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Nonidentical protons

T. Mart* and A. Sulaksono
Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia

(Received 1 August 2012; revised manuscript received 1 February 2013; published 28 February 2013)

We have calculated the proton charge radius by assuming that the real proton radius is not unique and the radii
are randomly distributed in a certain range. This is performed by averaging the elastic electron-proton differential
cross section over the form factor cutoff. By using a dipole form factor and fitting the middle value of the cutoff to
the low-Q2 Mainz data, we found the lowest χ 2/N for a cutoff � = 0.8203 ± 0.0003 GeV, which corresponds to
a proton charge radius rE = 0.8333 ± 0.0004 fm. The result is compatible with the recent precision measurement
of the Lamb shift in muonic hydrogen as well as recent calculations using more sophisticated techniques. Our
result indicates that the relative variation of the form factor cutoff should be around 21.5%. Based on this result
we have investigated effects of the nucleon radius variation on the symmetric nuclear matter (SNM) and the
neutron star matter (NSM) by considering the excluded volume effect in our calculation. The mass-radius relation
of a neutron star is found to be sensitive to this variation. The nucleon effective mass in the SNM and the equation
of state of both the SNM and the NSM exhibit a similar sensitivity.
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I. INTRODUCTION

The recent precise measurement of the Lamb shift in a
muonic hydrogen atom [1] has sparked a controversy, because
this measurement yields a smaller proton charge radius, i.e.,
rE = 0.84184(67) fm. This radius is significantly smaller than
the standard CODATA value [2], rE = 0.8768(69) fm, which
is based on the measurements of the Lamb shift in an electronic
(conventional) hydrogen atom, as well as the results from elas-
tic electron-proton scatterings. The latest precise measurement
of elastic electron-proton scattering at MAMI, Mainz, which
yields rE = 0.879(5)stat.(4)syst.(2)model(4)group fm [3], clearly
supports the CODATA value. Considerable efforts [4–21]
have been devoted to attacking this proton radius problem.
References [4,5], for instance, propose that the off-shell
form factors of the proton could generate large polarizability
contributions to the proton structure and eventually could solve
the problem, as the effect would only appear in the case of
muonic hydrogen. However, a different opinion has been put
forward in Ref. [22], in which the off-shell effect is shown
to be not sufficiently large to reduce the discrepancy in the
radii found in muonic and conventional hydrogen atoms. It
is interesting to note that Ref. [22] also concludes that the
resolution of this problem must lie elsewhere, perhaps in
re-analyses of the older experiments. Furthermore, QED is
believed to be more precise than QCD, and the techniques and
methods of the Lamb shift measurement in muonic hydrogen
as well as electron-proton scattering are beyond any doubt
[23]. Therefore, it is urgent to reinvestigate the prevailing
methods of extracting the proton charge radius. This idea was
recently proposed by a number of research groups [24,25].
Nevertheless, surprisingly, none of them has questioned the
idea of the “radius” itself.

The radius of a proton is defined in accordance with our
imagination that the proton has a spherical form. However,
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recent investigations have revealed that protons could deform
from a spherical shape, like nuclei in nuclear physics. This
originates from the relativistic motion of the spin-1/2 quarks
inside the proton [26], although there is also a claim that a
pure s-wave nucleon model, with l = 0 and thus perfectly
spherical, could be constructed [27]. Meanwhile, in the liquid
drop model it is also customary to assume the variation of the
proton and neutron radii in order to explain, e.g., the polarized
electric dipole moment in the reflection asymmetric nuclei
[28]. Obviously, the definition of the radius would be blurred
if the proton were not spherical.

On the other hand, the fluctuating size of the proton has
become an important idea in explaining oscillating color
transparency [29]. The idea behind this fluctuating size is that
in the proton-nucleus scattering the high-energy protons that
scattered at wide angles should be “small.” However, there is
also a certain process, in which the protons must be “large”
and the amplitude of this process will increase with increasing
proton sizes. Using this idea, the oscillating transparency found
in the experiment in [30], which is defined as the ratio of the
proton-proton scattering cross sections off the nucleus to those
off the proton at 90◦ as a function of energy, can be successfully
reproduced [29].

Based on the above background, in this paper we propose
a calculation of the proton charge radius by assuming that
protons do not have identical radii; they vary in a certain range.
To simplify the problem we further assume that the radii are
randomly distributed around their average value. Practically, as
the proton radius enters the cross section via the charge form
factor, we can perform this calculation by taking the form
factor cutoff as the corresponding variable. We believe that
further corrections could enter the cross-section formulation.
However, for the present exploratory study we also believe that
our assumption will be sufficient.

We note that our result is in agreement with that obtained
from muonic hydrogen [1]. A more careful measurement was
carried out at Paul Scherer Institute and the result was just
published [32]. It is interesting to note that the latter is still
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consistent with the previous measurement [1], indicating that
the proton radius extracted from muonic hydrogen would
hardly change. Therefore, the discrepancy between our result
and the electronic hydrogen experiment is still outstanding and
more efforts are required to alleviate this problem.

Whereas a 5% difference in the proton radius could
trigger a strong controversy in hadronic studies, it is quite
ironic to realize that in nuclear and neutron star matter
(NSM) investigations protons and neutrons are traditionally
considered “point particles.” Effects of the nucleon structures
are only considered in the so-called excluded volume effect
(EVE) model [33–39]. In this model the total volume occupied
by N nucleons, i.e., NvN , is subtracted from the nuclear
matter volume V , so that the effective volume available for
the nucleon motion is reduced to V − NvN , where vN is the
volume of a nucleon. Of course, the volume of the nucleon
itself decreases as the matter density increases. However,
surprisingly, there has been no unique definition of the radius
in free space, i.e., at zero density. For instance, Ref. [34] used
the proton radii rp = 0.80, 0.70, and 0.60 fm to study the
EVE on the equation of state (EOS) of homogeneous hadronic
matter, whereas Ref. [33] used rp = 0.63 fm to study the
effect on the EOS of nuclear matter. Nevertheless, all studies
indicate that the effect is non-negligible. In fact, Ref. [34]
found that the effect can enlarge the range of applicability of
the quark-meson-coupling (QMC) model. Thus, it would be
very interesting to study the EVE by using our knowledge
obtained from the elastic electron-proton scattering process.

In Sec. II of this paper we explain the procedure for
extracting the proton charge form factor. Section III briefly
discuss the possible future experiment for refining the present
calculation. In Sec. IV we investigate effects of the nucleon
radius variation in the neutron star and symmetric nuclear
matter (SNM). We summarize and conclude our findings in
Sec. V.

II. EXTRACTION OF THE PROTON RADIUS FROM
ELECTRON-PROTON SCATTERING

The differential cross section for elastic electron-proton
scattering can be efficiently written in terms of the Sachs
electric and magnetic form factors, GE,p and GM,p, as [40]
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describes the elastic scattering of a point-like particle. The
notation ε = [1 + 2(1 + τ ) tan2(θ/2)]−1 denotes the virtual
photon polarization, Q2 = 4EE′ sin2(θ/2) is the square of the
virtual photon momentum transfer, τ = Q2/4m2

p, mp is the
proton mass, and E (E′) represents the electron initial (final)
laboratory energy with scattering angle θ .

Because we do not focus on the problems of extracting the
magnetic form factor, we use the phenomenological scaling
GM,p = μpGE,p, where μp is the proton anomalous magnetic

moment, to simplify Eq. (1) to
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assuming identical charge distributions in the protons, i.e.,
identical electric and magnetic radii, where � is the corre-
sponding cutoff.

However, if the the proton sizes were not identical, and
if we assume that they were randomly distributed near their
middle value, then Eq. (1) must be averaged over all proton
sizes, i.e., averaged over the form factor cutoff �,〈
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and 2
� represents the range of the cutoff variation around
the middle value �1.

Experimental measurements for decades have indicated that
the square root of this average can be parameterized by means
of a dipole form,

〈
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〉1/2 ≈

(
1 + Q2

�2
1

)−2

, (6)

where �2
1 = 0.71 GeV2 is often called the standard dipole

form factor, from which one obtains the proton electric radius
by calculating the form factor slope at the real photon point,

rE ≡ 〈
r2
E,p

〉1/2 =
(

−6
dGE,p(Q2)

dQ2
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Q2=0

)1/2

. (7)

At this stage it is important to note that after the operation
of modern continuous beam accelerators, such as MAMI in
Mainz and CEBAF at the Jefferson Laboratory, significant
deviation from the standard dipole form factor has been
observed. To account for this deviation a number of new fits
and models have been proposed. This includes modifications
of the dipole form [43,44], as well as the introduction of more
physical ingredients in the form factor [42,45]. There seems
to be no need to keep the original dipole form to fit both
electric and magnetic form factors, especially for a global fit
to all data, as the standard dipole is considered to be just a
phenomenological approximation. Furthermore, the choice of
the dipole form also seems to be trivial.

However, in the nonrelativistic limit as well as in the Breit
frame the dipole form factor is related to an exponentially
decaying charge distribution via the Fourier transform. The
exponentially decaying behavior is found in most natural phe-
nomena, from radioactive decay rate to atmospheric pressure
on Earth. Some phenomena in social science also exhibit this
behavior. Thus, we believe that in our present case a dipole
form factor looks more natural and a deviation from such a
natural phenomenon requires a rigorous physical concept.

Furthermore, it is also important to emphasize here that the
determination of the slope at Q2 = 0 given by Eq. (7) requires
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very good knowledge of GE,p(Q2) at very low Q2. As a
consequence, the more closely we can approach the real photon
point experimentally, the more reliably we can determine the
proton charge radius. Therefore, the latest and most accurate
measurement of the elastic electron-proton scattering with
low energy and low Q2 at MAMI [3] provides very suitable
experimental data for our present discussion.

We begin with Eq. (6), which implies that the experimen-
tally observed form factor is in fact an average of the genuine
form factor, which one actually should use in Eq. (7) in order
to get the real proton radius. As a consequence, the proton
radius extracted in this way should be considered an averaged
radius.

To investigate the effect of averaging the form factor given
by Eq. (5), let us use the standard dipole form factor to calculate
〈G2

E,p(Q2,�1)〉 in Eq. (5). Note that if we use a dipole form,
the magnitude of the relative variations of both radius r and
cutoff � are equal, i.e.,∣∣∣∣
�

�

∣∣∣∣ =
∣∣∣∣
r

r

∣∣∣∣ , (8)

provided that the variations are not extremely large.
The result is shown in Fig. 1, where we compare our

calculations obtained with the cutoff variations 
� from
0 up to 40% of its standard value with experimental data.
Note that for the sake of simplicity we use the latest result
from the Mainz experiment [3], which provides the latest and
most accurate data in the low-Q2 region, and the result of
extraction from the world electron-proton scattering data with
two-photon exchange effects included [42], which represents
the previous measurements. We use the result obtained from
the standard Rosenbluth separation technique for the Mainz
data, in order to reduce the model dependency of the data.
The GE,p data extracted in Ref. [42] are, of course, model
dependent. However, in this paper they are only used for
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FIG. 1. (Color online) Square root of the averaged G2
E,p calcu-

lated from Eq. (5) for different values of the relative variation 
�/�1

(shown here) compared with experimental data. Experimental data are
taken from Refs. [3] (open circles) and [42] (filled squares).
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FIG. 2. (Color online) As Fig. 1, but limited to Q2 � 0.25 GeV2.
The results obtained for two values of 
�/�1 are compared with the
standard dipole form factor and experimental data. Note the linear
scale for the Q2 axis.

the purpose of comparison and are not included in the fitting
database as described in the following discussion.

It is obvious from Fig. 1 that the result shows a variance
to the standard dipole form. For Q2 � 0.25 GeV2 we observe
that the averaged form factors are larger than the standard
dipole one (i.e., 
�/� = 0); increasing the relative variation
will increase the form factor. However, for Q2 � 0.25 GeV2

we observe a different behavior, i.e., the form factor decreases
as the variation increases. Because the decrease is relatively
small, it is almost invisible in Fig. 1. Therefore, in Fig. 2
we increase the resolution of the 〈G2

E,p(Q2,�1)〉1/2 axis by
limiting Q2 � 0.25 GeV2, where we can clearly see the effect
of variation, i.e., for the relative variation of 40% the agreement
with experimental data is almost perfect.

Although the agreement of the solid curve with experi-
mental data in Fig. 2 could be fortuitous, the most important
message is that the standard dipole form factor is still valid
at low Q2, provided that the corresponding cutoff must be
averaged with relative variation 
�/�1 = 40%. We believe
that this is crucial because extraction of the proton charge
radius is always plagued with many complicated corrections,
especially under a high-Q2 regime, as discussed above. In view
of this, in what follows, we only use the MAMI data and limit
the Q2 up to 0.25 GeV2.

It is apparent from Eq. (5) and Fig. 2 that for each
value of 
� we can optimize the form factor cutoff �1 in
order to further improve the agreement of our calculation
with experimental data. For this purpose we can calculate
the standard χ2/N , which measures the agreement of our
calculation with experimental data. The result as a function of
the proton radius (translated from �1) and 
�/�1 is displayed
in Fig. 3. It is obvious that χ2/N has only one minimum,
located by the intersection of the two dashed lines.

To locate this minimum accurately we fit the value of �1

using the CERN-MINUIT code and scan the relative variation
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FIG. 3. (Color online) (a) The obtained χ 2/N values as functions
of the proton charge radius r and 
 ≡ 
�/�1. (b) The projection
of χ 2/N on the r − 
 plane for χ 2/N � 16. The intersection of the
vertical and horizontal dashed lines locates the minimum position of
χ 2/N , which is accurately shown in Fig. 4.


�/�1 from 0% to 50%, with a 2.5% step, simultaneously,
where the value of �1 is allowed to vary between 0.80 and
0.90. Although this choice seems to be arbitrary, in our fits we
found that the �1 value never reaches both upper and lower
limits. For 
�/�1 = 0% (50%) the cutoff value is obtained as
0.8142 (0.8493) GeV, which corresponds to the proton charge
radius of 0.8396 (0.8048) fm.

Having finished the scanning process we observe that the
obtained χ2/N forms a parabola with the minimum value at

�/�1 = 21.5% and �1 = 0.8203 GeV. This corresponds to
a relative variation of proton radius 
rE/rE ≈ 21.5%, from
Eq. (8), and a proton radius of r = 0.8333 fm, from Eq. (7).
The complete result of this scanning process is depicted in
Fig. 4(a). To increase the accuracy, we have refined the 
�/�1

step to 0.005, which is equivalent to 
rE = ±0.0003 fm, in
the vicinity of the minimum. Therefore, our calculation would
produce the best agreement with experimental data if we used
rE = 0.8333 ± 0.0004 fm, where we have added the error
bar coming from the fitting process (
r obtained from the
MINUIT package). The present result is very interesting because
it corroborates most of the latest findings that exploit more
sophisticated techniques [24,25].

We have also performed the above procedure to find the
proton magnetic radius. It is well known that the experimental
data in this case are notoriously inaccurate, especially at
Q2 ≈ 0. As a consequence, we did not use the four lowest Q2

data points from Ref. [31], because most of them cannot be
renormalized to μp at the real photon point. For comparison
with the charge radius, we display the result in Fig. 4(b).
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FIG. 4. (Color online) χ 2/N as a function of the obtained proton
(a) charge and (b) magnetic radii. The lowest and highest values
of relative variation in the form factor cutoff, 
 ≡ 
�/�1, are
indicated. Vertical lines indicate the minimum positions of χ2/N .
The corresponding 
 values are also shown.

Obviously, the trend is different as in the case of the charge
radius. In the case of the charge form factor, increasing the
relative variation is required to decrease the magnitude of GE,p

in order to reproduce experimental data (see Fig. 2). In contrast
to this, the relative variation of the radius is required to increase
the magnitude of GM,p, in order to reproduce the data.

As shown in Fig. 4 we obtain rM = 0.8103 ± 0.0004 fm,
which is smaller than the result extracted from the dispersion
relation, i.e., 0.84+0.01

−0.02 fm [24]. Nevertheless, our magnetic
radius is much larger than that obtained from direct extraction
of the Mainz data, i.e., 0.777 ± 0.013 fm [3]. However, if the
Friedrich-Walcher parametrization [43] was used in the latter,
the magnetic radius would increase to 0.807 ± 0.02 fm [31],
which is apparently in good agreement with our finding. We
believe that the less accurate magnetic form factor extracted
from the electron-proton scattering could be the origin of the
large variance in the extracted magnetic radii found in the
literature.

III. EXPECTED FUTURE ELECTRON-PROTON
SCATTERING EXPERIMENTS

Because the mathematical formula of the proton charge
form factor is, in principle, not known, determination of the
proton radius using Eq. (7) requires very good knowledge
of the proton form factor to a very low-Q2 region. Thus,
the real challenge for future experiments is to extend the
current experimental data to this kinematics. The situation
is exhibited in Fig. 5, where we compare the result for the
21.5% proton radius variation obtained in the previous section
and various available parametrizations with experimental data
[3,42]. It is obvious from this figure that the Mainz data tend to
deviate from our present result, whereas, surprisingly, the data
extracted in Ref. [42] show a very good agreement with our
calculation. We note that Ref. [42] used polynomial expansion
to parametrize the form factor during the extraction. Therefore,
we believe that the agreement with the present calculation as
exhibited in Fig. 5 could not be a coincidence.
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FIG. 5. (Color online) Square root of the averaged G2
E,p obtained

from different calculations compared with experimental data for
very low Q2. Notation for experimental data is as in Fig. 1. The
result obtained in the present work is represented by the solid curve.
Parameters for the double-dipole and Friedrich-Walcher form factors
are taken from Ref. [31].

As in the large-Q2 case, in the very low Q2 region it is also
obvious that the standard dipole form factor is substantially
larger than our calculation. The result of our calculation is
very close to the result obtained from the Friedrich-Walcher
model [43]. Because all four models shown in Fig. 5 yield
significantly different proton charge radii, it is of course
important to refine the experimental measurement at this
kinematics. Theoretically, this is possible because Eq. (1)
explicitly shows that at the low-Q2 contribution of GE,p is
dominant. Thus, at low Q2, measurement of GE,p should be
more accurate than that of GM,p.

However, from the experimental point of view this could be
a daunting task. It should be remembered that measurements of
electron-proton scattering cross section for Q2 ≈ 0.05 GeV2

were already at forward angles [31]. Below this point,
presumably one has to use other methods. One possible choice
proposed at MAMI is the use of the initial-state radiation,
i.e., radiation emitted by the electron before it is scattered by
the proton, which could provide measurement of form factors
down to Q2 = 0.0001 GeV2 [31]. Obviously, if this method
worked, the proton radius would be severely constrained.

IV. EFFECTS OF NUCLEON RADIUS VARIATION ON THE
SYMMETRIC NUCLEAR MATTER AND THE

NEUTRON STAR MATTER

In the relativistic-mean-field (RMF) model the Lagrangian
density of nucleons consists of four terms, i.e., the free
nucleon, free meson, interaction between nucleons via meson
exchange, and meson self-interaction terms. If we assume that
electrons and muons are point particles, whereas nucleons have
structures with a radius rN , then according to the RMF model
the energy density of matter consisting of the nucleons and the
leptons is given by [39,41]

ε = A
(
εk
p + εk

n

) + εk
e + εk

μ + εM (ω, σ, ρ)

+ gωω0(ρp + ρn) + 1
2gρb0(ρp − ρn), (9)

where gω, gσ , and gρ are the couplings for ω, σ , and ρ mesons,
respectively, εM is the total energy density of the meson,
while σ , ω0, and b0 are the σ , ω, and ρ fields, respectively.
Furthermore, in Eq. (9) we have

εk
i = 2

(2π )3

∫
d3�k (

k2 + m∗2
i

)1/2
θ (k − kF ), i = p, n, e, μ,

(10)

where for leptons the effective mass is m∗
i = mi and for

nucleons it is m∗
i = mi − gσσ .

The nucleon and scalar densities read

ρi = Aρ̄i, (11)

ρs,i = Aρ̄s,i , (12)

where ρ̄i and ρ̄s,i are the ith nucleon and scalar densities,
assuming the nucleon is a point particle. The normalization
constant A is given by

A = 1

1 + Vpρ̄p + Vnρ̄n

, (13)

with Vp and Vn the proton and neutron volumes, respectively.
To simplify the present calculation we assume that

Vp = Vn ≡ VN = 4
3πr3

N, (14)

where VN and rN are the volume and radius of the nucleon,
respectively.

From Eq. (9) we can derive the matter pressure,

P = ρ2 dε

dρ
, (15)

with ε = ε/ρ. Furthermore, the chemical potential for the ith
nucleon can be obtained from

μi = E∗
Fi + ViP

′
i + gωω0 + αi

1
2gρb0, (16)

where αi equals +1 (−1) for the proton (neutron), E∗
F,i =

(k2
F,i + m∗2

i )
1/2

, and

P ′
i = 1

12π2

{
E∗

F,ikF,i

(
E∗2

F,i − 5

2
m∗2

i

)

+ 3

2
m∗4

i log

(
kF,i + E∗

F,i

m∗
i

)}
. (17)

Differently from the QMC model [34,36], where the
dependence of rN on the matter density can be directly obtained
from the model, in the RMF approach the dependence cannot
be easily predicted. Therefore, in the present study we choose
a phenomenological form for the nucleon radius, which is
given by

rN (ρ) = rN (0)

{
1 + β

(
ρ

ρ0

)2}−2

, (18)

where ρ = ρp + ρn, ρ0 is the value of ρ at the saturation
point, and rN (0) is the proton radius in vacuum (zero density),
determined from Eq. (7). At first glance, the choice seems to
be trivial. However, it is actually selected to fulfill the causality
constraint. Furthermore, the formula given in Eq. (18) is more
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FIG. 6. (Color online) Comparison between proton bag radii as a
function of the ratio between nucleon and nuclear saturation densities
obtained from the QMC models [34] and Eq. (18) with two β

values.

convenient for the present purpose, rather than the exponential
one, because in the framework of the presently used RMF
model we found that the required radius must slowly fall off as
a function of the density. Otherwise, the predicted neutron star
mass would violently overshoot the mass of the SRJ164-2230
pulsar, which is believed to be the heaviest observed neutron
star [46]. We also observed that, for a selected value of β,
Eq. (18) can be adjusted to mimic the result of the QMC
models [34] in a certain range of density, thus providing a
good check of our result.

The ratio between rN (ρ) and rN (0) is exhibited in Fig. 6,
where we compare the results obtained from two β values,
i.e., β = 0.0005 and 0.01, with those obtained from the QMC
calculation using different values of bag constants B (see Ref.
[34] for explanation). It is apparent from this figure that the
difference between the calculated radii increases as the density
increases. Nevertheless, the distributions of the radii obtained
from the QMC model are still bounded within the difference
of the two chosen β values in Eq. (18), i.e., the solid and
dash-dotted lines in Fig. 6.

For the RMF model we use the parameter set obtained by
the IUFSU collaboration [47]. In calculating the EOS of the
NSM we use the neutrality and β-stability conditions. They are
required in calculating the Fermi momentum of each particle
in the neutron star core.

The neutron star mass as a function of its radius can
be obtained by solving the Tolman-Oppenheimer-Volkoff
equation with different particle densities in the neutron star
core. In order to describe the “outer crust” region we have used
the EOS given by Rüster et al. [48]. The EOS for the “inner
crust” region is obtained from an extrapolation of the EOS of
the core and outer crust by making use of the polytrophic
energy-pressure density approximation. The “crust” region
is described by using the RMF model with and without
the EVE.

Because in the nuclear matter and NSM a direct comparison
between model calculations and precise experimental data, as
in the case of electron-proton scattering in the previous section,
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FIG. 7. (Color online) The neutron star mass as a function of its
radius for four nucleon radius assumptions. The calculation with (a)
β = 0.0005 and (b) β = 0.01 in Eq. (18). Gray horizontal bars show
the mass of the SRJ164-2230 pulsar, which is believed to be the
heaviest observed neutron star [46]. Notation of the curves in both
(a) and (b) is given in Fig. 8.

is beyond our imagination at present, in the following we do
not calculate the effect of averaging the nucleon radius on the
possible observables. Furthermore, as obtained in the previous
section, the effect of this averaging process is a relatively tiny
shift from the original value. Therefore, we believe that at this
stage it is sufficient to investigate the effect on the conventional
observables by using a ±20% variation of the nucleon original
radius. Note that this variation enters our calculation through
Eqs. (13) and (14).

Figure 7 shows the sensitivity of the neuron star mass-radius
relation to the variation of the nucleon radius as well as to
the dependence of the nucleon radius on the matter density
[β in Eq. (18)], in the framework of RMF models. The
radius of the neutron star depends on the value of nucleon
radius, whereas the maximum mass of the neutron star is
controlled by the dependence of the nucleon radius on the
matter density. Therefore, the heaviest observed neutron star
mass PSRJ1614-2230 [46], shown by the horizontal gray bars
in Fig. 7, yields a significant suppression of the nucleon radius
at a very high density. This result is interesting, because it
opens the possibility of hyperon existence in a neutron star
by using the hyperon vector couplings obtained from SU(6)
symmetry [49].

With regard to the radius of the canonical neutron star
(1.4M
), which is constrained between 10.4 and 12.9 km [50],
our present result should be carefully interpreted, because in
this calculation we have used the IUFSU parameter set, which
was fitted to the finite nuclei data by assuming point-particle
approximation for the nucleon. Therefore, the present result
cannot be quantitatively compared with those obtained with
other constraints. Nevertheless, Fig. 7 indicates that the present
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FIG. 8. (Color online) Effective nucleon mass as a function of
the ratio between nucleon and nuclear saturation densities. Results
were obtained with different values of the nucleon radius rN (0) as
indicated (in fm).

result could become a stringent constraint to the nucleon
radius at a high density, once a consistent EOS with EVE is
available.

Because the result obtained using β = 0.0005 substantially
overshoots the PSRJ1614-2230 constraint, as shown in Fig. 7,
in the following discussion we only use β = 0.01. The result
for the effective nucleon mass in the case of SNM is shown in
Fig. 8, where we compare the calculated masses obtained by
assuming point particle approximation [rN (0) = 0] and finite
nucleon radii [rN (0) �= 0].

From Fig. 8 it is apparent that at high densities the nucleon
effective mass increases with increasing nucleon radius. In
view of the instability against the particle-hole excitation
at high densities owing to the density fluctuation [51], a
sufficiently large effective mass predicted by the RMF model
has an obvious advantage.

Figures 9 and 10 exhibit the nonzero nucleon radius effect
on the EOS of SNM and NSM, respectively. The filled circles
in the NSM EOS in Fig. 10 indicate the positions of the nuclear
star center pressures and center energy densities of maximum
mass. At moderate densities, which correspond to ε � 300,
we observe that the EOS becomes stiffer as the nucleon radius
increases. Beyond this range, the EOS tends to be softer. From
Fig. 11, it is obvious that the pressure of the nuclear star
center with maximum mass of rN (0) = 1 fm [dashed (blue)
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FIG. 9. (Color online) Equation of states of the symmetric nuclear
matter obtained from calculations with different values of the nucleon
radius as a function of (a) energy and (b) density. Notation of the
curves is as in Fig. 8.
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FIG. 10. (Color online) As Fig. 9(a), but for neutron star matter
at (a) lower and (b) higher energies. (a) The dash-dot-dotted line in
shows the causality constraint, and the filled circles indicate the center
pressures and energy densities in the neutron star with maximum
mass.

line] is approximately 32 MeV fm−3, which corresponds to
the energy density of about 320 MeV fm−3. At this point the
EOS obtained with rN (0) = 1 fm is stiffest compared to the
other cases [Fig. 10(a)]. Because in obtaining the nuclear star
mass we should integrate the Tolman-Oppenheimer-Volkof
equation using the corresponding EOS as input from the
nuclear star center pressure up to 0, information based solely on
the soft EOS at high densities of rN (0) = 1 fm is insufficient
for a complete understanding of the neutron star maximum
mass. For other nonzero nucleon radius cases, the situation is
similar.

Obviously, decreasing the nucleon radius will decrease
the pressure in the region of ε � 300 MeV fm−3. However,
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FIG. 11. (Color online) Neutron star mass as a function of its
center pressure for different nucleon radii obtained with β = 0.01.
Filled circles indicate the maximum masses with the corresponding
center pressures.
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decreasing the nucleon radius will simultaneously increase the
nuclear star center pressure. Thus, an additional contribution
from the center pressure up to 300 MeV fm−3 will only
slightly increase the nuclear star mass. This is because the
corresponding EOSs at high densities are relatively soft.
On the other hand, in the case of zero nucleon radius but
using the same RMF parameter set, the contribution from
300 MeV fm−3 up to 0 is very small but the contribution
from high densities is dominant because the corresponding
EOS is stiffer than that of the nonzero nucleon radius. The
very small contribution in the region �300 MeV fm−3 and the
relatively large center pressure are typical for point-particle
RMF models. In this case, the strong correlation between
the nuclear star maximum mass and the EOS stiffness at
high densities is very obvious. Therefore, in the point-particle
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FIG. 12. (Color online) Proton, neutron, electron, and muon
fractions in the neutron star matter as a function of the ratio between
nucleon and nuclear saturation densities. Notation of the curves is as
in Fig. 8.

case we only need to consider the EOS at high densities in
investigating the nuclear star maximum mass behavior. In
addition, the high-density EOSs become significantly stiffer
as β decreases, As a consequence, decreasing the β value will
increase the maximum neutron star mass. Thus, the increase in
the nuclear star mass depends sensitively on the nucleon radius
in free space. These phenomena explain the increase in the
predicted mass and radius of the neutron star with increasing
nucleon radius, as shown in Fig. 7.

In Fig. 12 we display the finite nucleon radius effect on
the fraction of the matter constituents in the neutron star. It
is obvious from this figure that increasing the nucleon radius
will increase the number of existing charge particles at a high
density. This result has serious consequences for a number of
neutron star properties, such as neutron star stability, neutrino
transport in the neutron star, and the cooling process of a
neutron star. Unfortunately, a more detailed and quantitative
analysis of the EVE on a neutron star should wait for a more
consistent EOS, which includes the EVE in the calculation.

V. SUMMARY AND CONCLUSION

We have investigated effects of proton radius variation on
extraction of the proton charge form factor. To achieve the
best agreement with experimental data we have averaged a
dipole form factor over the corresponding cutoff, with an
upper (lower) integration limit of +21.5% (−21.5%) from its
middle value. The extracted proton charge radius is found to be
smaller than that obtained using the traditional standard dipole
fit but is in good agreement with those obtained from a recent
measurement of the Lamb shift in a muonic hydrogen atom
as well as from the dispersion relation. The extracted proton
magnetic radius is smaller than the result of the dispersion
relation but in agreement with the direct extraction making
use of the Friedrich-Walcher form factor. Nevertheless, as the
magnetic form factor is less accurate, the extraction of the
magnetic radius is also less reliable compared to the result for
the charge radius.

We have also investigated effects of nucleon radius variation
on the SNM and the NSM. To this end, the nucleon radius
dependence on the matter density is described by a simple
phenomenological form and four assumptions of the nucleon
radius at zero density are considered in the calculation, i.e., 0
fm (point-particle approximation), 0.833 fm (original radius),
as well as 0.667 fm and 1.000 fm (±20% modifications of the
original radius). We found that the relation between the mass
and the radius of a neutron star is very sensitive to the radius
of the nucleon. A similar result is also observed in the case of
the effective nucleon mass of the SNM as well as the EOS of
both NSM and SNM. However, a more quantitative conclusion
can be drawn only after a more consistent EOS, with the EVE
considered, is available.
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