
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 87, 031901(R) (2013)

Breaking of factorization of two-particle correlations in hydrodynamics
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The system formed in ultrarelativistic heavy-ion collisions behaves as a nearly perfect fluid. This collective
behavior is probed experimentally by two-particle azimuthal correlations, which are typically averaged over the
properties of one particle in each pair. In this Rapid Communication, we argue that much additional information is
contained in the detailed structure of the correlation. In particular, the correlation matrix exhibits an approximate
factorization in transverse momentum, which is taken as strong evidence for the hydrodynamic picture, while
deviations from the factorized form are taken as a signal of intrinsic, “nonflow” correlations. We show that
hydrodynamics in fact predicts factorization breaking as a natural consequence of initial-state fluctuations and
averaging over events. We derive the general inequality relations that hold if flow dominates, and which are
saturated if the matrix factorizes. For transverse momenta up to 5 GeV, these inequalities are satisfied in data, but
not saturated. We find factorization breaking in event-by-event ideal hydrodynamic calculations that is at least as
large as in data and argue that this phenomenon opens a new window on the study of initial fluctuations.
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Introduction. In relativistic heavy-ion-collision experi-
ments a large second Fourier harmonic is observed in two-
particle correlations as a function of relative azimuthal angle
[1–4]. This has long been considered a sign of significant
collective behavior [5], or “elliptic flow,” indicating the
existence of a strongly interacting, low-viscosity fluid [6].
However, only recently has it been realized that all such
correlations observed between particles separated by a large
relative pseudorapidity could be explained by this collective
behavior [7–15], at least for the bulk of the system.

One significant piece of evidence for this view was the
recent observation of the factorization [16–19] of two-particle
correlations into a product of a function of properties of only
one of the particles times a function of the properties of the
second. Specifically, for pairs of particles in various bins
of transverse momentum pT , factorization of each Fourier
harmonic was tested as [16]
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where the brackets indicate an average over pairs of particles (a
and b) coming from the same event as well as an average over
a set of collision events, and φa (φb) is the azimuthal angle of
particle a (b). The left-hand side is a (symmetric) function of
two variables pa

T and pb
T and in general may not factorize into

a product of a function vn of each variable individually. The
fact that this factorization holds at least approximately, then, is
a nontrivial observation about the structure of the correlation.

While most known sources of nonflow correlations do
not factorize at low pT [20], a type of factorization comes
naturally in a pure hydrodynamic picture where particles are
emitted independently. They thus have no intrinsic correlations
with other particles, carrying only information about their
orientation with respect to the system as a whole. This
causes the two-particle probability distribution in a single
collision event to factorize [21] into a product of one-particle

distributions,

dNpairs

d3pad3pb

(flow)= dN

d3pa

dN
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. (2)

Inspired by this fact, it has often been stated [19,22,23]
that the factorization test in Eq. (1) should work perfectly
in hydrodynamics. The observed approximate factorization
was hailed as a success for the flow interpretation of cor-
relations, while small deviations from the factorized form
was interpreted as a gradual breakdown of the hydrodynamic
description with increasing transverse momentum, and of an
increasing contribution from other sources of correlations.

In this work, we show that factorization as in Eq. (1)
is not necessarily present even in an ideal hydrodynamic
system governed by Eq. (2) because of event-by-event fluc-
tuations [13,24,25]. These stem from quantum fluctuations:
the collision takes place over a very short timescale and
takes a snapshot of the wave function of incoming nuclei.
In the presence of fluctuations, we show that the correlation
matrix satisfies general inequalities, which are saturated by
Eq. (1). We test these inequalities on ALICE data and point
out where breaking of factorization occurs. We then illustrate
with a full event-by-event hydrodynamic calculation that the
same deviation seen in experiment is also present in ideal
hydrodynamics.

Hydrodynamics and two-particle correlations. We begin by
recalling the discussion originally found in Ref. [26]. In a pure
hydrodynamic picture, particles are emitted independently
from the fluid at the end of the system evolution according to
some underlying one-particle probability distribution. One can
write any such distribution as a Fourier series in the azimuthal
angle φ of the particles

2π

N

dN

dφ
=

∞∑
n=−∞

Vn(pT , η)e−inφ, (3)
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where Vn = {einφ} is the nth complex Fourier flow coefficient,
and curly brackets indicate an average over the probability
density in a single event. Writing Vn = vne

in�n , where vn

is the (real) anisotropic flow coefficient and �n is the
corresponding phase, and using V−n = V ∗

n (where V ∗
n is the

complex conjugate of Vn), this can be rewritten as

2π

N

dN

dφ
= 1 + 2

∞∑
n=1

vn(pT , η) cos n[φ − �n(pT , η)]. (4)

Note that, for this form to describe an arbitrary distribution,
both vn and �n may depend on transverse momentum pT and
pseudorapidity η.

In this picture, the relation in Eq. (2) holds, and a complex
Fourier harmonic of the two-particle correlation factorizes in
each event as
{
ein(φa−φb)} = {
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nv
b
ne
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(5)

This factorization only holds in a single hydro event. Both the
magnitudes and the phases of anisotropic flow fluctuate event
to event [13,24,25]. The experimental quantity, Eq. (1), is then
obtained by averaging over events:

Vn�

(
pa

T , pb
T

) = 〈
V a

n V b∗
n

〉 = 〈
va

nv
b
ne

in(�a
n −�b

n )
〉
. (6)

Due to parity symmetry, only the real part remains after this
average, hence the cosine in Eq. (1).

From this relation alone, one can make the following gen-
eral statements about the event-averaged correlation matrix:
the diagonal elements must be positive, and the off-diagonal
elements must satisfy a Cauchy-Schwarz inequality,
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Factorization, Eq. (1), implies that the second inequality is
saturated, i.e., equality is achieved. Thus, while flow does
not necessarily imply factorization, any violation of these
inequalities is an unambiguous indication of the presence of
nonflow correlations.

An inspection of published data from the ALICE Col-
laboration [16] shows that these inequalities are indeed
violated in certain regimes [27]. For n = 3, diagonal elements
V3�(pa

T , pa
T ) are negative above 5 GeV for 0%–10% centrality,

and above 4 GeV for 40%–50% centrality. This is a clear
indication that there are nonflow correlations at high pT . For
instance, the correlation between back-to-back jets typically
yields a relative angle �φ ∼ π , thus producing a negative V3�

at high pT . For n = 1, diagonal elements are negative not only
at high pT (with a slightly higher threshold than for n = 3),
but also for pT between 1 and 1.5 GeV. This is believed to be
caused by the correlation from global momentum conservation
[19,28], but it is interesting to note that its effect can be noticed
by a simple inspection of elements.

In order to check the validity of the second inequality (8),
we introduce the ratio
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which is defined when diagonal elements Vn�(pa
T , pa

T ) and
Vn�(pb

T , pb
T ) are both positive and lies between −1 and

+1 if Eq. (8) holds. Factorization corresponds to the limit
rn = ±1. Figure 1 displays r2 and r3 as a function of pa

T

and pb
T for Pb-Pb collisions at 2.76 TeV, 0%–10% centrality.

ALICE results for r2 satisfy the inequalities (8) at all pT . When
both particles are below 1.5 GeV, the inequality is saturated,
r2 = 1, within errors. As soon as one of the particles is above
1.5 GeV, however, r2 is smaller than unity, and the difference
with unity increases with the difference pa

T − pb
T . Results for
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FIG. 1. (Color online) Ratio of nondiagonal to diagonal correlations, defined by Eq. (9), plotted on an interleaved pa
T , pb

T axis: pb
T is

constant between each long hash on the x axis. Filled stars show ALICE data for 0%–10% central Pb-Pb collisions at 2.76 TeV [16]. Open
circles show ideal hydrodynamic calculations for 0%–10% central Au-Au collisions at 200 GeV.
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r3 are qualitatively similar below 5 GeV, with larger error bars.
However, r3 is closer to 1 than r2 between 2 and 3 GeV. The
values of rn for midcentral collisions (40%–50% centrality,
not shown) are comparable to the values for central collisions,
although r2 is slightly closer to 1.

The ALICE Collaboration concluded from their analysis
that factorization holds approximately for n > 1 and pT below
4 GeV. However, their results actually show evidence for a
slight breaking of factorization for n = 2, as soon as one of
the particles has pT > 1.5 GeV. Even though factorization is
broken, the general inequalities implied by flow are satisfied
for n = 2 and n = 3 below 5 GeV for central collisions. It is
therefore worth investigating in more detail to what extent the
breaking of factorization which is seen experimentally can be
understood within hydrodynamics.

First, we recall under which conditions factorization holds
in hydrodynamics. It implies that the Cauchy-Schwarz in-
equality (8) is saturated. By inspection of Eq. (6), this in
turn implies that the complex flow vectors V a

n and V b
n are

linearly dependent. This is true only under the following
assumptions:

(i) By parity symmetry, �a
n − �b

n = 0 in each event. That
is, �n does not depend on pT , which removes the
exponential from the right-hand side of Eq. (5).

(ii) vn(pT ) changes from event to event by only a global
factor, with no pT -dependent fluctuations. vn(pT ) on
the right-hand side of Eq. (1) then represents the rms
value over events.

In general, fluctuations ensure that these conditions are not
met exactly, and the factorization of Eq. (1) will not be perfect.
Within hydrodynamics, the ratio rn in Eq. (9) has a simple
interpretation. Inserting Eq. (6) into Eq. (9), one obtains

rn =
〈
V a∗

n V b
n

〉
√〈|V a

n |2〉〈|V b
n |2〉 . (10)

The ratio rn thus represents the linear correlation between
the complex flow vectors at momenta pa

T and pb
T . Since in

each event, V a
n is a smooth function of pa

T , one expects
that the correlation is stronger when pa

T � pb
T and decreases

as the difference between pa
T and pb

T increases as a result of
the decoherence induced by initial fluctuations. ALICE data
confirm this qualitative expectation.

Note that even in a single hydrodynamic event, factorization
holds in the complex form (5) but is broken if one takes the
real part before averaging over particle pairs, as in Eq. (1). The
ratio rn in Eq. (10) is then cos n(�a

n − �b
n ), which is smaller

than unity as soon as the flow angle �n depends on pT .
The question then becomes: how large are factorization-

breaking effects in hydrodynamics, and do they have the same
properties as seen in data? If purely hydrodynamic calculations
give the same result as experiment, then the observed breaking
of factorization may not indicate the presence of nonflow
correlations.

Ideal hydrodynamic calculations. To illustrate these con-
cepts we perform calculations using the NeXSpheRIO model
[29]. This model solves the equations of relativistic ideal
hydrodynamics with fluctuating initial conditions given by

the NeXuS event generator [30]. It has proven successful
in reproducing results from the BNL Relativistic Heavy Ion
Collider (RHIC), in particular the structure of two-particle
angular correlations in Au-Au collisions at the top RHIC
energy [9]. It has recently been shown to reproduce the whole
set of measured anisotropic flow data [31–33]. Our calculations
are therefore performed for Au-Au collisions at the top RHIC
energy, not for Pb-Pb collisions at the energy of the CERN
Large Hadron Collider (LHC), as would be appropriate for a
direct quantitative comparison with ALICE data. Our results
are merely meant as a proof of concept and as a prediction
for measurements at RHIC. Note that the main source of
fluctuations (namely, the finite number of nucleons within the
nucleus) is identical in both cases.

We run 30 000 NeXuS events, which are then sorted into
10% centrality bins defined by the number of participant
nucleons, and then evolved hydrodynamically. Anisotropic
flow is calculated accurately in every event [34]. The ratio rn

is displayed in Fig. 1 for n = 2 and n = 3. Deviations from the
factorization limit r = 1 are already seen at low momentum but
become larger as the difference between pa

T and pb
T increases,

as expected from the general arguments above. Surprisingly,
the breaking of factorization appears larger in hydrodynamics
than in experiment.

The ALICE collaboration has studied factorization by per-
forming a global fit of the measured correlation Vn�(pa

T , pb
T )

by the right-hand side of Eq. (1), where vn(pT ) is a fit parameter
[16]. The ratio of the measured correlation to the best fit differs
from unity if factorization is broken. We can apply the same
procedure to our hydrodynamic results. The result is shown
in Fig. 2. Again, hydrodynamic calculations and experimental
data show similar trends, with the noticeable difference that
the breaking of factorization is significantly stronger in ideal
hydrodynamics than in data.

Several effects can explain this discrepancy. First, the
average pT is significantly larger at LHC than at RHIC [35], so
that it might be more natural to compare, e.g., 4 GeV at RHIC
to 5 GeV at LHC, rather than doing the comparison at the
same pT . The second effect is viscosity, which is neglected
in our calculation. Shear viscosity, in particular, tends to
damp the effect of initial fluctuations [36]. It is therefore
natural that it will also decrease the breaking of factorization
induced by initial fluctuations. A similar observation is that the
linear correlation between the initial eccentricity and the final
anisotropic flow is stronger in viscous hydrodynamics [37]
than in ideal hydrodynamics [34].

Conclusions. We have demonstrated that the detailed
structure of two-particle angular correlations contains much
more information than traditional analyses of anisotropic flow,
where the correlation is averaged over one of the particles [38].
Even though such two-dimensional analyses are much more
demanding in terms of statistics than traditional analyses, they
bring new, independent insight into the underlying physics of
flow fluctuations.

In particular, we have shown that quantum fluctuations in
the wave function of incoming nuclei result in a decoherence
in the angular correlations produced by collective flow, which
becomes increasingly important as the difference between
particle momenta increases. Due to this effect, factorization
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FIG. 2. (Color online) Ratio of the left-hand side to the right-hand side of Eq. (1). Filled stars show ALICE data for 0%–10% central Pb-Pb
collisions at 2.76 TeV [16]. Open circles show ideal hydrodynamic calculations for 0%–10% central Au-Au collisions at 200 GeV.

of angular correlations is broken even if collective flow is the
only source of correlations. Our numerical calculations show
that factorization breaking can be as strong in hydrodynamics
as in experimental data, thereby suggesting that all correlations
below pT ∼ 5 GeV (for central Pb-Pb collisions at LHC
near midrapidity) may actually be dominated by flow. The
sensitivity of this decoherence phenomenon to viscosity has
not yet been investigated, but we anticipate that factorization
should be restored as viscosity increases, thus potentially
offering a new means of constraining the viscosity from
data. On the other hand, thermal fluctuations should be
considered along with viscosity [39] and may also contribute
to factorization breaking.

Decoherence also provides a natural explanation for the
important observation that event-by-event fluctuations reduce
elliptic flow at high pT [40], thus improving agreement
between hydrodynamics and experimental data. Indeed, v2

at high pT is inferred from azimuthal correlations between
a high-pT particle and all other particles—mostly low-pT

particles—and these azimuthal correlations are reduced due
to the decoherence phenomenon. Note that the other main
explanation for the reduction of v2 at high pT , viscosity,

typically relies on the assumption of a quadratic momentum
dependence of the viscous correction to the distribution
function at freeze-out δf , which may not be correct [41].

In this paper, we have focused on the transverse momentum
dependence of the correlations. The rapidity dependence of
the correlation is also worth investigating. In particular, it
was recently observed that azimuthal correlations decrease
as a function of the relative pseudorapidity [42], at variance
with common lore that correlations due to flow are essentially
independent of rapidity. While standard models of initial
conditions do predict a mild rapidity dependence of azimuthal
correlations [43,44], longitudinal fluctuations [45] could also
produce a decoherence effect similar to the one studied here.
The detailed structure of two-particle correlations as a function
of both particle momenta thus opens a new window on the
study of flow fluctuations.
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