
calculations with the finite range D1M Gogny interaction.
We carried out discrete and continuum RPA calculations,
the latter ones for 13 nuclei lighter than 100Sn. We have
verified the convergence of the discrete and continuum results.
For each nucleus considered we have separated the two
energy regions identifying the pygmy and the giant responses.
Centroid energies and sum rule exhaustion are conserved in
both discrete and continuum RPA calculations in each energy
region.

The main results of our investigation are summarized here
below.

(i) The dipole strength at energies around the nucleon
emission threshold increases with the neutron excess.

(ii) The PDR exhausts about 5% of the total energy
weighted sum rule, while the GDR about the 90%.

(iii) The values of the collectivity indexes D and C, Eqs. (8)
and (11), indicate that the GDRs are more collective
than the PDRs.

(iv) The PDR is dominated by the neutron p-h excitations,
while in the GDR the contributions of both proton and
neutron excitations are comparable.

(v) At the nuclear surface, proton and neutron transition
densities are in phase in the PDR region, while they are
out of phase in the GDR region.

(vi) The neutron transition densities of the PDR states are
dominated by the motion of the neutrons in excess. In
the GDR both the neutrons in excess and those of the
core contribute to the excitation.

(vii) The scalar and isospin terms of the effective interaction
have opposite effects on the PDR, the former is
attractive and the latter repulsive. In any case these
effects are much smaller than those produced by the
interaction on the GDR.

Our investigation indicates that, as it has been suggested
in Refs. [9,45], the emergence of the PDR is an effect more
related to the shell structure of the various isotopes than to a
real collective nuclear motion.

The limits of our investigation are related to the validity
of the intrinsic hypotheses of the theory we used, the RPA.
Specifically, we refer to the fact that in RPA the excited
states are described as linear combination of one particle-one
hole, and one hole-one particle, excitations. The role of
configurations beyond RPA on the PDR was investigated
in [42,46,47] where a redistribution of the strength was pointed
out as the main effect. This generate strength also at energies
lower than those indicated by RPA calculations [18]. A detailed
comparison with the future experimental data would require
the use of self-consistent theories beyond RPA [48]. In any
case, the main results of our investigation depend on the
global properties of the excitation, rather than on the detailed
distribution of the strength. For this reason, we believe that they
would not be changed by theories more elaborated than RPA.
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