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Recent observation of pulsar PSR J1614-2230 with a mass of about two solar masses poses a severe constraint
on the equations of state (EOSs) of matter describing stars under extreme conditions. Neutron stars (NSs) can
reach the mass limit set by PSR J1614-2230, but stars having hyperons or quark stars (QSs) having boson
condensates, with softer EOSs, can barely reach such limit and are ruled out. QSs with pure strange matter cannot
attain such high mass unless the effect of strong coupling constants or color superconductivity are considered.
In this work I calculate the upper mass limit for a hybrid star (HS) having a quark-hadron mixed phase. The
hadronic matter (having hyperons) EOS is described by relativistic mean field theory and the quark matter EOS
is modeled according to the Massachusetts Institute of Technology bag model. The intermediate mixed phase is
constructed using the Glendenning prescription. A HS with a mixed phase cannot reach the mass limit set by
PSR J1614-2230 unless one assumes a density-dependent bag constant. However, for such case the mixed-phase
region is small. The maximum mass of a mixed hybrid star obtained with such a mixed-phase region is 2.01M�.
A stiffer hadronic EOS can raise the maximum mass of a mixed HS to 2.1 M�.
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I. INTRODUCTION

Neutron stars (NSs) are gravitationally bound. Therefore,
the precise measurement of mass and radius of a NS should
provide a very fine probe for the equation of state (EOS) of
dense matter. The first reasonable idea about the composition
of compact star was that matter is at extremely high densities
and is mainly composed of neutrons with small fractions of
protons and electrons. Further theoretical developments and
modern experimental results opened the window to other
possibilities. The central core density of a NS is about 3–10
times that of the nuclear saturation density (n0 ∼ 0.15 fm−3).
At such high densities, the matter is likely to be in a deconfined
and chirally restored quark phase [1].

The strange matter hypothesis was first proposed by Itoh
and Bodemer [2,3] and then improved by Witten [4]. It states
that matter at extreme density and/or temperature is composed
of almost equal numbers of up, down, and strange quarks
known as strange quark matter (SQM). This is also said to
be the ground state of strongly interacting matter at extreme
conditions. If this is true, then the matter at extreme conditions
is likely to eventually convert to SQM. Such a high-density
scenario is present in the interior of a NS, and therefore normal
nuclear matter is likely to undergo a phase transition to SQM.
The strange matter hypothesis was first extensively studied in
the simple Massachusetts Institute of Technology (MIT) bag
model by Farhi and Jaffe [5]. The conversion process and the
phase transition was further analyzed by Alcock et al. [6]. The
phase transition in a NS may continue up to the surface of the
star or may stop inside the star. Depending upon the region to
which the quark matter extends, a quark star (QS) may be of
two types, a strange star (SS) or a hybrid star (HS). SS are stars
composed only of SQM, while HS has a quark core surrounded

*ritam.mallick5@gmail.com

by hadronic matter. In the region between the quark core and
hadronic matter, there may exist a mixed-phase region where
both quarks and hadrons are present.

Recently, Demorest et al. [7] found a new maximum mass
limit for compact stars by measuring very precisely the mass
of the millisecond pulsar PSR J1614-2230, 1.97 ± 0.04 M�.
This value is much higher than any previously measured
pulsar mass. This measurement has imposed very severe
constraints on the EOS of matter describing compact objects.
NS models without hyperons can easily satisfy the new mass
limit. However, the presence of strangeness, either in the form
of hyperons in nuclear matter or strange quarks in quark matter,
makes the EOS softer. Therefore, hadronic stars with hyperons
and quark stars cannot easily satisfy the mass limit. Studies
are being carried out to make the hyperonic and quark EOS
satisfactorily explain the new mass constraint.

To satisfy the new mass limit, one has to make the
EOS stiffer, which usually is softened by the presence of
strangeness. However, recent studies have suggested that the
stiffening of hyperonic EOS is possible even with the new
experimental results [8]. Some authors also have revisited
the role of vector meson-hyperon coupling [9] and hyperon
potentials [10] to calculate the maximum mass.

In the quark sector, studies prior to the discovery of
pulsar PSR J1614-2230 have suggested the stiffening of quark
matter EOS from the effect of strong interactions, such as
one-gluon exchange or color superconductivity [11–17]. Ozel
[18] and Lattimer [19] studied the implications of the new
mass limits from PSR J1614-2230 for quark and hybrid stars
in the quark bag model. Recently, Bonanno and Sedrakian
[20] succeeded in obtaining massive HSs. They employed a
color-superconducting quark core and very stiff hadronic EOS
(like the NL3 hyperonic model or the GM3 nuclear model) in
their calculation.

In this work I perform an extensive study of HS mass. For
the hadronic EOS I use the relativistic mean-field model and

025804-10556-2813/2013/87(2)/025804(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.87.025804


RITAM MALLICK PHYSICAL REVIEW C 87, 025804 (2013)

the quark EOS is described by three-flavor MIT bag model.
I assume that the HS has a mixed phase in the intermediate
region. The paper is organized as follows: In Sec. II, I describe
the hadronic EOS, and in Sec. III, I describe the quark MIT
bag model. The mixed-phase EOS is constructed in Sec. IV
using the Glendenning prescription. I present my results in
Sec. V. The maximum mass for the HS is calculated in this
section. Finally in Sec. VI, I summarize my results and draw
conclusions from them.

II. HADRONIC PHASE

The matter at the outer region of the star is mainly composed
of hadrons. I use the nonlinear relativistic mean field (RMF)
model with hyperons (TM1 parametrization) to describe the
hadronic phase EOS. In this model the baryons interact with
mean meson fields [21–25].

The model Lagrangian density includes nucleons, baryon
octet (�,�0,±, �0,−), and leptons:

LH =
∑

b

ψ̄b

[
γμ

(
i∂μ − gωbω

μ − 1

2
gρb �τ . �ρμ

)

− (mb − gσbσ )

]
ψb + 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1

4
ωμνω

μν+1

2
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ωωμωμ − 1

4
�ρμν · �ρμν + 1

2
m2
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3
bmn(gσσ )3 − 1

4
c(gσσ )4 + 1

4
d(ωμωμ)2

+
∑

l

ψ̄l[iγμ∂μ − ml]ψl. (1)

Leptons l are noninteracting, but the baryons b are coupled
with the scalar σ mesons, the isoscalar-vector ωμ mesons,
and the isovector-vector ρμ mesons. The model constants are
fitted in accordance with the experimental results from the
bulk properties of nuclear matter [22,25]. The TM1 model
satisfactorily explains the nuclear saturation but cannot model
the hyperonic matter sufficiently, as it fails to reproduce the
strong observed �� attraction. This defect was remedied by
Mishustin and Schaffner [25] by the addition of isoscalar scalar
σ ∗ mesons and the isovector vector φ mesons, which couple
only with the hyperons. I denote this model by TM1L.

The detailed EOS calculation can be found in Refs. [24,25],
and I do not repeat them here. The TM1L model generates
a relatively soft EOS. For completeness, I compare the
maximum mass of the HS obtained from the TM1L model
with the maximum mass of the HS obtained from a much stiffer
EOS, known as the PL-Z model [25,26]. In Table I, I give the
different coupling constants for the two parametrizations.

For the models, the total energy density takes the form

ε = 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
0 + 1

2
m2

σ σ 2 + 1

2
m2

σ ∗σ
∗2

+ 1

2
m2

φφ2
0 + 3

4
dω4

0 + U (σ ) +
∑

b

εb +
∑

l

εl, (2)

and the pressure can be represented as

P =
∑

i

μini − ε, (3)

TABLE I. Table showing the coupling constants for the two
different parametrization used in the calculation. The nucleons do
not couple with σ ∗ and φ. The � does not couple with isovector field
(gρ� = 0). The coupling constant for σ is the same as that of � except
for the isovector coupling (gρ� = 2gρN ).

Coupling PL-Z TM1L

gσN 10.4262 10.0289
gωN 13.3415 12.6139
gρN 4.5592 4.6322
gσ� 6.41 6.21
gω� 8.89 8.41
gσ∗� 6.93 6.67
gφ� −6.29 −5.95
gσ� 3.52 3.49
gω� 4.45 4.20
gρ� 4.56 4.63
gσ∗� 12.95 12.35
gφ� −12.58 −11.89

where μi and ni are the chemical potential and number density
of particle species i = b, l.

III. QUARK PHASE

The quark phase is modeled according to the simple MIT
bag model [27]. The current masses of up and down quarks
are extremely small and are assumed to be 5 and 10 MeV,
respectively. The strange quark current quark mass is not well
established, and I vary it in my calculation. For the bag model
the energy density and the pressure are given by

εQ =
∑

i=u,d,s

gi

2π2

∫ ki
F

0
dkk2

√
m2

i + k2 + BG, (4)

P Q =
∑

i=u,d,s

gi

6π2

∫ ki
F

0
dk

k4√
m2

i + k2
− BG, (5)

where ki
F =

√
μ2

i − m2
i and gi is the Fermi momentum and

degeneracy factor of quark species i. BG is the energy
density difference between the perturbative vacuum and the
true vacuum, i.e., the bag constant. BG is considered a free
parameter in my calculation.

Both the hadronic and quark matter maintain baryon
number conservation. They are charge neutral and in β
equilibrium.

IV. MIXED PHASE

With the described hadronic and quark EOS, Glendenning
prescription [28] gives the mixed-phase regime. The mixed
phase is the baryon density range where both quarks and
hadrons are present. In the mixed phase the hadron and the
quark phases are separately charged but the mixed phase is
charge neutral as a whole. The matter can be parametrized
by the pair of electron and baryon chemical potentials μe
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and μn. Pressure of the two phases are made equal to
maintain mechanical equilibrium. To satisfy the chemical and
β equilibrium conditions, the chemical potential of different
particles are related to each other. The Gibbs criterion gives
the mechanical and chemical equilibrium between two phases
and is given by

PHP(μe, μn) = PQP(μe, μn) = PMP. (6)

The solution of the above equation gives the equilibrium
chemical potentials of the mixed phase. As the two phases
intersect one can calculate the corresponding charge densities
of the hadronic components ρHP

c and quark components ρQP
c

separately in the mixed phase. The volume fraction occupied
by quark matter χ in the mixed phase is given by

χρQP
c + (1 − χ )ρHP

c = 0. (7)

The mixed-phase energy density εMP and the number
density nMP can be written as

εMP = χεQP + (1 − χ )εHP, (8)

nMP = χnQP + (1 − χ )nHP. (9)

Therefore, the EOS is now a system having a charge-neutral
hadronic phase at lower densities, a charge-neutral mixed
phase in the intermediate density region, and a charge-neutral
quark phase at higher densities.

V. RESULTS

The EOS governs the properties of a compact star. The
central region of the star has maximum density (few times
n0); therefore, the matter at the core is most likely to have
a phase transition. The central region would therefore have
stable strange matter (or a color-superconducting matter). As
the density decreases radially outward hadronic matter starts
appearing and so the intermediate region is likely to have
a mixed phase. Much further outward matter consists of only
hadrons. The crust consists mainly of free electrons and nuclei,
which completes the star structure.

The hadronic EOS with the TM1L parameter set satisfac-
torily explains the properties of hadronic matter. Once the
parametrization is chosen, the model is fixed. One can control
the quark EOS by changing the strange quark mass and the
bag constant. The masses of the light quarks are quite bounded,
and I assume them to be 5 MeV (u) and 10 MeV (d). The mass
of the s quark is still not well established but is expected
to be between 100 and 300 MeV. I vary the mass of the s
quark within this mass range. I also vary the bag constant
(BG) to regulate the mixed phase. This parametrization of
the EOS of the hadron and quark matter is responsible for
characterization of the matter in the mixed phase. Using the
Glendenning prescription to construct the mixed phase, I plot
curves of pressure against energy density in Fig. 1. The figure
shows curves for the mixed-phase EOS with bag pressures 170
and 180 MeV. Actually the relation runs as BG

1/4 = 170 MeV,
but for simplicity I denote BG

1/4 = 170 MeV = Bg . For this
case the mass of the s quark (ms) is taken to be 150 MeV.
With constant bag pressure, bag pressure lower than 170 MeV
cannot generate a mixed-phase region. In the curves, the
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FIG. 1. Pressure as a function of energy density with bag
pressures of 170 and 180 MeV.

lower portion is the nuclear phase (dotted/dashed line), the
intermediate region is the mixed phase (bold line), and the
higher region is the quark phase (dotted/dashed line). Figure 2
show the pressure against baryon density for the EOSs with bag
constants 170 and 180 MeV. The mixed phase starts at 0.2 fm−3

and ends at 0.76 fm−3 for bag pressure 170 MeV, whereas for
bag pressure 180 MeV the mixed phase is between 0.22 and
0.89 fm−3. The EOS curve with bag constant 170 MeV is
much stiffer than the EOS curve with bag pressure 180 MeV,
because the bag pressure adds negatively to the matter pressure,
making the effective pressure low. The curves also show
that as the bag pressure increases the mixed-phase region
increases. The variation of pressure with energy density and
baryon density are quite similar. Therefore, from now on I
only plot the curve showing pressure as function of energy
density.

With such high values of bag pressure it is impossible to
attain the mass limit set by PSR J1614-2230. Therefore, to
have a stiffer EOS I assume density-dependent bag pressure.
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FIG. 2. Pressure as a function of baryon density with bag
pressures of 170 and 180 MeV.
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FIG. 3. Pressure against energy density plot with constant and
varying bag pressure, having Bg = 170 MeV.

In the literature there are several attempts to understand the
density dependence of Bg [29,30]; however, currently the
results are highly model dependent. I parametrized the bag
constant in such a way that it attains a value B∞, asymptotically
at high densities. The range of value of B∞ obtained from
experiments can be found in Burgio et al. [31], and I assume
it to be 130 MeV, the lowest value mentioned there. With
such assumptions I vary the bag pressure with baryon density
according to a Gaussian parametrization, which is given by
[31,32]

Bgn(nb) = B∞ + (Bg − B∞) exp

[
− β

(
nb

n0

)2]
. (10)

The lowest value of Bgn, which is its value at asymptotic high
density in quark matter, is fixed at 130 MeV. The bag pressure
quoted from now on would be the value of the bag pressure at
the beginning of the mixed-phase region (Bg in the equation).
As the density increases the bag pressure decreases and reaches
130 MeV asymptotically; the decrease rate is controlled
by β.

In Fig. 3 I have plotted curves with and without the
variation of bag pressure (for Bg = 170 MeV). The figure
shows that the EOS with varying bag pressure is much stiffer
than the EOS with constant bag pressure. For the varying bag
pressure the mixed-phase region shrinks and becomes flatter,
but the quark phase becomes stiffer. The mixed-phase region
extends only up to baryon density of 0.53 fm−3. The change
in the mixed-phase region is about ∼30%. The curve becomes
stiff toward higher densities (or higher energy density)
because the effective matter pressure increases with the
decrease in bag pressure (bag pressure adds negatively to the
matter pressure). With such a density-dependent bag constant
one can have a mixed-phase region with lower values of bag
pressure. As shown in Fig. 4 one can have a mixed-phase
region with bag pressures of 160 and 150 MeV. EOS with
Bg = 160 MeV have s-quark mass (ms) of 150 MeV, and for
EOS with Bg = 150 MeV the s-quark mass is 300 MeV. With
Bg = 160 and Bg = 150 MeV the mixed-phase region is
considerably small. For Bg = 160 MeV the mixed-phase

0 100 200 300 400 500
energy density (MeV/fm

3
)

0

25

50

75

100

pr
es

su
re

 (
M

eV
/f

m
3 )

B
g
=150 MeV

B
g
=160 MeV

FIG. 4. Pressure against energy density plot with varying bag
pressure, having Bg = 160 and 150 MeV.

region starts at 0.15 fm−3 baryon density and ends at
0.36 fm−3 baryon density. For EOS with Bg = 150 MeV the
mixed phase starts at 0.13 fm−3 baryon density and ends at
0.3 fm−3 baryon density. In Fig. 5 I have separately plotted
the EOS for Bg = 150 MeV showing the mixed phase region
clearly. As shown later, with such choice of quark matter
parameters (bag constant and strange quark mass) one can
attain the mass limit set by PSR J1614-2230. For this the value
of β is 0.0035. This is the maximum value of β for which
one gets a finite mixed-phase region. For higher value of β
the mixed phase disappears. β is the parameter that decides
how fast the bag constant falls to its lowest asymptotic value
of 130 MeV. As the value of β becomes greater, it falls faster.
In Fig. 6 I have shown the variation of bag pressure with
energy density for three β values, 0.001, 0.002, and 0.0035.
I find that as the value of β increases, the rate of fall of bag
pressure increases. In Fig. 7 I have shown the variation of
pressure against energy density for the same three β values,
with Bg = 150 MeV. I find that as β increases the EOS
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FIG. 5. Pressure against energy density plot showing explicitly
the mixed-phase region, for the varying bag pressure Bg = 150 MeV.
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FIG. 6. Bag pressure against energy density curves for three
values of β: 0.001, 0.002, and 0.0035.

becomes stiffer, with all other bag parameters remaining the
same.

I should mention here that the Bodemr-Witten conjecture
is valid for the MIT bag model for a certain “stability
window.” If the three-flavor quark matter is the absolute stable
ground state, then at zero pressure, the energy density per
baryon for the three-flavor matter has to be lower than that
for iron, which is 930 MeV. Therefore, for my analysis I
can do a simple calculation to see the value of energy per
baryon. With the given quark masses mentioned previously,
for Bg = 180 MeV and Bg = 170 MeV, the energies per
baryon are 963 and 942 MeV respectively. Therefore, for such
choices the quark matter is not stable. For Bg = 160 MeV
the value is 911 MeV, which makes the quark matter stable
for varying bag pressure of 160 MeV. For Bg = 150 MeV
the value is 920 MeV. The value of the energy per baryon
for Bg = 150 MeV is greater than that of Bg = 160 MeV
because for Bg = 150 MeV the s-quark mass is 300 MeV,
whereas for Bg = 160 MeV the s-quark mass is 150 MeV.
For the same value of s-quark mass, the energy per baryon
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FIG. 7. Pressure against energy density curves for three values of
β: 0.001, 0.002, and 0.0035, with Bg = 150 MeV.
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FIG. 8. Pressure against energy density plot showing the mixed-
phase region for the varying bag pressure Bg = 150 MeV for TM1L
and PL-Z EOSs.

for Bg = 150 MeV is lower than Bg = 160 MeV. However, to
have the maximum mass of a hybrid star the quark matter is
stable.

As mentioned previously, for completeness, I construct the
mixed EOS with the PL-Z hadronic model. In Fig. 8 I plot the
PL-Z and TM1L EOSs for comparison. The hadronic PL-Z
EOS is much stiffer than the TM1L EOS. However, in the
mixed phase the stiffness is not very large as the hadronic
EOS affects only the low-density region of the mixed EOS
curve.

Assuming the star to be stationary and spherical, the
Tolman-Oppenheimer-Volkoff (TOV) equations [33] give the
solution for the pressure P and the enclosed mass m,

dP (r)

dr
= −Gm(r)ε(r)

r2

[1+P (r)/ε(r)][1+4πr3P (r)/m(r)]

1 − 2Gm(r)/r
,

dm(r)

dr
= 4πr2ε(r), (12)

with G being the gravitational constant. Starting with a
fixed central energy density ε(r = 0) ≡ εc, I integrate radially
outward until the pressure on the surface equals the one
corresponding to the density of iron. This gives the star’s radius
R having gravitational mass

MG ≡ m(R) = 4π

∫ R

0
drr2ε(r). (13)

For the NS crust, in the medium-density range I add the
hadronic EOS by Negele and Vautherin [34], and for the outer
crust I add the EOS by Feynman et al. [35] and Baym et al. [36].

Figure 9 shows the gravitational mass M (in units of solar
mass M�) as a function of radius R, for constant and varying
bag pressure, Bg = 170 MeV. A stiffer EOS generates a stiffer
mass-radius curve. Therefore, the maximum mass of the star
with varying bag pressure is higher than the nonvarying one.
With such varying bag pressure I plot the mass-radius curve
with Bg = 160 MeV and 150 MeV (Fig. 10). With same
qualitative aspect I find that the maximum mass of a mixed
hybrid star obtained with Bg = 160 MeV is 1.84M�. The
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FIG. 9. Mass-radius curve with constant and varying bag
pressure, Bg = 170 MeV.

maximum mass with Bg = 150 MeV and ms = 300 MeV is
2.01 M�.

The discovery of high-mass pulsar PSR J1614-2230 [7],
with mass of about 1.97M�, has set a stringent condition on the
EOSs describing the interior of a compact star. The authors [7]
quote the typical values of the central density of J1614-2230,
for the allowed EOSs are in the range of 2n0–5n0, whereas
consideration of the EOS-independent analysis [37] sets the
upper central density limit at 10n0. With our prescription, the
maximum mass of a mixed HS with ms = 150 MeV is found
to be 1.84M�. The maximum mass for the mixed HS can
be increased to 2.01M�, with ms = 300 MeV and having a
varying bag pressure of Bg = 150 MeV. Such choice of the
quark matter parametrization can give rise to a mixed HS
which would satisfy the mass limit set by PSR J1614-2230.
However, with such choice of parameters the mixed-phase
region is small.

It should be mentioned here that I have taken only the Gibbs
condition for the HS. This choice ensures a mixed-phase region
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FIG. 10. Mass-radius curve with varying bag pressures,
Bg = 160 and 150 MeV.
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FIG. 11. Pressure against energy density plot for Gibbs and
Maxwell construction of the mixed phase EOS.

and neglects the Coulomb and surface energies. There can be
another extreme condition for HS, the Maxwell condition,
corresponding to high surface tension of quark matter [38,39].
In such case the matter has a sudden jump transition from
hadronic to quark phase. In Fig.11 I have plotted the EOS curve
for both the Gibbs and Maxwell approaches. For the Gibbs
approach I find an extended mixed-phase region, whereas for
the Maxwell approach there is a jump in the energy density
(corresponding to a jump in density) from the lower hadronic
to higher quark matter. In Fig. 12 I have shown the mass-radius
relationship for the two approaches with my given formalism
and EOS sets. I find that the maximum mass for the Maxwell
approach is slightly higher, 2.06M�.

As mentioned earlier, I also show the mass-radius curve for
the mixed HS with stiffer hadronic EOS (PL-Z model) having
the same quark matter parametrization (Bg = 150 MeV and
ms = 300 MeV). The maximum mass for the mixed HS attains
a much higher value of 2.1M� as shown in Fig. 13.

In this study I am mainly interested in studying the
maximum mass of a mixed HS. The maximum mass of a
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FIG. 12. Mass-radius curve for Gibbs and Maxwell construction
of the HS.
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FIG. 13. Mass-radius curve with varying bag pressure, 150 MeV,
for TM1L and PL-Z EOS.

HS with Gibbs approach is found to be 2.01M� and with
Maxwell approach is 2.06M�. Stiffer EOS (Pl-Z) takes the
maximum mass of the mixed HS to a much higher value of
2.1M�. Nonhyperonic hadronic EOS could generate higher
masses for HS [9]. Stiffer EOS sets (like hadronic NL3 and
quark quark NJL model) for the mixed hybrid star can produce
a much higher mass limit [40]. However, the aim of this paper
was to see if a simple soft hyperonic and quark matter EOS can
generate a HS which satisfies the mass limit set by the pulsar
PSR J1614-2230. I have used a simple quark matter EOS,
the MIT bag model, and by varying the bag pressure one can
successfully maintain the mass limit set by PSR J1614-2230.
It should be mentioned that in compact stars at high densities
(mostly in their cores) there may be pairing of up, down,
and strange quarks to form the so-called color-flavor locked
(CFL) superconducting phase [41]. Such an exotic phase in
the interiors of the stars produces stable HS masses which are
quite high (much beyond 2M�) [9,20]. In my calculation I
have not used such CFL superconducting phase, but it is likely
that such an exotic phase in quark matter would push the limit
of the maximum mass to higher values.

From the mass-radius figures it is also clear that the maxi-
mum mass of the star corresponds to a radius of around 10 km.
Therefore, the mixed hybrid star has a radius, corresponding
to the maximum mass, in between neutron and strange stars.
However, in a recent calculation by Paoli and Menezes [43],
they showed that it may be not always be the case. There
they used NJL model to describe the quark phase and reached
the conclusion that the mass-radius value of a compact star
depends on the choice of the EOS model (both hadronic and
quark).

VI. SUMMARY AND CONCLUSION

In this work I have studied the maximum mass of a
hybrid star having a mixed-phase region. With a relatively
soft hadronic matter EOS having hyperons, and remaining in
the simple MIT bag model, I wanted to study what parameter
values could generate a massive HS having a mixed-phase

region. The HS has a dense quark core, a mixed intermediate
phase, and hadronic outer region. The mixed phase is deter-
mined in accordance with the Glendenning prescription. All
the phases are at chemical and mechanical equilibrium and
are charge neutral as a whole. With constant bag pressures
Bg = 170 and Bg = 180 MeV (and ms = 150 MeV) I get an
EOS having a considerable mixed-phase region, but with such
parametrization the maximum mass of the star is about 1.5M�.
Also a simple analysis finds that for such choice of bag pressure
values the SQM is not absolutely stable. I therefore consider
a density-dependent bag pressure Bg , parametrized according
to the Gaussian parametrization. The asymptotic value of the
bag constant at high density is fixed at 130 MeV, which is
its lowest value known from the experiments [31]. With such
varying bag pressure I can have a mixed phase region with
Bg = 160 MeV, but still the mass of the star is below 1.9M�.
To reach the mass limit set by PSR J1614-2230, one has to build
the mixed EOS with bag pressure of Bg = 150 MeV, having
s-quark mass ms = 300 MeV and β = 0.0035. However, for
such choice of parameter values the mixed-phase region is
small. Further lowering of bag pressure is not possible, as then
the mixed phase disappears. The maximum mass for a mixed
hybrid star with the given sets of parameter values is found to
be 2.01M�. A stiffer hadronic EOS takes the maximum mass
to 2.1M�. If one has a direct jump from the hadronic to quark
matter, the Maxwell approach, the maximum mass of the HS
is 2.06M�.

After the discovery of PSR J1614-2230, setting the mass
limit of compact stars to be 2M�, new EOS models are being
proposed. Weissenborn et al. [42] showed that an absolutely
stable strange star can have a mass above 2 etal if the effect
of strong coupling constant and color superconductivity is
taken into account. Bednarek et al. [8] argued that EOS with
hyperons having quartic terms involving hidden strange vector
mesons can reach such a high mass limit. Matsuda et al. [44]
extended their calculation to hybrid stars, having a smooth
crossover from hadronic to quark matter. For the star to reach
the maximum mass limit they showed that the crossover has
to take place at low density and the quark matter has to be
strongly interacting. Using very stiff EOS sets (hadronic NL3
and quark quark NJL model), the maximum mass limit for the
hybrid star can be raised to much higher values as shown by
Lenzi and Lugones [40]. In my work, I have shown that the
maximum mass limit can be attained by a HS with a mixed
phase even with a relatively soft hadronic matter EOS having
hyperons and the MIT bag model quark matter EOS, if one
assumes a relatively low density-dependent bag pressure.

Observationally the NSs are characterized only by the
signals coming to us from their surface. Developments had
been made to accurately measure the mass of a compact
star, but the same cannot be done for its radius. Reasonable
measurement of the radius of a compact star could differentiate
NSs, SSs, and HSs, as different EOSs of matter give different
mass-radius relationships. Recent calculations show that by
tuning parameter values or invoking new terms in the EOS
analysis, the mass limit set by PSR J1614-2230 can be attained.
Therefore, to have a full understanding of the matter at
extreme densities we need results not only from astrophysical
observations but also from earth-based experiments.
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