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Pion couplings of the �(1232)
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We calculate the strong couplings of pions to the �(1232) resonance using a QCD parametrization method that
includes in addition to the usual one-quark also two-quark and previously uncalculated three-quark operators.
We find that three-quark operators are necessary to obtain results consistent with the data and other QCD based
baryon structure models. Our results are also in quantitative agreement with a model employing large D-state
admixtures to the N and � wave functions indicating that the πN and π� couplings are sensitive to the spatial
shape of these baryons.
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I. INTRODUCTION

Since its discovery [1] in pion (π )-nucleon (N ) scattering
the lowest excited state of the nucleon with spin S = 3/2 and
isospin T = 3/2, called �(1232), has been important both for
an understanding of nucleon ground-state structure [2] and
the nucleon-nucleon interaction [3]. In sufficiently energetic
NN collisions, one or both nucleons may be excited to the
�(1232), a process that makes a significant contribution to
many nuclear phenomena [4], for example, electromagnetic
properties of light nuclei [5], three-nucleon forces [6], and the
binding energy of nuclear matter [7]. In addition, � degrees of
freedom are needed to explain the empirical cross sections for
the πN → πN [8], πN → ππN [9,10], and NN → NNππ
[11] reactions including a novel resonance structure in the
p n → dπ0π0 channel [12].

However, a quantitative assessment of the role of � degrees
of freedom in nuclear physics has remained difficult due to
the lack of detailed knowledge of even basic � properties. For
example, the widely used additive quark model, which is based
on the assumption that observables can be calculated using a
sum of one-quark operators, underpredicts the experimental
N → � transition magnetic moment by about 30% [13] but
slightly overpredicts the �+ magnetic moment [14]. Another
example involves the strong coupling constants fπN� and
fπ��. The former determines the decay rate � → N + π ,
while the latter fixes the N� interaction strength in nuclei (see
Fig. 1). Here again, the additive quark model underpredicts the
empirical N → � transition coupling fπN� by 20%, whereas
it appears to overpredict the double � coupling fπ��. A
resolution of these discrepancies is necessary for a quantitative
description of � degrees of freedom in nuclei [15–17].

Previously, the strong π� couplings were calculated with
a QCD parametrization method, in which in addition to one-
quark operators (additive quark model), two-quark operators
were taken into account [18]. It was shown that two-quark con-
tributions amount to a 20% increase of fπN� with respect to the
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additive quark model results. Furthermore, the following rela-
tion between the πN , πN�, and π�� couplings was derived:

fπ0pp − 1

4
fπ0�+�+ =

√
2

3
fπ0p�+ . (1)

This relation connects the elusive fπ0�+�+ to the better
known fπ0p�+ and fπ0pp couplings. Throughout this Brief
Report we use the normalization conventions of Ref. [19]
for the one-quark contributions, i.e., fπ�� = (4/5) fπNN

and fπN� = (6
√

2/5) fπNN .1 These theoretical relations,
which are based on the additive quark model (see Sec. III),
satisfy Eq. (1). On the other hand, if the empirical
relation fπ0p�+ = 2.1 fπ0pp is used in Eq. (1), one obtains
fπ0�+�+ = 0.04 fπ0pp. However, from the viewpoint of QCD
sum rules [20] and a 1/Nc expansion [21], both fπ0�+�+ and
fπ0pp should be of the same order of magnitude.

The main purpose of this Brief Report is to investigate
if the inclusion of three-quark operators can resolve the
discrepancies between theory and experiment for the π�
couplings. Another motivation for this study comes from the
work of Abbas [22], who found that large D-wave admixtures
in the N (939) and �(1232) quark wave functions reduce the
additive quark model result for fπ�� by 20% while they
increase fπN� by about the same percentage. This indicates
that the strong π� couplings are sensitive to the spatial shape
of the quark distribution in the nucleon and its first excited
state. Therefore, it is of interest to study whether the two- and
three-quark terms have an analogous effect on the strong π�
couplings and may thus be interpreted as describing degrees
of freedom leading to nonspherical geometrical shapes of the
N and � baryons.

1Other authors, e.g., Refs. [15,22], use the normalization convention
fπ�� = (1/5)fπNN . This is obtained if fπ0�+�+ is evaluated for �+

spin projection S ′
z = 1/2, which gives 〈�+, S ′

z = 1/2|O1|�+, S ′
z =

1/2〉 = A1/3, instead of 〈�+, S ′
z = 3/2|O1|�+, S ′

z = 3/2〉 = A1 for
maximal spin projection S ′

z = 3/2 as in Table I. In our normalization
scheme (see Sec. III) the π� couplings are independent of the
considered spin and isospin channel.
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FIG. 1. Strong coupling of the pion to the nucleon (N ) and
�-isobar (�). The πNN , πN�, and π�� coupling constants are
denoted as fπNN , fπN�, and fπ��. The corresponding interaction
vertices are represented as black dots.

II. METHOD

As in our previous work we use a general parametrization
(GP) method developed by Morpurgo and described in more
detail in Refs. [23–25] to calculate the strong pion couplings.
The most general expression for the corresponding operator
O that is compatible with the space-time and inner QCD
symmetries is a sum of one-, two-, and three-quark operators
in spin-flavor space multiplied by a priori unknown constants
(called A1, A2, and A3 below), which parametrize the orbital
and color space matrix elements. Empirically, a hierarchy in
the importance of one-, two-, and three-quark operators is
found. This fact can be understood in the 1/Nc expansion
where two- and three-quark operators are usually suppressed
by powers of 1/Nc and 1/N2

c , respectively, compared to one-
quark operators [26]. The two- and three-quark contributions
are an effective description of gluons and quark-antiquark
degrees of freedom that have been eliminated from the QCD
wave function [23].

For the strong πN and π� couplings one-, two-, and three-
quark axial vector operators are defined as

O1 = A1

∑
i

τ i
3σ

i
z ,

O2 = A2

∑
i �=j

τ i
3σ

j
z , (2)

O3 = A3

∑
i �=j �=k

τ i
3 σ i

z σ j · σ k,

and the total operator reads

O = O1 + O2 + O3. (3)

Here, σ i and τ i are the spin and isospin operators of quark i.
In Ref. [18] we briefly discussed why the two-body operator

O2 in Eq. (2) is unique. With respect to the three-quark operator
O3 the reader may wonder why other three-quark operators,
for example,

Õ3 =
∑

i �=j �=k

τ i
3 [σ i × σ j × σ k]z,

(4)
Ô3 =

∑
i �=j �=k

τ i
3 σ j

z σ i · σ k,

can be excluded from the list of permissible operators. It turns
out that the operator Õ3 is identical to zero when summed
over quark indices. Furthermore, the operator Ô3 has for the
spin-flavor symmetric N and � states considered here, the
same matrix elements as the two-body operator O2 in Eq. (2)

so that its effect is already included.2 This is an example of an
SU(6) operator reduction rule. More generally, SU(6) operator
reduction rules [21] express the fact that seemingly different
operators are not necessarily linearly independent on a given
SU(6) representation. For example, Ô3 and O2 are linearly
dependent when applied to the spin-flavor symmetric ground-
state 56-plet.

The existence of unique one-, two-, and three-quark
operators can also be understood from the following group
theoretical argument. From the viewpoint of broken SU(6)
spin-flavor symmetry, both the N and � belong to the same
56 dimensional ground-state multiplet. Therefore, an allowed
symmetry breaking operator O must transform according to
one of the irreducible representations found in the product

5̄6 × 56 = 1 + 35 + 405 + 2695. (5)

Here, the 1, 35, 405, and 2695 dimensional representations
are, respectively, connected with zero- (a constant), one-, two-,
and three-body operators. Because each representation on the
right-hand side of Eq. (5) occurs only once, the operators in
Eq. (2) are unique in the sense that for each Oi there is only
one linearly independent operator structure. As a result, the
operators in Eq. (2) provide a complete spin-flavor basis for
the observables considered here.

III. RESULTS

Evaluating the operators in Eq. (2) between SU(6) wave
functions [27] for the N and �, we get the results compiled in
Table I.

To obtain from the total quark level matrix elements Mq in
Table I the conventional pion-baryon couplings, one proceeds
as follows [19]. Conventionally, the N → � transition vertices
depicted in Fig. 1 (left) are defined as matrix elements MB of
baryon level N → � transition spin S and isospin T operators.
The latter are normalized so that their matrix elements are
equal to the corresponding spin and isospin Clebsch-Gordan
coefficients

MB = fπN� 〈�, S ′ S ′
z T ′ T ′

z |Sz Tz|N, S Sz, T Tz〉
= fπN� (1 0 S Sz|S ′ S ′

z) (1 0 T Tz|T ′ T ′
z ). (6)

2The operator Ô3 in Eq. (4) has nonvanishing matrix elements only
between the spin (mixed) symmetric parts |χS〉 of the 56-plet wave
functions, for which one has, e.g., σ1 · σ 2|χS〉 = +1|χS〉 so that Ô3

reduces to O2 in Eq. (2).

TABLE I. Matrix elements Mi of the one-quark (O1), two-quark
(O2), and three-quark (O3) axial vector operators in Eq. (2). The
matrix element of the total operator O in Eq. (3) is Mq = M1 +
M2 + M3.

Baryon M1 M2 M3

p 5
3 A1 − 2

3 A2 − 26
3 A3

p → �+ 4
√

2
3 A1 − 4

√
2

3 A2
8
√

2
3 A3

�+ A1 2A2 2A3
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Here, S = T = 1/2 refers to the spin and isospin of the N , and
S ′ = T ′ = 3/2 to the spin and isospin of the �. For the p →
�+ transition with Tz = T ′

z = 1/2 and Sz = S ′
z = 1/2 Eq. (6)

gives MB = fπ0p�+ (2/3). This baryon level matrix element
must be equal to the corresponding total quark level matrix
element, i.e., MB = fπ0p�+ (2/3) = Mq . Consequently, the
fπ0p�+ coupling is obtained by multiplying the total quark
level matrix element Mq in the second row of Table I by 3/2.

Analogously, �� vertices depicted in Fig. 1 (right) are
obtained from the diagonal matrix elements

MB = fπ�� 〈�, S ′ S ′
z T ′ T ′

z |Sz Tz|�, S ′ S ′
z T ′ T ′

z 〉
= fπ��S ′

z T ′
z . (7)

Evaluating Eq. (7) for the �+ with T ′
z = 1/2 and maximal spin

projection S ′
z = 3/2, Eq. (7) gives MB = fπ0�+�+ (3/4). This

baryon level matrix element must be equal to the corresponding
total quark level matrix element, i.e., MB = fπ0�+�+(3/4) =
Mq . Therefore, the entry for �+ in Table I must be multiplied
by 4/3.

We then get

fπ0pp = 5

3
A1 − 2

3
A2 − 26

3
A3,

fπ0p�+ = 4
√

2

3
(A1 − A2 + 2A3)

(
3

2

)
, (8)

fπ0�+�+ = (A1 + 2 A2 + 2 A3)

(
4

3

)
.

Solving Eq. (8) for the constants Ai leads to

A1 = 1

6
fπ0pp +

√
2

9
fπ0p�+ + 5

24
fπ0�+�+ ,

A2 = 1

4
fπ0�+�+ −

√
2

12
fπ0p�+ , (9)

A3 = − 1

12
fπ0pp +

√
2

36
fπ0p�+ + 1

48
fπ0�+�+ .

Next, we calculate numerical values for the strong �
couplings, including successively first, second, and third order
SU(6) symmetry breaking terms represented, respectively, by
the operators O1, O2, and O3 in Eq. (2).

First, ignoring two- and three-quark terms, we get A1 =
(3/5) f , where we use the abbreviation f := fπ0pp. Thus, A1

is fixed by the empirical value for the strong πNN coupling
f 2

π0pp
/(4π ) = 0.08. In this first order SU(6) symmetry break-

ing approximation, we reproduce the well known additive
quark model results for the π� couplings [19]

fπN� = 6
√

2

5
f, fπ�� = 4

5
f. (10)

Second, if we include two-quark but still neglect three-
quark terms we need the empirical relation fπN� = 2.1 f to
fix the additional constant A2. In this case, SU(6) symmetry
is broken up to second order. Equation (8) with A3 = 0 gives
then A1 = 0.51 f and A2 = −0.24 f as in Ref. [18]. In this
approximation we recover Eq. (1), which as shown in Table II
entails an unrealistically small value for fπ0�+�+ .

Finally, the inclusion of three-quark terms takes third order
SU(6) symmetry breaking into account. Using the QCD sum

TABLE II. Pion couplings of the �(1232) in terms of the pion-
nucleon coupling f = fπ0pp with the successive inclusion of one-
quark (M1), two-quark (M2), and three-quark (M3) terms compared
with experimental data. The experimental range for fπ0�+�+ is from
Table 9 in Ref. [9].

Coupling M1 M1 + M2 M1 + M2 + M3 Expt.

fπ0pp 1.00 1.00 1.00 1.00 [17]
fπ0p�+ 1.70 2.10 2.10 2.10 [17]
fπ0�+�+ 0.80 0.04 0.67 0.06–1.72 [9]

rule value fπ0�+�+ = 0.666 f [20], which is consistent with
the data [9–11], allows us to fix the constant A3 in Eq. (8). We
then get from Eq. (9) the following values for the constants:
A1 = 0.635 f , A2 = −0.081 f , and A3 = 0.013 f . By taking
three-quark operators into account, we find that Eq. (1) is
modified as follows

fπ0pp − 1

4
fπ0�+�+ =

√
2

3
fπ0p�+ − 12A3. (11)

Consequently, fπ0�+�+ can be of the same magnitude as fπ0pp

even when the empirical value for fπ0p�+ is used so that the
discrepancy between theory and experiment can be resolved.

Table II lists the strong couplings fπ0pp, fπ0p�+ , and
fπ0�+�+ in terms of f in the successive approximations
discussed above. The numbers in the first column correspond
to the additive quark model results in Eq. (10). The entries
in the second column include the effect of the two-quark
operator O2 of Ref. [18]. The latter changes the double �
coupling from the additive quark model value fπ�� = (4/5) f
to fπ�� = 0.04 f . However, such a small value for fπ�� is
inconsistent with other QCD based baryon structure models,
which predict that fπ��, fπN�, and fπNN are of the same
order of magnitude. Finally, the third column represents a full
calculation of one-, two-, and three-quark contributions. With
three-quark terms included, the double � coupling changes
from 0.04 f to 0.67 f , in qualitative agreement with QCD sum
rule [20] and 1/Nc expansion [21] calculations. This provides
evidence for the importance of three-quark operators in axial
vector quantities, such as the pion-baryon couplings.

It is of interest to compare our results to those of Abbas [22],
who found the following expressions for the πN� and π��
couplings based on one-quark axial vector operators but with
D-state admixtures in the N and � wave functions:

fπN� = 6
√

2

5

[
1 − 1

2 PD

1 − 6
5 PD

]
1√

1 + PD

f,

(12)

fπ�� = 4

5

[
1 − PD

1 − 6
5 PD

1

1 + PD

]
f,

where PD is the D-state probability in the nucleon wave
function.3 Note that the double � coupling in Eq. (12) has

3The D-state probability in the � wave function PD(�) is related to
the D-state probability in the nucleon wave function PD as PD(�) =
2PD/(1 + PD) [22]. This has been used to eliminate PD(�) from the
original expressions for the π� couplings.
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been adjusted to the normalization convention used here.1

For PD = 0.34 one finds fπN� = 2.1 f and fπ�� = 0.67 f .
Incidentally, the same value PD = 0.34 also explains the
empirically small quark contribution to nucleon spin [28].

As a result of the large D-state admixture in the nucleon
and � wave functions, fπN� is increased by 20%, and fπ�� is
decreased by the same percentage with respect to the additive
quark model values in Eq. (10). This is consistent with the
data and in quantitative agreement with the present results.
Apparently, nonspherical N and � wave functions with large
D-state probabilities have the same effect as the two- and
three-quark contributions considered here.

This correspondence between large D wave admixtures
and many-quark operators is not a coincidence. Via a unitary
transformation it is always possible to eliminate many-body
operators at the expense of more complicated wave functions
without changing the observable matrix element [29]. Yet, the
inclusion of many-quark operators leads overall to a more
consistent and realistic description of nucleon structure for the
following reasons. First, ab initio quark model calculations
based on gluon and pion exchange potentials feature much
smaller D-state probabilities (<0.01) [30] for the N and �
wave functions. Second, many-quark operators are related to
the quark-antiquark degrees of freedom, commonly referred
to as a meson cloud in physical baryons. Baryon deformation
is more likely a result of these nonvalence quark degrees of
freedom than a consequence of massive valence quarks moving
in elliptical orbits [31].

In any case, the ability of both models to describe the strong
π� couplings is closely tied to the nonspherical geometric
shapes of the nucleon and �. Other observables, such as
the N → � quadrupole transition moment, baryon octupole

moments, and the quark contribution to nucleon spin [31],
point to the same conclusion concerning the nonsphericity of
both N and � states.

IV. SUMMARY

In summary, we found that previously uncalculated three-
quark operators make a significant contribution to the πN�
and π�� coupling constants. In particular, for the double
� coupling, the three-quark term reduces the influence of
the negative two-quark contribution so that the final result
fπ0�+�+ = 0.67 f is about 20% smaller than the additive
quark model value consistent with data and other QCD based
baryon structure models.

Furthermore, our theory is in quantitative agreement with
results obtained in a quark model with large D-state admix-
tures. Both approaches increase fπN� and simultaneously
decrease fπ�� by about 20% with respect to the additive quark
model. This indicates that nonspherical N and � states are
necessary for a quantitative understanding of the strong pion
couplings independent of whether the spatial deformation is
described as large D-state components in the valence quark
wave functions or (more realistically) as two- and three-quark
operators representing a nonspherical sea of quark-antiquark
pairs.

Having demonstrated the importance of two- and three-
quark terms for a consistent description of the πN and π�
couplings, it will be interesting to investigate their effect
on other axial vector quantities, e.g., the p → �+ transition
magnetic moment and the weak axial N → � transition [32]
for which large discrepancies between the additive quark
model and experiment persist.
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