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Spin-dipole strength functions of 4He with realistic nuclear forces
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Both isoscalar and isovector spin-dipole excitations of 4He are studied using realistic nuclear forces in the
complex scaling method. The ground state of 4He and discretized continuum states with J π = 0−, 1−, 2−

for A = 4 nuclei are described in explicitly correlated Gaussians reinforced with global vectors for angular
motion. Two- and three-body decay channels are specifically treated to take into account final state interactions.
The observed resonance energies and widths of the negative-parity levels are all in fair agreement with those
calculated from both the spin-dipole and electric-dipole strength functions as well as the energy eigenvalues of
the complex scaled Hamiltonian. Spin-dipole sum rules, both non-energy-weighted and energy-weighted, are
discussed in relation to tensor correlations in the ground state of 4He.
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I. INTRODUCTION

Spin-dipole (SD) excitations of nuclei have attracted much
attention because of their connection with, for example, tensor
correlation, neutron skin-thickness, and neutrino-nucleus scat-
tering. Especially the neutrino reaction involving light nuclei is
important to the nucleosynthesis at various stages. In the final
stage of a core collapse supernova, the nuclei are exposed to
the intense flux of neutrinos, and the neutrino-nucleus reaction
rate is determined by the nuclear responses to such operators
of the weak interaction as Gamow-Teller (GT), dipole, SD, and
so on [1,2]. The SD operator brings about the first-forbidden
transition of the weak interaction. In the case of N = Z nuclei,
the allowed transition probability due to the weak interaction
is small, and thus the first-forbidden transition can be a leading
order, making a primary contribution to the cross section.

Though the neutrino-nucleus reaction cross section can not
be measured to good accuracy in a laboratory because of its
too small reaction rate, information on the spin excitation of
nuclei can be obtained using a charge-exchange reaction. For
example, in the (p, n) or (d,2He) reaction at intermediate
energy, the cross section at 0◦ is a useful probe to extract
the GT strength [3] as well as the SD strength [4,5]. The
SD excitation can be obtained by measuring the cross section
at larger angles [6,7]. For a doubly closed shell nucleus
the SD contribution is fairly large even at 0◦ because of
the hindrance of the GT strength. Much effort has been
devoted to measure the SD transitions in light nuclei. Recently
the charge-exchange reaction of (7Li,7Beγ ) is undertaken to
measure the electric dipole (E1) and the SD resonances of 4He
and 6,7Li [8,9]. A more recent measurement of polarization
transfer observables with 16O( �p, �n)16F reaction [10] indicates
that valuable information on the SD excitations is attainable.

The SD transition is also interesting in comparison with
the E1 transition. The SD operator can change the spin wave
function of the ground state, whereas the E1 operator cannot.
Since the SD operator has three possible multipoles, the study
of its transition strength is expected to be more advantageous
to see the spin structure of nuclei than that by the E1 operator

[11]. That is, this multipole dependence of the SD operator
may be used to probe the role of noncentral forces, especially
the tensor force. The effect of the tensor force has in fact been
studied theoretically by looking at the SD excitations in the
shell model [12] and in the random phase approximation based
on Skyrme-Hartree-Fock [13,14] and relativistic Hartree-Fock
methods [15]. All these calculations employed the variety of
effective interactions and found that the residual tensor terms
added to the interaction play some multipole-dependent effects
on the SD strength functions.

The purpose of this paper is to study the SD excitations
of 4He using realistic nucleon-nucleon interactions. Only the
ground state of 4He is bound among A = 4 nucleon systems
and its basic property is now understood fairly well thanks
to several accurate methods for solving bound state problems
of few-body systems [16]. All the excited states of 4He are
in continuum and its negative-parity states below the 2n + 2p
threshold have J = 0, 1, 2 with T = 0 and 1. These resonances
as well as the continuum states may be reached by the SD
operators. It is therefore quite challenging to accurately predict
the SD strength function as a function of excitation energy
because we have to deal with the continuum states where
not only two but also three particles may play an important
contribution. On top of that we have to take into account
both short-range and tensor correlations due to the realistic
nuclear forces [17,18]. Very recently the present authors and
Arai have done an ab initio calculation for the photoabsorption
of 4He [19] using square integrable (L2) basis functions in
the framework of the complex scaling method (CSM) and
have reproduced most of experimental photoabsorption cross
section data up to the pion threshold. A theoretical approach
employed in the present paper is similar to that of the E1 case.

It is well known that the ground state of 4He contains the
D-state (or the total spin S = 2 state) probability by about
14%, which is of course due to the tensor force. As shown
in the calculation of bound-state approximation [20,21], the
tensor force plays a vital role in correctly reproducing the
spectrum of the excited states of 4He. If one uses such effective
interactions that contain no tensor components, there is no way
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to account for the level splittings of the negative-parity states of
4He. Therefore the use of realistic nuclear forces is absolutely
necessary for studying the SD strength in 4He. In the same
context we also study the charge-exchange SD transitions from
4He, leading to the negative-parity states of 4H or 4Li. We will
pay due attention to the effect of the tensor correlation on
the SD excitations. It should be noted that the SD excitation
is here described based on the accurate ground-state wave
function of 4He [20,21]. We also note that this study will serve
fundamental data on the neutrino-4He reaction cross section
in stars by integrating the SD strength functions weighted by
the neutrino energy distribution produced by the core collapse
star.

In Sec. II we present our method of evaluating the SD
strength functions, the CSM (Sec. II A) and the L2 basis
functions (Sec. II B) that are keys in the present calculation. We
show calculated results on the SD strength functions in Sec. III.
The SD strengths calculated from continuum-discretized states
are presented in Sec. III A. The SD strength functions of both
isovector and isoscalar types are displayed in Sec. III B. A
comparison of the peaks of the SD strength functions with
the resonance properties of 4He is made in Sec. III C. The SD
sum rules, both non-energy-weighted and energy-weighted,
are discussed in Sec. III D. Conclusions are drawn in Sec. IV. A
multipole decomposition of the SD non-energy-weighted sum
rule (NEWSR) is discussed in Appendix A, and a method of
calculating its relevant matrix element with our basis functions
is briefly explained in Appendix B. In Appendix C we derive
a formula that makes it possible to calculate the contribution
of the kinetic energy operator to the SD energy-weighted sum
rule (EWSR).

II. CALCULATION METHOD OF SPIN-DIPOLE
STRENGTH FUNCTION

A. Complex scaling method

The SD operator with the multipolarity λ and its projection
μ is defined by

Op
λμ =

N∑
i=1

[ρi × σ i]λμT
p
i (1)

with

ρi = r i − xN, (2)

where r i is ith nucleon coordinate, xN is the center-of-mass
coordinate of the N -nucleon system, and σ i is ith nucleon
spin. The center-of-mass motion is completely removed in the
present paper and only the intrinsic excitation is considered.
The square bracket [ρi × σ i]λμ denotes the angular momen-
tum coupling of the two vectors or more generally the tensor
product of spherical tensors to that operator specified by λ μ.
The value of λ can take 0, 1, and 2. The superscript p of Op

λμ or
T

p
i distinguishes different types of isospin operators, isoscalar

(IS), isovector (IV0), and charge-exchange (IV+ and IV−),
that is,

T IS
i = 1, T IV0

i = τz(i), T IV±
i = t±(i). (3)

In the inelastic neutrino-nucleus reaction, the neutral current
induces the IV0 type operator as well as the IS one. The
isospin operator t+ = tx + ity (t− = tx − ity) converts a pro-
ton (neutron) to a neutron (proton), which corresponds to the
charge-exchange process X(n, p)Y (X(p, n)Y ).

The strength function of an initial state �0 for the SD
operator is defined as

S(p, λ,E) = Sf μ|〈�f |Op
λμ|�0〉|2δ(Ef − E0 − E)

= − 1

π
Im
∑

μ

〈�0|Op†
λμ

1

E + E0 − H + iε
Op

λμ|�0〉,

(4)

where Sf μ represents a summation over μ and all the final
states �f . Both the initial and final states are the eigenfunctions
of a Hamiltonian H with the energies E0 and Ef . They
are normalized as usual: 〈�ν ′ |�ν〉 = δν ′ν and δ(Eν ′ − Eν)
for bound and unbound states, respectively. In the second
expression of Eq. (4) the summation over the final states with
the energy conservation of δ(Ef − E0 − E) is converted to the
imaginary part of a resolvent R

R = 1

E + E0 − H + iε
. (5)

In the present paper we use the CSM to obtain the strength
function. The CSM is widely used not only in atomic and
molecular physics [22,23] but in nuclear physics [24] as well.
Very recently it has successfully been applied to calculate
the photoabsorption cross section of 4He with a realistic
Hamiltonian [19]. The CSM allows us to obtain the strength
function using only L2 basis functions exclusively, making it
possible to avoid an explicit construction of the continuum
state. The key of the CSM is to rotate both the coordinate and
the momentum by a scaling angle θ

rj → rj e
iθ , pj → pj e

−iθ , (6)

which makes the continuum state damp at large distances
within a certain range of θ . The strength function S(p, λ,E)
reduces to

S(p, λ,E)

= − 1

π
Im
∑

μ

〈�0|Op†
λμU−1(θ )R(θ )U (θ )Op

λμ|�0〉, (7)

where U (θ ) is the scaling operator that makes the transforma-
tion (6) and R(θ ) is the complex scaled resolvent

R(θ ) = U (θ )RU−1(θ ) = 1

E + E0 − H (θ ) + iε
(8)

with the rotated Hamiltonian

H (θ ) = U (θ )HU−1(θ ). (9)

Provided the eigenfunctions of H (θ ) are made to damp at large
distances, they can be expanded with a set ofL2 basis functions
�i(x)

�ν(θ ) =
∑

i

Cν
i (θ )�i(x). (10)
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The coefficients Cν
i (θ ) together with the complex eigenvalue

Eν(θ ) are determined by diagonalizing H (θ ):

H (θ )�ν(θ ) = Eν(θ )�ν(θ ). (11)

The strength function S(p, λ,E) is then calculated from the
following expression:

S(p, λ,E) = − 1

π

∑
ν,μ

Im
D̃p,ν

λμ (θ )Dp,ν
λμ (θ )

E + E0 − Eν(θ ) + iε
, (12)

where

Dp,ν
λμ (θ ) = 〈(�ν(θ ))∗|Op

λμ(θ )|U (θ )�0〉,
(13)

D̃p,ν
λμ (θ ) = 〈(U (θ )�0)∗|Õp

λμ(θ )|�ν(θ )〉
with

Op
λμ(θ ) = Op

λμeiθ , Õp
λμ(θ ) = Op†

λμeiθ . (14)

Note that U (θ )�0 is here taken to be the solution of Eq. (11)
corresponding to the initial state.

If a sharp resonance exists, the angle θ has to be rotated
to cover its resonance pole on the complex energy plane [23,
24]. Practically the scaling angle θ is chosen by examining
the stability of the strength function with respect to θ . See
Refs. [19,21] for some examples on the θ dependence.

B. Correlated Gaussians and global vectors

1. Hamiltonian

The Hamiltonian H we use contains two- and three-nucleon
interactions

H =
N∑

i=1

Ti − Tc.m. +
∑
i<j

vij +
∑

i<j<k

vijk. (15)

In the kinetic energy Ti the proton-neutron mass difference
is ignored. Two different two-nucleon interactions, AV8′ [25]
and G3RS [26] potentials, are employed to examine the extent
to which the strength function is sensitive to the D-state
probability of 4He. The L2 and (L · S)2 terms in the G3RS
potential are ignored. The AV8′ potential is more repulsive at
short distances and has a stronger tensor component than the
G3RS potential. As the three-body interaction (3NF) we adopt
the spin-isospin independent phenomenological potential [27]
that is adjusted to reproduce both the inelastic electron
scattering form factor to the first excited state of 4He as well as
the binding energies of 3,4He and 3H. The Coulomb potential
is included, but the isospin is treated as a conserved quantum
number. The nucleon mass mN and the charge constant e
used in what follows are h̄2/mN = 41.47106 MeV fm2 and
e2 = 1.440 MeV fm.

2. Basis functions for bound states

We solve the four-body Schrödinger equation using a
variational method. A choice of the variational trial functions
is essential to determine the accuracy of the calculation. A
bound-state solution with spin-parity Jπ of N -nucleon system

may be expressed in terms of a linear combination of the LS
coupled basis functions

�π
(LS)JMJ T MT

= A[φπ
L × χS

]
JMJ

ηT MT
, (16)

where A is the antisymmetrizer, and the spin function χS is
given in a successive coupling as

χS12,S123,...,SMS

= [ . . . [[χ 1
2
(1) × χ 1

2
(2)
]
S12

× χ 1
2
(3)
]
S123

. . .
]
SMS

. (17)

Note that the above spin function forms a complete set
provided all possible intermediate spins (S12, S123, . . . ) are
included for a given S. The isospin function ηT MT

is given in
exactly the same way as the spin function.

The spatial part φπ
L should be flexible enough to cope

with the strong tensor force and short-range repulsion.
The tensor force mixes the S and D components in the wave
function and the short-range repulsion makes the amplitude
of the two-nucleon relative motion function vanishingly small
at short distances. Many examples show that the correlated
Gaussian (CG) basis [28,29] is flexible enough to meet these
requirements [16,20,30]. See a recent review [31] for various
powerful applications of the CG. Let an (N − 1)-dimensional
column vector or an (N − 1) × 1 matrix x denote a set of
relative coordinates whose ith element is a three-dimensional
vector xi . A set of the Jacobi coordinates is most often
employed for x but other sets of relative coordinates may
be used as well. The spatial part φπ

L , given in the CG with two
global vectors (GV), takes a form [32–35]

F(L1L2)LML
(u1, u2, A, x)

= exp
(− 1

2 x̃Ax
)[YL1 (ũ1x) × YL2 (ũ2x)

]
LML

(18)

with

Y�m(v) = v�Y�m(v̂), (19)

where A is an (N − 1) × (N − 1) positive-definite, symmetric
matrix and x̃Ax is a short-hand notation for

∑N−1
i,j=1 Aij xi · xj .

The tilde stands for the transpose of a matrix. Parameters u1

and u2 are (N − 1)-dimensional column vectors that define the
GVs, ũ1x(=∑N−1

i=1 u1i xi) and ũ2x, and these characterize the
angular motion of the system.

The CG-GV basis (18) apparently describes correlated
motion among the particles through the off-diagonal elements
of A and the rotational motion of the system is conveniently
described by different sets of (L1, L2) carried by the two GVs.
Most noticeable among several advantages of the CG-GV basis
functions are that the functional form of Eq. (18) remains
unchanged under an arbitrary linear transformation of the
coordinate x, that the matrix elements for most operators can
be evaluated analytically, and that the formulation can readily
be extended to systems with larger N . Useful formulas for
evaluating matrix elements with the CG-GV basis are collected
in Appendices of Refs. [34,35].

All possible L, S sets are adopted to specify the basis
functions for a given J . The value of S can be 0, 1, and 2
for the four-nucleon system, and all possible L values that
make J with S are included. For a given Lπ we choose the
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simplest combination of (L1, L2): (L1 = L, L2 = 0) for a
natural parity state with π = (−1)L and (L1 = L, L2 = 1) for
an unnatural parity state with π = (−1)L+1, respectively. An
exception is that no basis function with Lπ = 0− is included
in our calculation because that special case needs at least three
GVs [35,36]. It should be noted, however, that the Lπ = 0−
configuration may be excited by the E1 and SD transitions
only through the (L = S = 1) component of the ground state
of 4He. Since the probability of finding that component is quite
small (less than 0.4%) [16,34], practically we do not miss any
SD strength by the neglect of the Lπ = 0− configuration. This
is really the case in the E1 strength function [19] and in the
SD case as well as shown in Sec. III D.

The parameters, A, u1, and u2, are determined by the
stochastic variational method (SVM) [32,33,37]. The calcu-
lated properties of 3H, 3He, and 4He agree with experimental
three- and four-nucleon data very well [21].

3. Square-integrable basis functions for spin-dipole excitations

We construct the basis functions for the final states with
J−T that are excited by the SD operator Op

λμ of λ = J .
The accuracy of the CSM calculation depends on how fully
the basis functions are prepared. In Ref. [19], the present

authors and Arai described a way to construct the four-body
continuum-discretized states with JπT = 1−1. The guidelines
of the construction were to take into account both sum rule and
final state interactions between the particles in the continuum.
The total photoabsorption cross section is calculated via the E1
strength function and it succeeds to reproduce the measured
cross section up to the pion threshold. Here we take the same
route as that of Ref. [19] with a possible modification due to
the spin flip of the SD operator.

We define a single-particle (sp) basis, which describes a
single-particle like excitation from the correlated ground state
by the SD operator. This class of basis functions is expected
to play a vital role in accounting for all the SD strength. The
basis is constructed as

�
sp
f = A[[φ+

Li
(i) × χS ′

]
J ′ × Y1(ρ1)

]
λμ

ηT MT
, (20)

where φ+
Li

(i) is the space part of the ith basis function of a
truncated ground-state wave function, �+

0000, of 4He. The wave
function �+

0000 consists of [φ+
0 × χ0]00η00 and [φ+

2 × χ2]00η00,
with any configurations of [φ+

1 × χ1]00η00 being omitted,
which leads to 1.53 MeV loss for the ground-state energy of
4He. See Ref. [19] for the detail. As for the spin part, differently
from the E1 case [19] we take into account the complete set
for a given S ′, which, depending on the total spin Si of the
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FIG. 1. (Color online) Discretized isovector SD reduced transition probabilities of IV0 type for 4He as a function of excitation energy. The
J πT values of the excited states are 0−1, 1−1, and 2−1, respectively. The transition probabilities are displayed, arranged vertically for each
J πT case, depending on the configurations included in the calculation. See text for details. The AV8′ + 3NF interaction is used.
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ith basis function of �+
0000, is chosen as S ′ = 1 for Si = 0 and

S ′ = 1 and 2 for Si = 2, respectively.
The 3N + N two-body and d + p + n three-body disinte-

gration channels are defined in the same manner as in Ref. [19].
The calculations are performed not only in each basis set

of sp, 3N + N and d + p + n but also in the ‘Full’ basis that
includes all of them. The number of basis functions in the Full
model with the AV8′ + 3NF potential is 2980, 6400, 6540,
4380, 8800, 9540 for JπT = 0−0, 1−0, 2−0, 0−1, 1−1, 2−1,
respectively.

III. RESULTS AND DISCUSSIONS

A. Discretized spin-dipole strength

First we show the continuum-discretized SD strength.
For this purpose the Hamiltonian is diagonalized in the
basis states that are defined in Sec. II B3. This calculation
corresponds to the CSM solution with θ = 0◦. Figure 1
displays the reduced transition probability for the IV SD
operator (p = IV0)

B(p, J−T , ν) =
∑
Mμ

∣∣〈�J−MT
ν (θ = 0◦)

∣∣Op
λμ

∣∣�0
〉∣∣2, (21)

as a function of the discretized energy Eν(θ = 0◦), where ν is
the label to distinguish the discretized energy. Here λ is equal
to J and T = 1.

The results of calculation are similar to the E1 case of
Ref. [19]. In the calculation with the sp configuration only,
the strength is concentrated at one state that appears at about
25 MeV for all the cases with JπT = 0−1, 1−1, 2−1. The
state may correspond to the observed level at 23.33 MeV
for JπT = 2−1 and 25.28 MeV for JπT = 0−1, respectively
[38]. For the JπT = 1−1 case, two levels with very broad
widths are known at 23.64 and 25.95 MeV. Since the energy
of the prominent SD transition strength is lower than that
obtained for the E1 transition strength [19], the 23.64 MeV
level probably has SD character, whereas the 25.95 MeV level
is excited by the E1 operator.

Similarly to the E1 transition strength [19], two or three
peaks are obtained with the 3N + N configuration and
relatively small strength is spread broadly above 30 MeV.
The prominent peaks below 30 MeV shown in the 3N + N
calculation continue to remain in the Full basis calculation,
which again confirms the importance of the 3N + N con-
figuration to describe the low-energy SD strengths as in
the E1 strength. We also calculate the SD strength with
the G3RS + 3NF interaction. Both distributions look similar,
indicating the weak dependence of the SD strength on the
realistic interactions employed.

The so-called softening and hardening of the SD excitation
is discussed in Refs. [13,14], where the residual tensor force
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FIG. 2. (Color online) The same as Fig. 1 but for the isoscalar SD transitions. The J πT values of the excited states are 0−0, 1−0, and 2−0,
respectively.
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is turned on or off and the energy and the strength of
the SD excitation are compared each other. We think that
the conclusion drawn by such comparisons is not always true
because switching off the important piece of the nucleon-
nucleon interaction may cause a significant change in the
continuum structure that can be reached by the SD operator.
In fact, we can not turn off the tensor force. If the tensor force
were switched off, the ground state of 4He would not be bound
and moreover the spectrum of the negative-parity states would
be far from the observed one [20,21]. As will be discussed
later, we find no quenching of the SD strength but confirm that
our SD strength calculated with the realistic nuclear forces
satisfies the NEWSR perfectly.

Figure 2 displays the reduced transition probability for the
IS SD operator (p = IS). The gross structure of the strength is
similar to the IV SD case. In the sp configuration calculation,
strongly concentrated peaks appear at the energies not far from
the observed levels [38]: 21.01, 21.84, 24.25 MeV for JπT =
0−0, 2−0, 1−0, respectively. The importance of the 3N + N
configurations is indicated by those peaks that appear in the
3N + N configuration calculation and continue to exist in the
Full calculation. The Full calculation predicts one prominent
peak at 20.85 MeV for JπT = 0−0, which may correspond to
the 21.01 MeV level with the small decay width of 0.84 MeV
[38]. In the case of JπT = 2−0, the two prominent strengths
are obtained at the energies close to each other, suggesting
a relatively small decay width. The relationship between the
strength functions and resonance properties will be discussed
in Sec. III C.

Three negative-parity states of 4He with J = 0, 1, 2 and
T = 0 are observed slightly above the 2n + 2p threshold of
28.3 MeV [38]. These states may be excited by the IS SD
operator. In fact, a comparison of the IS and IV SD strengths
obtained in the d + p + n configurations clearly suggests that

more strength is found in the IS case around the excitation
energy of 30 MeV. Therefore some discretized states at around
30 MeV shown in Fig. 2 may be precursors of those observed
states. Since the three observed states almost entirely decay by
emitting deuterons, it is likely that they have d + d structure
with a P -wave relative motion. The P -wave relative motion
is possible only when the channel spin of two ds is coupled to
1 [35]. Thus we have the possibility of Jπ = 0−, 1−, and 2− in
accordance with the observation. Our basis functions partially
include the d + d type configurations, but an explicit inclusion
of them may be desirable to discuss this issue in more detail.

It is interesting to recall the enhanced SD excitations of the
first excited state JπT = 0+

2 0 that is interpreted as having
a well developed 3N + N (3H + p and 3He + n) structure
[20,27]. It is shown in Ref. [20] that some negative-parity
states can also be understood as parity inverted partners
of the first excited state and the SD transition strengths
from that state are quite enhanced and mostly exhausted
by only those negative-parity states. Figure 3 exhibits the
SD reduced transition probabilities from the 0+

2 0 state as
a function of excitation energy. The transition probabilities
of both IS and IV0 are very much enhanced, approximately
20-30 times larger than those from the ground state and each
of the strengths is concentrated at the respective peak. The
excitation energies of the peaks are 20.85, 21.37, 21.30 MeV
for JπT = 0−0, 1−0, 2−0 and 21.10, 21.32, 21.33 MeV for
JπT = 0−1, 1−1, 2−1, respectively. The energy required for
the 0+

2 0 state to reach the peak position is only 0.5–1.0 MeV.
The neutrino reaction rate would be greatly enhanced if there
were such a situation in which a plenty of the first excited
states of 4He existed in the core collapse star. The situation
may, however, be unlikely as the life time of that state is short
and its excitation energy (20.21 MeV) is considerably high
compared to the typical temperature of the collapsing star [39].
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FIG. 3. (Color online) Discretized SD reduced transition probabilities of IS (upper panels) and IV0 (lower panels) types from the first
excited 0+0 state of 4He as a function of excitation energy. The calculation is done in the Full basis using the AV8′ + 3NF interaction. The
calculated excitation energy of the 0+0 state is 20.33 MeV from the ground state of 4He [21].
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B. Spin-dipole strength functions

In what follows we will present results obtained in the
Full basis calculation with the AV8′ + 3NF potential using the
scaling angle θ = 17◦ unless otherwise mentioned. We count
the excitation energy of the continuum state from the calculated
ground-state energy of 4He that is listed in Table I of Ref. [21].
Preliminary results on the GT and SD strength functions were
reported in Refs. [21,40].

Figure 4 plots the SD strength functions of IV0 type. For the
sake of comparison, the E1 strength function is also plotted by
choosing the E1 operator as M1μ =∑N

i=1 ρiμ
1
2 (1 − τz(i)).

As seen in the figure, the three SD strength functions show
narrower widths at their peaks than the E1 strength function.
Moreover their peak positions including the E1 case well
correspond to the observed excitation energies of the four
T = 1 negative-parity states of 4He [38]. We will discuss this
point in Sec. III C.

Figure 5 displays the charge-exchange SD strength func-
tions of IV± type as well as the charge-exchange E1 strength
that is excited by the operator

MIV±
1μ =

N∑
i=1

ρiμT IV±
i . (22)

Since the mass difference between protons and neutrons is
ignored in the present calculation, we need to shift the calcu-
lated energies of 4H or 4Li by ±(mn − mp)c2. This adjustment
makes it possible to correctly reproduce the thresholds of
3H + n for 4H and 3He + p for 4Li, respectively. Similarly
to the IV0 case, the excitation energies of the charge-exchange
SD peaks correspond to the observed levels of 4H and 4Li, and
their widths are narrow compared to the charge-exchange E1
strength function.

We display in Fig. 6 the IS SD strength functions that reflect
the JπT = λ−0 continuum states of 4He. These IS SD strength
functions, especially for the 0− and 2− cases, show much
narrower distribution than the IV strength functions. These
peak energies again appear to correspond to the observed T =
0 negative-parity levels in 4He. A close comparison between
Figs. 6 and 4 indicates that the 0− case is noteworthy compared
to the 1− and 2− cases in that the energy difference in the peak
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positions of the same J− becomes much larger. As discussed
in detail in Refs. [20,21], the reason for this is understood by
analyzing the role played by the tensor force among others. In
the previous subsection, we mention the three negative-parity
states with T = 0 that are observed slightly above the four-
nucleon threshold and are expected to have d + d structure.
Though no concentrated strength suggesting such states is seen
in Fig. 6, the falloff of the IS SD strength around 28–30 MeV
looks flatter than that of the IV0 case especially in the Jπ = 1−
state. This indicates that some IS SD strength may exist in
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FIG. 6. (Color online) The same as Fig. 4 but for the isoscalar SD
strength functions.
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FIG. 7. (Color online) Summed isovector SD strength functions
for the process from the ground state of 4He to 4H as a function of
excitation energy. Relevant experimental data taken from Ref. [8] are
plotted for reference. See text for the details.

that energy region. To be more conclusive, however, a study
including d + d configurations explicitly is desirable.

To the best of our knowledge, there are no data that can
directly be compared to the theoretical strength functions
presented above. An only exception is the measurement of
the charge-exchange reaction 4He(7Li,7Beγ ) [8,9], from which
the spin-nonflip (�S = 0) and spin-flip (�S = 1) components
are separated by measuring the 0.43 MeV γ ray of 7Be in
coincidence with the scattered 7Be. The former cross section
is ascribed to the E1 transition, while the latter to the SD
transition. The shape of the deduced photoabsorption cross
section fairly well agrees with other direct measurements using
photons (see Fig. 9 of Ref. [19]), but the absolute magnitude
is not determined definitively. The SD spectra corresponding
to the excitation of the 4H continuum from the ground state of
4He is extracted from the spin-flip cross section in a similar
way. Figure 7 compares the SD strength functions of type
IV+ with the ‘experiment’. In this figure the theoretical curve
represents just a sum of the strength functions with λ = 0, 1, 2,
and the experimental distribution is normalized in such a way
that both strength functions give the same strength when
integrated in the energy region from E = 18 to 44 MeV
where the experimental data are available. The comparison
between theory and experiment in Fig. 7 should thus be taken

qualitative as several assumptions are made in the analysis of
the experiment. The peak observed at 24 MeV agrees with the
calculated one [see also Fig. 5(a)] and certainly it corresponds
to the JπT = 2−1 resonance of 4H. We see some difference
in the shape of the strength function. Two conceivable reasons
for it include firstly that the spin-nonflip process can in
fact contribute to the SD transition as the ground state of
4He contains S = 2 components and secondly that some
higher multipole effects may contribute to the cross section
particularly at high energy [10]. The first reason is easily
understood if we consider the transition from (L = S = 2)
to (L = 1, 2, 3, S = 2). Further experimental information is
needed to make a direct comparison with the calculation.

C. Resonance parameters

As noted in Sec. III B, all the SD and E1 strength functions
exhibit some common feature: They all have one peak,
though the width of the strength distribution depends on the
multipolarity λ and the isospin T . It looks quite reasonable
to identify the peak as a resonance. The resonance energy
may be identified with the energy where the peak is located.
We also estimate the decay width of the resonance by the
difference of two excitation energies at which the strength
becomes half of the maximum strength at the peak, which
agrees with a correct width if the strength function shows the
Lorentz distribution. Actually the distribution is not Lorentzian
in general as we see below, but this crude estimate should be
useful as a guide. Table I lists the resonance energies and
widths of the negative-parity states of 4He, 4H, and 4Li that
are determined in this way. The agreement between theory
and experiment is very satisfactory. The average deviation of
the calculated resonance energies from experiment is less than
0.4 MeV for 4He despite the fact that most of their widths are
larger than 5 MeV. The estimated width is also in reasonable
agreement with experiment.

A four-nucleon scattering calculation that couples 3H+p,
3He+n, and d + d channels as well as many pseudo states
is performed in Ref. [35] using the same Hamiltonian as
the present study. Though the calculated phase shifts for
the JπT = 0−0 state show a clear resonance pattern at the
energy consistent with the 0−0 level of 4He, the phase shifts
of the 2−0 and 1−0 states do not rise high enough to enable

TABLE I. Resonance energies ER and widths �, given in MeV, of negative-parity levels of A = 4 nuclei. Calculated values are extracted
from the complex eigenvalues E(θ ), and the SD and E1 strength functions S(E). Experimental data are taken from Ref. [38].

4H 4He 4Li

ER � ER � ER �

J πT E(θ ) S(E) Exp. E(θ ) S(E) Exp. E(θ ) S(E) Exp. E(θ ) S(E) Exp. E(θ ) S(E) Exp. E(θ ) S(E) Exp.

0−0 – – – – – – 20.42 20.54 21.01 0.96 1.06 0.84 – – – – – –
2−0 – – – – – – 21.67 22.03 21.84 2.12 3.10 2.01 – – – – – –
2−1 24.45 23.82 24.30 5.00 5.29 5.42 23.63 23.11 23.33 4.99 5.58 5.01 23.08 22.99 23.36 5.02 6.53 6.03
1−

1 1 24.68 24.04 24.61 5.32 6.82 6.73 23.86 23.34 23.64 5.31 7.17 6.20 23.28 23.18 23.68 5.36 8.06 7.35
1−0 – – – – – – 24.32 24.44 24.25 5.40 9.57 6.10 – – – – – –
0−1 26.51 25.46 26.38 7.60 9.72 8.92 25.67 24.71 25.28 7.60 9.98 7.97 25.12 24.67 25.44 7.69 11.03 9.35
1−

2 1 25.93 27.13 12.80 12.99 25.36 25.95 13.24 12.66 25.15 26.21 13.92 13.51
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one to extract the resonance parameter. A more sophisticated
analysis is needed to reveal resonances using, for example,
the time-delay matrix [41,42]. In this context we may say that
extracting the resonance parameter from the strength function
is robust and can be applied to any case where even no sharp
resonance is expected.

Since the resonance parameter obtained above is not
directly determined from the complex eigenvalue Eν(θ ) of
the rotated Hamiltonian, one may argue that the agreement
is fortuitous. Of course it would be very hard to predict the
resonance parameter correctly if a chosen operator is such
that has only tiny strength to that resonance. It is therefore
interesting and important to examine the complex eigenvalues
that constitute the basis of the strength function. To this end
we rewrite the strength function (12) as

S(p, λ,E) = 1

π

∑
ν

1
2γν(θ )αpλ

ν (θ ) − (E − εν(θ ))βpλ
ν (θ )

(E − εν(θ ))2 + 1
4 (γν(θ ))2

,

(23)

where εν(θ ), γν(θ ), αν(θ ), and βν(θ ) are defined by

Eν(θ ) = εν(θ ) + E0 − i

2
γν(θ ),

(24)∑
μ

D̃p,ν
λμ (θ )Dp,ν

λμ (θ ) = αpλ
ν (θ ) + iβpλ

ν (θ ).

The first term of the numerator of Eq. (23) gives the
Lorentz distribution, while the second term contributes to
the background distribution. In principle a resonance may
be identified as such Eν(θ ) that is stationary with respect
to the variation of θ [23]. Then the strength function (23)
has a θ -independent peak around such a stationary energy εν .
Resonance parameters of electron and positron complexes are
in fact determined very well by examining the θ -trajectory of
Eν(θ ) [43,44]. This is possible because H (θ ) for the atomic
case has simple structure, H (θ ) = T e−2iθ + V e−iθ , where T
and V are the kinetic energy and the Coulomb potential energy.

In the nuclear case, however, H (θ ) is by far complicated and
a large-angle rotation of the nuclear potential may lead to
a very long-ranged potential, which, together with inherent
difficulties in solutions with the nuclear Hamiltonian, makes
an accurate solution of Eq. (11) extremely hard. Therefore,
we first look for such eigenvalues that deviate from the
rotating-continuum line as possible candidates for a resonance
and choose the one that is closest to the peak energy of the
strength function.

For the JπT = 0−0 and 2−0 states, which have a relatively
small decay width, we find only one candidate that may
correspond to the observed resonance but other JπT states
have two or three candidates below 4N threshold. However,
no candidate is found for the 1−

2 1 state that is excited by the
E1 operator. The resonance energies and widths determined
in this way are also listed in Table I. The resonance energy
obtained from the complex energy eigenvalue is in excellent
agreement with experiment, even better than that determined
by the strength function. The width is also satisfactorily
reproduced. Two approaches to determining the resonance
parameters produce successful results, and they are powerful,
robust, and complementary.

Figure 8 compares with experiment the resonance energies
of the negative-parity states of 4He, 4H, and 4Li that are
determined from the complex energy eigenvalues and the
strength functions. It is striking that the theory reproduces
the experimental spectrum in correct order and moreover
closely to the observed excitation energy. The dotted line
in the figure denotes the energy obtained with a kind of the
real stabilization method [45], that is by diagonalizing the
Hamiltonian in the CG-GV basis functions [21]. Here the SVM
search is performed to optimize the parameters of the basis
functions by confining the four nucleons in some configuration
space. It should be noted, however, that such calculation faces
difficulty when dealing with a resonance with a very broad
width such as the 1−

2 level of 4He, and therefore the resonance
energy obtained in that calculation should be taken only
approximate.
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TABLE II. Non-energy-weighted sum rules of the SD strength functions, in units of fm2, calculated from different models for the
nucleon-nucleon potentials. The sum rules calculated by Eqs. (25) and (27) are labeled m0(p, λ) and SR, respectively.

AV8′ + 3NF G3RS + 3NF MN

IS IV0 IV± IS IV0 IV± IS IV0 IV±
λ m0(p, λ) SR m0(p, λ) SR m0(p, λ) SR m0(p, λ) SR m0(p, λ) SR m0(p, λ) SR SR SR SR

0 2.71 2.71 4.59 4.59 2.30 2.30 2.83 2.84 4.74 4.74 2.37 2.37 3.90 3.49 1.74
1 12.16 12.17 9.35 9.36 4.68 4.68 12.64 12.65 9.72 9.73 4.86 4.86 11.71 10.46 5.23
2 17.98 18.02 18.36 18.38 9.18 9.19 18.77 18.79 19.02 19.04 9.51 9.52 19.51 17.43 8.71

One may expect that the resonances of 4Li can easily be
predicted by a calculation of 3He+p scattering. It is not that
simple, however, because the phase shifts calculated for P
wave 3He+p scattering do not rise high enough as shown in
Ref. [46].

D. Spin-dipole sum rules

Sum rules are related to the energy moment of the
strength functions in different order and can be expressed with
the ground-state expectation values of appropriate operators
from which we can obtain interesting information on the
electroweak properties of nuclei [47,48].

Throughout Sec. III D and Appendices A and C we denote
the numbers of nucleons, neutrons, and protons by A, N , and
Z, respectively. Accordingly the center-of-mass coordinate is
xA instead of xN . In the other sections N is used to denote the
number of nucleons because the symbol A is reserved to stand
for the matrix that appears in Eq. (18).

1. Non-energy-weighted sum rule

Here we discuss the NEWSR for the SD operator

m0(p, λ) =
∫ ∞

0
S(p, λ,E)dE. (25)

The use of the closure relation enables us to express the
NEWSR to the expectation value of the operator

∑
μ Op†

λμOp
λμ

with respect to the ground state �0. It is convenient to express
that operator as a scalar product of the space-space and
spin-spin tensors

Qp
(κ)0 =

A∑
i,j=1

([ρi × ρj ]κ · [σ i × σ j ]κ )T p
i

†
T

p
j , (26)

where the rank κ can be 0, 1, and 2, and the symbol (Tκ ·
Vκ ) = (−1)κ

√
2κ + 1[Tκ × Vκ ]00 denotes a scalar product

of spherical tensors, Tκ and Vκ . As shown in Eq. (A1) of
Appendix A, the NEWSR (25) is equivalently expressed, with
use of Uλκ of Eqs. (A3) and (A4), as

m0(p, λ) =
2∑

κ=0

Uλκ

〈Qp
(κ)0

〉
. (27)

The expectation value, 〈Qp
(κ)0〉 = 〈�0|Qp

(κ)0|�0〉, can be evalu-
ated using the basis functions (16), (17), and (18), as explained
in Appendix B.

In order to check the extent to which the NEWSR is
satisfied, we compare m0(p, λ) that is calculated separately
with Eq. (25) or with Eq. (27). Table II lists the calculated
NEWSR for the SD strength functions. We also list the values
of 〈Qp

(κ)0〉 in Table III for the sake of discussions below. As seen
in Table II, the two different ways of calculating the sum rules
give virtually the same result for both cases of AV8′ + 3NF
and G3RS + 3NF interactions, which is never trivial because
we use the fully correlated ground-state wave function for
4He. The perfect agreement confirms that the basis functions
prepared for the description of the SD excitation are sufficient
enough to account for all the strength in the continuum. The
NEWSR calculated with Eq. (27) for the Minnesota (MN)
potential [49] is also listed in Table II. A comparison of the
central MN force case with the realistic potentials will be
useful to know how much the sum rule is affected by the tensor
force.

Among the three expectation values of 〈Qp
(κ)0〉 in Eq. (27),

the κ = 0 term gives a dominant contribution to the NEWSR.
See Table III. This is obviously because the major component
of the ground state of 4He is S = 0 and it has a nonvan-
ishing expectation value only for Qp

(0)0. In this limiting case
m0(p, λ) is proportional to Uλ0. Therefore the λ dependence
of the NEWSR turns out to be 1 : 3 : 5 for λ = 0, 1, 2,
independently of p. This rule is confirmed in the MN case
of Table II. The deviation from this ratio is due to the
contributions of other Qp

(κ)0 terms, especially the κ = 2 term.
TheQp

(2)0 term contributes to the NEWSR through the coupling
matrix element between the S = 0 and S = 2 components of
the ground state of 4He. Since the admixture of the S = 2
component is primarily determined by the tensor force, the
deviation reflects the tensor correlations in the ground state.
Neglecting the minor contribution of Qp

(1)0, Eq. (27) suggests
that m0(p, λ) is very well approximated by

m0(p, 0) = 1

3

(〈Qp
(0)0

〉− 〈Qp
(1)0

〉+ 〈Qp
(2)0

〉)
,

m0(p, 1) = m0(p, 0) + 1

2

(〈Qp
(1)0

〉− 3
〈Qp

(2)0

〉)
≈ m0(p, 0) − 3

2

〈Qp
(2)0

〉
, (28)

m0(p, 2) = 5

3
m0(p, 0) + 1

2

(
5
〈Qp

(1)0

〉− 3
〈Qp

(2)0

〉)
≈ 5

3
m0(p, 0) − 3

2

〈Qp
(2)0

〉
.
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TABLE III. Expectation values of Qp
(κ)0 and its one- and two-body terms with respect to the ground state of 4He. Values are given in units

of fm2.

AV8′ + 3NF G3RS + 3NF MN

IS IV0 IV± IS IV0 IV± IS IV0 IV±〈Qp
(0)0

〉
10.97 10.78 5.39 11.42 11.17 5.59 11.71 10.46 5.23〈Qp(1)

(0)0

〉
8.41 8.41 4.21 8.66 8.66 4.33 7.96 7.96 3.98〈Qp(2)

(0)0

〉
2.56 2.37 1.18 2.76 2.51 1.25 3.75 2.50 1.25〈Qp

(1)0

〉
0.21 −0.08 −0.04 0.24 −0.09 −0.04 0.00 0.00 0.00〈Qp(1)

(1)0

〉
– – – – – – – – –〈Qp(2)

(1)0

〉
0.21 −0.08 −0.04 0.24 −0.09 −0.04 0.00 0.00 0.00〈Qp

(2)0

〉 −2.61 2.92 1.46 −2.68 2.97 1.49 0.00 0.00 0.00〈Qp(1)
(2)0

〉
– – – – – – – – –〈Qp(2)

(2)0

〉 −2.61 2.92 1.46 −2.68 2.97 1.49 0.00 0.00 0.00

Thus the deviation of the ratio from 1 : 3 : 5 is simply
controlled by − 3

2 〈Qp
(2)0〉, which is very well satisfied in the

examples of Table II. Since 〈Qp
(2)0〉 is negative for p = IS,

the ratio further increases from 1 : 3 : 5, whereas it is positive
for p = IV0 and IV±, and the ratio approximately reduces to
1 : 2 : 4.

As discussed above, 〈Qp
(κ)0〉 plays a central role to determine

the NEWSR for the SD strength functions. Inverting Eq. (27)
makes it possible to express 〈Qp

(κ)0〉 as a sum, over the
multipole λ, of the NEWSR

〈Qp
(κ)0

〉 = 2∑
λ=0

U−1
κλm0(p, λ), (29)

where U−1 is the inverse matrix of U as given in Eq. (A5). If
the NEWSR for all λ are experimentally measured, the above
equation indicates that 〈Qp

(κ)0〉 for all κ can be determined from
experiment. Some examples are

3
〈Qp

(0)0

〉 = m0(p, 0) + m0(p, 1) + m0(p, 2),
(30)

6
〈Qp

(2)0

〉 = 10m0(p, 0) − 5m0(p, 1) + m0(p, 2).

To clarify the physical meaning of the operator Qp
(κ)0, it is

instructive to decompose it into one- and two-body terms:

Qp
(κ)0 = Qp(1)

(κ)0 + Qp(2)
(κ)0 , (31)

where

Qp(1)
(κ)0 = δκ0

A∑
i=1

ρ2
i T

p
i

†
T

p
i ,

(32)

Qp(2)
(κ)0 =

A∑
j>i=1

([ρi × ρj ]κ · [σ i × σ j ]κ )T p
ij

with

T
p
ij = T

p
i

†
T

p
j + T

p
j

†
T

p
i . (33)

The isospin operators in Eq. (32) are simplified with use of
Eq. (A2): T

p
i

†
T

p
i is 1 for p = IS, IV0, and (1 ∓ τz(i))/2

for p = IV±, whereas T
p
ij is 2 for p = IS, 2τz(i)τz(j ) for

p = IV0, and ((τ (i) · τ (j )) − τz(i)τz(j ))/2 for p = IV±, re-
spectively. The one-body term is spin-independent and appears
only for κ = 0, which gives the largest contribution to the
NEWSR. The two-body term with κ = 2 is particularly inter-
esting because it contains the tensor operator characteristic of
the one-pion-exchange potential. See Appendix A for detail.

The expectation value of the one-body term is expressed in
terms of the mean-square radius of nucleon distribution in the
ground state 〈QIS(1)

(0)0

〉 = 〈QIV0(1)
(0)0

〉 = A
〈
r2
N

〉
,

(34)〈QIV+(1)
(0)0

〉 = Z
〈
r2
p

〉
,
〈QIV−(1)

(0)0

〉 = N
〈
r2
n

〉
.

Noting that the two-body term QIV+(2)
(κ)0 is identical to QIV−(2)

(κ)0
for any κ , we obtain the following well-known relation
between the NEWSR [50]:

m0(IV−, λ) − m0(IV+, λ) = 2λ + 1

3

(
N
〈
r2
n

〉− Z
〈
r2
p

〉)
. (35)

This difference vanishes in the present case because the isospin
impurity of the ground-state of 4He is ignored.

2. Energy-weighted sum rule

Now we discuss the EWSR for the SD operator. The SD
EWSR can be derived in the same manner as the E1 operator,
and it is expressed as

m1(p, λ) =
∫ ∞

0
ES(p, λ,E)dE = 〈Xp

(λ)0(H )
〉
, (36)

where X
p
(λ)0(H ) denotes the double commutator of the Hamil-

tonian with the SD operator

X
p
(λ)0(H ) = 1

2

∑
μ

[Op†
λμ,
[
H,Op

λμ

]]
. (37)

The double commutator of the kinetic energy operator T =∑A
i=1 Ti − Tc.m. is worked out in Appendix C. The commutator

was considered in Ref. [51] for IS and IV0 cases. The result
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TABLE IV. Energy-weighted sum rules of the SD strength functions, m1(p, λ), in units of MeV fm2, calculated from different models for
the nucleon-nucleon potentials. Contribution of each term of the kinetic energy to the sum rule is also listed. See text for the details.

AV8′ + 3NF

IS IV0 IV+ IV −
λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2

m1(p, λ) 126 782 949 218 450 766 110 227 389 109 225 383
〈Xp

(λ)0(T )〉 74.4 227 392 78.2 239 411 39.1 119 205 39.1 119 205
MI 62.2 187 311 62.2 187 311 31.1 93.3 156 31.1 93.3 156
SS 14.9 44.6 74.3 18.7 55.9 93.2 9.32 27.9 46.6 9.32 27.9 46.6
DL – – – – – – 0.00 0.00 0.00 0.00 0.00 0.00
SO −2.62 −3.92 6.54 −2.62 −3.92 6.54 −1.31 −1.96 3.27 −1.31 −1.96 3.27
m1(p, λ) − 〈Xp

(λ)0(T )〉 51.5 555 557 139 211 355 71.3 108 183 70.1 106 178

G3RS + 3NF

IS IV0 IV+ IV −
λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2 λ = 0 λ = 1 λ = 2

m1(p, λ) 111 697 843 202 426 723 104 216 370 102 213 363
〈Xp

(λ)0(T )〉 73.2 227 403 76.3 236 419 38.1 118 209 38.1 118 209
MI 62.2 187 311 62.2 187 311 31.1 93.3 156 31.1 93.3 156
SS 16.0 47.9 79.8 19.0 57.1 95.1 9.51 28.5 47.6 9.51 28.5 47.6
DL – – – – – – 0.00 0.00 0.00 0.00 0.00 0.00
SO −4.97 −7.45 12.4 −4.97 −7.45 12.4 −2.48 −3.73 6.21 −2.48 −3.73 6.21
m1(p, λ) − 〈Xp

(λ)0(T )〉 37.8 470 439 126 189 304 65.5 97.8 160 63.5 94.6 153

for all SD cases is summarized as

X
p
(λ)0(T )

= (A − 1)h̄2

2AmN

(2λ + 1)Np

− h̄2

6AmN

(2λ + 1)
A∑

j>i=1

(σ i · σ j )T p
ij

− ih̄

6mN

(2λ + 1)
A∑

i=1

(ρi · π i)
[
T

p
i

†
, T

p
i

]

+ h̄

6mN

C
p
λ

A∑
i=1

((ρi × π i) · σ i), (38)

where π i denotes the momentum, pi − 1
A

P tot, with the

total momentum P tot =∑A
i=1 pi and C

p
λ is related to Cλ of

Eq. (C7) as

CIS
λ = CIV0

λ = Cλ, CIV+
λ = CIV−

λ = 1
2Cλ, (39)

and Np =∑A
i=1 T

p
i T

p
i

†
reduces to A for p = IS, IV0, A −

Z for p = IV+, and A − N for p = IV−, respectively. The
isospin commutator [T p

i

†
, T

p
i ] vanishes for p = IS and IV0,

while it reduces to ∓τz(i) for p = IV±. The round bracket
(a × b) stands for the vector product of a and b, (a × b)μ =
−√

2i[a × b]1μ.
We name the four terms on the right-hand side of Eq. (38)

as model-independent (MI), spin-spin (SS), dilation (DL),
and spin-orbit (SO) terms, respectively. The name of dilation
is adopted because (ρi · π i) is a generator for the dilation
operator. The MI term makes a contribution to the SD EWSR,

independently of the ground-state wave function. Thus the
kinetic energy contribution to the EWSR becomes model-
independent in so far as the contribution of the other terms
can be neglected compared to the MI term. For a fixed p
the λ-dependence of each term is simply given by 2λ + 1
except for the SO term, which changes according to the ratio
of 2 : 3 : (−5) for λ = 0, 1, 2. On the other hand, for a fixed
λ the p dependence of the four terms is a little complicated.
The MI term changes in proportion to A : A : A − Z : A − N ,
while the SO term is in ratio of 1 : 1 : 1/2 : 1/2 for p = IS,
IV0, IV+, IV−, respectively. The DL term identically vanishes
for p = IS and IV0, and furthermore it turns out to have
no contribution to the EWSR even for p = IV± because no
isospin mixing is taken into account in our ground state of 4He.

Table IV lists the values of m1(p, λ) together with the
contributions of the kinetic energy term and its four terms to
the EWSR calculated using the AV8′ + 3NF and G3RS + 3NF
potentials. The EWSR slightly depends on the potential models
particularly for the IS SD strengths. Even in those cases the
contribution of the kinetic energy to the EWSR remains almost
the same. The contribution of the MI term to 〈Xp

(λ)0(T )〉 is
found to be more than 74% for all the cases, and really
occupies a main portion of the kinetic energy contribution.
The two interactions give almost the same contribution for the
SS terms. Though the SO terms show some dependence on the
interactions, the kinetic energy contributions 〈Xp

(λ)0(T )〉 are
found to be approximately model-independent.

The enhancement of the computed sum rule (36) compared
to 〈Xp

(λ)0(T )〉 indicates the contribution of the potential energy
to the EWSR. The enhancement factor for the E1 operator is
1.0–1.1 for the present nuclear forces [19]. The AV8′ potential
has a stronger tensor component than the G3RS potential.
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Because of this the tensor potential (Sijτ i · τ j ) of the AV8′
potential gives the larger contribution to the E1 EWSR. In
the SD case, however, the enhancement is more complicated
and depends on both multipolarity λ and isospin label p. To
elucidate this further, we have to calculate the double commu-
tator for each piece of the nucleon-nucleon potential as in the
kinetic energy and evaluate its ground-state expectation value.

IV. CONCLUSIONS

We study both isovector and isoscalar spin-dipole (SD)
strength functions in four-body calculations using realistic
nuclear forces. Two different potentials are employed to see
the sensitivity on the D-state probability produced by the
tensor correlation. The SD excitation is built on the ground
state of 4He that is described accurately with use of explicitly
correlated Gaussian bases. The continuum states including
two- and three-body decay channels are discretized in the
correlated Gaussians with aid of the complex scaling method.

Experimental data that can directly be compared to the
calculation are presently only the resonance parameters of the
negative-parity levels of A = 4 nuclei. Both the resonance
energies and widths deduced from the SD and electric-dipole
strength functions or the eigenvalues of the complex-scaled
Hamiltonian are all in fair agreement with experiment. This
success is never trivial considering that most of the resonances
among 15 levels have broad widths larger than 5 MeV.
A combined use of both complex energies and appropriate
strength functions provides us with a robust tool to determine
resonance parameters.

The non-energy-weighted sum rule (NEWSR) of the SD
strength function is investigated by relating it to the expectation
values of three scalar products of the space-space and spin-
spin tensors with respect to the ground state of 4He. It turns
out that our model space satisfies the NEWSR for each SD
operator perfectly. The tensor operator of rank 2, Qp

(2)0, is
sensitive to the D-state correlation in the ground state induced
by the tensor force, and it is mainly responsible for distorting
the ratio of the NEWSRs for the multipolarity λ = 0, 1, 2 from
the uncorrelated ratio of 1 : 3 : 5. An experimental observation
of this ratio is desirable since it may lead us to reveal the degree
of tensor correlations in the ground state. The energy-weighted
sum rule (EWSR) for the SD operator is also examined. A
formula is derived to calculate the contribution of the kinetic
energy to the EWSR. The difference between the EWSR and
the kinetic energy contribution shows some dependence on λ as
wells as the isospin character of the SD operator. Further study
is needed to clarify the origin of its dependence by analyzing
the contribution of each piece of the nuclear potential.

Other T = 0 resonances with 0−, 1−, 2− and 1+, 2+ exist
in 4He above and below the 2n + 2p threshold. It would
be interesting to investigate these levels by the isoscalar SD
excitation and some appropriate excitations produced by, e.g.,
isoscalar quadrupole, magnetic dipole, and spin-quadrupole
operators with further attention being paid to d + d type
configurations.

The SD strength functions are important inputs for evaluat-
ing neutrino-nucleus reaction rates. A calculation of neutrino-
4He reaction rate is in progress as a consequence of the present

study. It is desirable that the predicted SD strength functions
are tested with experimental measurements in order for such
reaction rate calculation to be precise.
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APPENDIX A: MULTIPOLE DECOMPOSITION OF THE
SPIN-DIPOLE NON-ENERGY-WEIGHTED SUM RULE

Here we derive Eqs. (26) and (27) by decomposing the
operator

∑
μ Op†

λμOp
λμ into multipoles. Substituting Eq. (1) in∑

μ Op†
λμOp

λμ and recoupling the coordinate and spin operators,
we obtain

∑
μ

Op†
λμOp

λμ = (−1)λ
A∑

i,j=1

([ρi × σ i]λ · [ρj × σ j ]λ)T p
i

†
T

p
j

=
∑

κ

UλκQp
(κ)0. (A1)

The isospin operator T
p
i

†
T

p
j reads

1, τz(i)τz(j ), (t i · tj ) − tz(i)tz(j ) ± i(t i × tj )z (A2)

for p = IS, IV0, and IV±, respectively. The coefficient Uλκ is
expressed by unitary Racah coefficients U as

Uλκ = (−1)λ
√

2λ + 1

2κ + 1
U (1111, λκ), (A3)

or more explicitly

(Uλκ ) =

⎛
⎜⎝

1
3 − 1

3
1
3

1 − 1
2 − 1

2
5
3

5
6

1
6

⎞
⎟⎠, (A4)

where both row and column labels, λ and κ , are arranged in
order of 0, 1, and 2. The inverse of the matrix (Uλκ ),

(U−1
κλ) =

⎛
⎜⎝

1
3

1
3

1
3

−1 − 1
2

1
2

5
3 − 5

6
1
6

⎞
⎟⎠, (A5)

is used to obtain the expectation value of Qp
(κ)0 with respect to

the ground state as discussed in Sec. III D1. See Eq. (29).
The multipole operator Qp

(κ)0 consists of one- and two-body
terms

Qp
(κ)0 = Qp(1)

(κ)0 + Qp(2)
(κ)0 (A6)

as shown in Eq. (32). The two-body term with κ = 2 is of
particular interest because it contains the tensor operator. To
see this, it is convenient to rewrite Qp(2)

(κ)0 in terms of the relative
and center-of-mass coordinates of two nucleons rather than the
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single-particle like coordinates, ρi and ρj . By introducing the
coordinates r ij and Rij by

r ij = ρi − ρj = r i − rj ,
(A7)

Rij = 1
2 (ρi + ρj ) = 1

2 (r i + rj ) − xA,

Qp(2)
(κ)0 is decomposed to three terms:

Qp(2)
(κ)0 = Qp(2)r

(κ)0 + Qp(2)R
(κ)0 + δκ1Qp(2)rR

(1)0 , (A8)

where

Qp(2)r
(κ)0 = −1

4

A∑
j>i=1

([r ij × r ij ]κ · [σ i × σ j ]κ )T p
ij ,

Qp(2)R
(κ)0 =

A∑
j>i=1

([Rij × Rij ]κ · [σ i × σ j ]κ )T p
ij , (A9)

Qp(2)rR
(1)0 =

A∑
j>i=1

([r ij × Rij ]1 · [σ i × σ j ]1)T p
ij .

The operators Qp(2)r
(κ)0 and Qp(2)R

(κ)0 have nonvanishing contribu-

tions only for κ = 0 and 2. It is easy to see that the Qp(2)r
(2)0 term

contains the tensor operator Sij .

APPENDIX B: CALCULATION OF THE MATRIX
ELEMENTS OF QUADRATIC SPATIAL TENSORS

In this Appendix, we give a formula of calculating the
matrix element of Qp

(κ)0, Eq. (26). The spin-isospin part can
easily be evaluated in our spin and isospin functions, Eq. (17),
so that we focus on the matrix element of the spatial part. As is
clear from Eqs. (32) and (A9), the spatial tensor operators
have the form [a × b]κμ, where a and b are vectors that
represent one of the various coordinates, ρi , ρj , r ij , Rij .
It is useful to note that any of these coordinates can be
expressed as a linear combination of the relative coordinate set
x: a =∑N−1

i=1 ωi xi = ω̃x, and b =∑N−1
i=1 ζi xi = ζ̃ x, where ω

and ζ are both (N − 1)-dimensional column vectors. Therefore
it is sufficient to show how we can evaluate the quadratic spatial
tensor operators, [ω̃x × ζ̃ x]κμ, with the basis functions (18).
A detailed method of evaluation is presented in Ref. [34], and
here we follow its formulation and notation.

First we calculate the matrix element between the generat-
ing function

g(s, A, x) = exp
(− 1

2 x̃Ax + s̃x
)
, (B1)

where s is an (N − 1)-dimensional column vector whose ith
element is a three-dimensional vector si , and s̃x is a short-hand
notation of

∑N−1
i=1 si · xi . As given in Ref. [33], it reads

〈g(s′, A′, x)|[ω̃x × ζ̃ x]κμ|g(s, A, x)〉 = {−
√

3δκ0δμ0Tr(B−1ωζ̃ ) + [ω̃B−1v × ζ̃B−1v]κμ}
(

(2π )N−1

detB

) 3
2

exp
(

1
2 ṽB−1v

)
, (B2)

where Tr stands for a trace and
B = A + A′, v = s + s′. (B3)

Using the (N − 1)-dimensional column vector ui specifying the GV we express s and s′ as s = λ1e1u1 + λ2e2u2 and s′ =
λ3e3u3 + λ4e4u4, where a unit vector ei [(ei · ei) = 1] and a parameter λi are introduced to manipulate the calculation of the
sought matrix element. See Ref. [34] for details. The second term in the curly bracket and the exponential function of Eq. (B2)
are simplified to

[ω̃B−1v × ζ̃B−1v]κμ →
{∑

i 
=j figjλiλj [ei × ej ]κμ for κ = 0, 1,∑
i,j figjλiλj [ei × ej ]κμ for κ = 2,

exp
(

1
2 ṽB−1v

) → exp
(∑

i<j
ρijλiλj ei · ej

)
, (B4)

where
ρij = ũiB

−1uj , fi = ω̃B−1ui, gj = ζ̃B−1uj . (B5)

Here the arrow symbol indicates that both sides are equal as long as the calculation of the sought matrix element is concerned.
For example, any terms that have λ2

i (ei · ei) = λ2
i dependence make no contribution to the matrix element, so that they can be

dropped.

1. κ = 0 case

In this case the term [ω̃B−1v × ζ̃B−1v]00 produces the same structure, with respect to λiλj (ei · ej ), as the kinetic and mean
square distance operators. See Appendix B2 of Ref. [34]. The matrix element is〈

F(L3L4)LM (u3, u4, A
′, x)

∣∣[ω̃x × ζ̃ x]00

∣∣F(L1L2)LM (u1, u2, A, x)
〉

= − 1√
3

{
3Tr(B−1ωζ̃ ) +

4∑
j>i=1

(figj + fjgi)
∂

∂ρij

}〈
F(L3L4)LM (u3, u4, A

′, x)
∣∣F(L1L2)LM (u1, u2, A, x)

〉
. (B6)

Compare this expression with Eq. (B17) [34]. A formula for the overlap matrix element,
〈F(L3L4)LM (u3, u4, A

′, x)|F(L1L2)LM (u1, u2, A, x)〉, is given in Eq. (B10) [34].
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2. κ = 1 case

The κ = 1 case can be evaluated in exactly the same way as the spin-orbit matrix element of Ref. [34]. The result is〈
F(L3L4)L′M ′(u3, u4, A

′, x)
∣∣[ω̃x × ζ̃ x]1μ

∣∣F(L1L2)LM (u1, u2, A, x)
〉

= − 4π√
3

(−1)L1+L2+L+L′

√
2L′ + 1

〈LM1μ|L′M ′〉
4∑

l>k=1

(fkgl − flgk)(−1)L̄1+L̄2

(
4∏

i=1

BLi

BL̄i

)

×
∑
L̄

√
2L̄ + 1Z2(1L̄1L̄2L̄3L̄4L̄, LL′; kl)

〈
F(L̄3L̄4)L̄M̄ (u3, u4, A

′, x)
∣∣F(L̄1L̄2)L̄M̄ (u1, u2, A, x)

〉
, (B7)

where BL = (2L+1)!!
4π

. Compare this expression with Eq. (B54) [34]. The barred angular momentum labels L̄i and L̄′ follow the
definitions in Ref. [34]. The coefficient Z2 is defined in Eq. (B48) [34].

3. κ = 2 case

In this case we note that

[ω̃B−1v × ζ̃B−1v]2μ →
√

8π

15

4∑
i=1

figiλ
2
i Y2μ(ei) + 4π

3

4∑
j>i=1

(figj + fjgi)λiλj [ei × ej ]2μ. (B8)

Comparing this expression with Eqs. (B41) and (B42) and using Eq. (B49) [34], we obtain the matrix element as follows:〈
F(L3L4)L′M ′ (u3, u4, A

′, x)
∣∣[ω̃x × ζ̃ x]2μ

∣∣F(L1L2)LM (u1, u2, A, x)
〉

= (−1)L1+L2+L+L′

√
2L′ + 1

〈LM2μ|L′M ′〉
√

5

⎧⎨
⎩
√

8π

15

4∑
k=1

fkgk(−1)L̄1+L̄2

(
4∏

i=1

BLi

BL̄i

)

×
∑
L̄

√
2L̄ + 1Z1(2L̄1L̄2L̄3L̄4L̄, LL′; k)

〈
F(L̄3L̄4)L̄M̄ (u3, u4, A

′, x)
∣∣F(L̄1L̄2)L̄M̄ (u1, u2, A, x)

〉

+ 4π

3

4∑
l>k=1

(fkgl + flgk)(−1)L̄1+L̄2

(
4∏

i=1

BLi

BL̄i

)

×
∑
L̄

√
2L̄ + 1Z2(2L̄1L̄2L̄3L̄4L̄, LL′; kl)

〈
F(L̄3L̄4)L̄M̄ (u3, u4, A

′, x)
∣∣F(L̄1L̄2)L̄M̄ (u1, u2, A, x)

〉⎫⎬⎭. (B9)

The coefficient Z1 is defined in Eq. (B46) [34].

APPENDIX C: CONTRIBUTION OF THE KINETIC
ENERGY TO THE SPIN-DIPOLE ENERGY-WEIGHTED

SUM RULE

The aim of this appendix is to derive Eq. (38). Introducing
an abbreviation

vλμ(i) = [ρi × σ i]λμ (C1)

and T =∑A
i=1 Ti − Tcm, we calculate X

p
(λ)0(T ) from the

following expression:

X
p
(λ)0(T ) = 1

2

∑
μ

A∑
i,j=1

[
v
†
λμ(j )T p

j

†
, [T , vλμ(i)]T p

i

]

= 1

2

∑
μ

A∑
i,j=1

{
v
†
λμ(j )[T , vλμ(i)]

[
T

p
j

†
, T

p
i

]

+ [v†
λμ(j ), [T , vλμ(i)]

]
T

p
i T

p
j

†}
. (C2)

Here use is made of the relation [AB,CD] = AC[B,D] +
[A,C]DB provided that [A,D] = 0 and [B,C] = 0. The first
term in the curly bracket is contributed only by i = j terms
because [T p

j

†
, T

p
i ] vanishes for i 
= j . Using the commutation

relation

[T , vλμ(i)] = − ih̄

mN

[π i × σ i]λμ, (C3)

we obtain the first term as

First term = − ih̄

2mN

(−1)λ

×
A∑

i=1

([ρi × σ i]λ · [π i × σ i]λ)
[
T

p
i

†
, T

p
i

]
.

(C4)

The ground-state expectation value of this term is conveniently
evaluated by decomposing the above scalar product to that of
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the space-space and spin-spin terms using the matrix U of
Eq. (A4). The result is

First term = − ih̄Uλ 0

2mN

A∑
i=1

(ρi · π i)
[
T

p
i

†
, T

p
i

]

− h̄Uλ 1

2mN

A∑
i=1

((ρi × π i) · σ i)
[
T

p
i

†
, T

p
i

]
. (C5)

The matrix element of the spatial part involving the operators,
(ρi · π i) and ((ρi × π i) · σ i), can be calculated in the manner
similar to that presented in Appendix B. See Ref. [34] for the
details.

The second term in the curly bracket of Eq. (C2) can be
obtained in a similar way. After a straightforward calculation

of the commutator, we obtain the following result:

Second term= h̄2

2mN

(2λ + 1)Np − h̄2

6AmN

(2λ + 1)(�p · �p†)

+ h̄

6mN

Cλ

A∑
i=1

((ρi × π i) · σ i)T
p
i T

p
i

†
, (C6)

where Cλ is

C0 = 2, C1 = 3, C2 = −5. (C7)

Here the operators Np and �p are defined by

Np =
A∑

i=1

T
p
i T

p
i

†
, �p =

A∑
i=1

σ iT
p
i , (C8)

which leads to (�p · �p†) = 3Np +∑A
j>i=1(σ i · σ j )T p

ij .
Combining Eqs. (C5) and (C6) we obtain Eq. (38).
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