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We have performed large-scale shell-model calculations of the half-lives and neutron-branching probabilities
of the r-process waiting-point nuclei at the magic neutron numbers N = 50, 82, and 126. The calculations
include contributions from allowed Gamow-Teller and first-forbidden transitions. We find good agreement with
the measured half-lives for the N = 50 nuclei with charge numbers Z = 28–32 and for the N = 82 nuclei 129Ag
and 130Cd. The contribution of forbidden transitions reduce the half-lives of the N = 126 waiting-point nuclei
significantly, while they have only a small effect on the half-lives of the N = 50 and 82 r-process nuclei.
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I. INTRODUCTION

Although the actual site of the astrophysical r-process
is still not known with certainty, it is commonly accepted
that it occurs in an explosive environment of relatively high
temperatures (T ≈ 109 K) and very high neutron densities
(>1020 cm−3) [1–5]. Under such conditions, neutron captures
are much faster than competing β decays and the r-process
path in the nuclear chart proceeds through a chain of extremely
neutron-rich nuclei with relatively low and approximately
constant neutron separation energies (Sn � 3 MeV). Due to
the relatively stronger binding of nuclei with magic neutron
numbers, the neutron separation energies show discontinuities
at the magic numbers N = 50, 82, and 126. As a consequence,
the r-process matter flow slows down when it reaches these
magic neutron nuclei and has to wait for several β decays
(which are also longer than for other nuclei on the r-process
path) to occur before further neutron captures are possible,
carrying the mass flow to heavier nuclei. Thus matter is
accumulated at these r-process waiting points associated
with the neutron numbers N = 50, 82, and 126, leading to
the well-known peaks in the observed r-process abundance
distribution.

The β half-lives of the waiting points have at least two
important effects on the r-process dynamics and abundance
distributions. First, they mainly determine the time it takes
the mass flow within the r-process to transmute seed nuclei
to heavy nuclei in the third peak around A ∼ 200. Second, in
the astrophysical environment the nuclear r-process time scale
(given by the sum of β half-lives of nuclei in the r-process path)
competes with some dynamical time scale of the environment,
e.g., the expansion time scale of the ejected matter. If the r-
process path and half-lives were known, the reproduction of the
abundance distribution can be used to constrain the conditions
of the astrophysical environment. If the r-process has sufficient
time for β-flow equilibrium to establish, the relative elemental
abundances are proportional to the β half-life [6].

Despite their importance, only a few half-lives of waiting
points with magic neutron numbers N = 50 and 82 are known

experimentally [7–10], and no experimental data exist yet
for the N = 126 waiting points. The situation is expected to
improve in the near future with the advent of new experimental
facilities. For example, the β-decay half-lives of 38 new
neutron-rich isotopes from Kr to Tc close to the r-process
path have been measured at the new Radioactive Ion Beam
Factory facility at RIKEN [11]. Furthermore, researchers at
GSI have measured half-lives of nuclei close to N = 126
using a novel analysis method [12]. Despite this progress,
the half-lives needed for r-process simulations have mainly
relied on theoretical estimates. As the Q values involved are
rather low, such calculations have traditionally been based on
allowed (i.e., Gamow-Teller, GT) transitions. Most of these
studies used the quasiparticle random phase approximation
(QRPA) either on top of semiempirical global models [13–15]
or the Hartree-Fock-Bogoliubov method [16]. Although the
calculations give a fair account of the few experimental
half-lives, it is well known that these models underestimate the
correlations among nucleons which pull down the GT strength
to low energies. This shortcoming is overcome within the
interacting shell model, which indeed describes the measured
half-lives of r-process waiting-point nuclei very well [17–19].

It is expected that the appearance of intruder single-particle
states with different parity may have influence on the low-
energy spectra of the r-process waiting-point nuclei. Thus it
is conceivable that first-forbidden transitions might contribute
to the half-lives of these nuclei. A first attempt to estimate
such forbidden contributions has been taken within the gross
theory [14]. This model, however, has been found to be rather
inaccurate when applied to Gamow-Teller transitions. More
recently, Borzov extended the QRPA studies based on the
Fayans energy functional to a consistent treatment of allowed
and first-forbidden contributions to r-process half-lives [20].
While these calculations find that forbidden contributions give
only a small correction to the half-lives of the N = 50 and N =
82 waiting-point nuclei, they result in a significant reduction
of the N = 126 half-lives. This important finding has been our
motivation to extend our shell-model calculations of waiting-
point half-lives to include also first-forbidden transitions. We
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expect that not only will correlations among nucleons affect
the half-lives, but reliable descriptions of the detailed allowed
and forbidden strength functions are needed to estimate the
probabilities for β-delayed neutron-emission rates, which are
known to be important for describing the decay of the r-process
nuclei toward stability after freeze-out.

We note that GT and higher multipole transitions are
relevant to describe neutrino-nucleus reactions, which are
important in many astrophysical sites [18,21]. Traditionally,
these reactions have been studied within the random phase
approximation [22,23], including nuclei relevant to r-process
nucleosynthesis [24–26]. In an interesting recent development,
neutrino-induced reactions on light nuclei with relevance to
neutrino nucleosynthesis [27,28] have been calculated on the
basis of the shell model, including GT and first-forbidden
transitions [29,30].

II. SHELL MODEL AND β-DECAY THEORY

In our half-life calculations, we consider allowed and
first-forbidden contributions. These are obtained using the
diagonalization shell mode code NATHAN developed by Caurier
[31,32] to calculate the initial and final nuclear states and
the corresponding nuclear transition matrix elements. Model
spaces and residual interactions are discussed for the three
different sets of waiting-point nuclei with N = 50, 82, and 126
individually. The partial half-life, t , for a transition between
an initial (normally the ground state) and a final nuclear state
is related to the phase-space factor by

f t = K = 6146 s. (1)

The phase factor has the form

f =
∫ W0

1
C(W )F (Z,W )(W 2 − 1)1/2W (W0 − W )2dW .

(2)

C(W ) is the so-called shape factor that depends on the electron
energy, and W is in units of electron mass. W0 is the maximum
electron energy, also in electron mass units, that is given by
the difference in nuclear masses between the initial and final
nuclear states, W0 = Q/(mec

2) = (Mi − Mf )/me. F (Z,W )
is the Fermi function that corrects the phase space integral for
the Coulomb distortion of the electron wave function near the
nucleus. The partial decay rate is related to the partial half-life:
λ = ln 2/t . The total decay rate is given by summing over the
partial decay rates to all possible final states.

For allowed transitions, the shape factor does not depend
on the electron energy and for β− decay has the form

C(W ) = B(GT ). (3)

The GT reduced transition probability is given by

B(GT ) =
(

gA

gV

)2 〈f |∣∣∑k σ k tk
−
∣∣|i〉2

2Ji + 1
, (4)

where the matrix element is reduced with respect to the spin
operator σ only (Racah convention [33]) and the sum runs
over all nucleons. For the isospin-lowering operator, we use

the convention t−n = p. Finally, (gA/gV ) = −1.2701(25) is
the ratio of weak axial and vector coupling constants.

For first-forbidden (FF) transitions, the shape factor is

C(W ) = k + kaW + kb/W + kcW 2, (5)

where the coefficients k, ka, kb, and kc depend on the FF
nuclear matrix elements, the maximum electron energy, W0,
and the quantity ξ = αZ/(2R) with R the radius of a uniformly
charged sphere approximating the nuclear charge distribution
[34]. Following the treatment of Behrens and Bühring [35]
they are given by

k = [
ζ 2

0 + 1
9w2

](0) + [
ζ 2

1 + 1
9 (x + u)2 − 4

9μ1γ1u(x + u)

+ 1
18W 2

0 (2x + u)2 − 1
18λ2(2x − u)2

](1)

+ [
1

12z2(W 2
0 − λ2)

](2)
,

ka = [ − 4
3uY − 1

9W0(4x2 + 5u2)
](1) − [

1
6z2W0

](2)
,

(6)
kb = 2

3μ1γ1{−[ζ0w](0) + [ζ1(x + u)](1)},
kc = 1

18 [8u2 + (2x + u)2 + λ2(2x − u)2](1)

+ 1
12 [z2(1 + λ2)](2)

with

V = ξ ′v + ξw′, ζ0 = V + 1
3wW0,

(7)
Y = ξ ′y − ξ (u′ + x ′), ζ1 = Y + 1

3 (u − x)W0.

The numbers in parentheses after the closing brackets denote
the rank of the operators inside the brackets. The parameter γ1

is given by
√

1 − (αZ)2. For the Coulomb functions μ1 and
λ2 we use the approximations μ1 ≈ 1 and λ2 ≈ 1 [36].

After a nonrelativistic reduction, the matrix elements can
be related to the form-factor coefficients, A,V FKls , defined in
Refs. [35,36]. In the Condon and Shortley phase convention
[37] the matrix elements are

w = −R AF 0
011 = −gA

√
3
〈f |∣∣∑k rk

[
Ck

1 × σ k
]0

tk
−
∣∣|i〉√

2Ji + 1
,

(8a)

x = − 1√
3
R V F 0

110 = −〈f |∣∣∑k rkCk
1 tk

−
∣∣|i〉√

2Ji + 1
, (8b)

u = −
√

2

3
R AF 0

111 = −gA

√
2
〈f |∣∣∑k rk

[
Ck

1 × σ k
]1

tk
−
∣∣|i〉√

2Ji + 1
,

(8c)

z = 2√
3
R AF 0

211 = 2gA

〈f |∣∣∑k rk

[
Ck

1 × σ
]2

tk
−
∣∣|i〉√

2Ji + 1
, (8d)
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w′ = −2

3
R AF 0

011(1, 1, 1, 1)

= −gA

√
3
〈f |∣∣∑k

2
3 rkI (1, 1, 1, 1, rk)

[
Ck

1 × σ
]0

tk
−
∣∣|i〉√

2Ji + 1
,

(8e)

x ′ = − 2

3
√

3
R V F 0

110(1, 1, 1, 1)

= −〈f |∣∣∑k
2
3 rkI (1, 1, 1, 1, rk)Ck

1 tk
−
∣∣|i〉√

2Ji + 1
, (8f)

u′ = −2
√

2

3
√

3
R AF 0

111(1, 1, 1, 1)

= −gA

√
2
〈f |∣∣∑k

2
3 rkI (1, 1, 1, 1, rk)

[
Ck

1 × σ k
]1

tk
−
∣∣|i〉√

2Ji + 1
,

(8g)

ξ ′v = AF 0
000 = gA

√
3

M

〈f |∣∣∑k[σ k × ∇k]0 tk
−
∣∣|i〉√

2Ji + 1
, (8h)

ξ ′y = V F 0
101 = − 1

M

〈f |∣∣∑k ∇k tk
−
∣∣|i〉√

2Ji + 1
, (8i)

where

C lm =
√

4π

2l + 1
Y lm, (9)

with Y lm the spherical harmonics. The weak axial coupling
constant is gA = −1.2701(25) and M is the nucleon mass.
The quantity I (1, 1, 1, 1, r) appearing in the primed matrix
elements takes into account the nuclear charge distribution,
which can be approximated by a uniform spherical distribution
[35]:

I (1, 1, 1, 1, r) = 3

2

{[
1 − 1

5

(
r
R

)2]
0 � r � R,[

R
r

− 1
5

(
R
r

)3]
r � R.

(10)

Based on the conserved vector current theory and the
assumption that the isospin is a good quantum number, the
matrix element ξ ′y can be related to the x matrix element [38]:

ξ ′y = Eγ x, (11)

where energy Eγ is defined as the energy difference between
the isobaric analog of initial state and the final state:

Eγ = Eias(i) − Ef = Q + 	EC − (mnc
2 − mpc2), (12)

where mn and mp are the neutron and proton masses and 	EC

is the Coulomb displacement energy between isobaric analog
states that can be approximated by [39]

	EC = 1.4136(1) Z̄/A1/3 − 0.91338(11) MeV, (13)

with Z̄ = (Zi + Zf )/2.
To compare the first-forbidden and Gamow-Teller transi-

tions, we define the averaged shape factor as

C(W ) = f/f0, (14)

where f takes the form of Eq. (2) and f0 is

f0 =
∫ W0

1
F (Z,W )(W 2 − 1)1/2W (W0 − W )2dW. (15)

III. MODEL SPACES AND QUENCHING

We have performed β-decay half-life calculations for
r-process waiting points based on large-scale shell-model
calculations. In particular, we chose the following model
spaces and respective interactions.

For the N = 50 nuclei, we have adopted a model space
spanned by the 0f7/2,5/2 and 1p3/2,1/2 orbits for protons and
by the 0f5/2, 1p3/2,1/2, and 0g9/2 orbits for neutrons. The
single-particle energies and the residual interaction are the
ones adopted in Ref. [40] to study the shell evolution between
68Ni and 78Ni.

Our shell model calculations for the N = 82 waiting-point
nuclei follows the shell-model studies presented in Ref. [19].
From the two model spaces defined in Ref. [19] we adopt
the one built on a 88Sr core. That is, we explicitly consider
the 1p1/2 proton orbit, which is expected to be important
for the description of the negative-parity states and hence the
first-forbidden transitions. Our model space is then spanned
by the 0g7/2, 1d3/2,5/2, 2s1/2, 0h11/2 orbits outside the N = 50
core for neutrons and the 1p1/2, 0g9/2,7/2, 1d3/2,5/2, 2s1/2 orbits
for protons. This model space avoids spurious center-of-mass
excitations by omitting the 0h11/2 orbit for protons and the
0g9/2 orbit for neutrons. We adopt the residual interaction
given in Ref. [19] based on the 88Sr core, which gives a good
account of the spectroscopy of nuclei in the neighborhood of
132Sn. In particular, our calculation reproduces the excitation
energy of the first 1+ state in 130In as well as the low-energy
spectrum of 128Cd and of the r-process waiting-point nucleus
130Cd [41].

The model space for the N = 126 waiting points has been
spanned by the 0g7/2, 1d5/2,3/2, 0h11/2, and 2s1/2 orbits for
protons and the 0h9/2, 1f7/2,5/2, 0i13/2, and 2p3/2,1/2 orbits
for neutrons. As interaction, we use the effective Kuo-Herling
interaction KHHe of Ref. [42], which has been constructed
based on holes in a 208Pb core. It is the same model space and
effective interaction as has been used in a previous calculation
of the half-lives, which, however, has only considered pure
GT transitions [18]. These are mainly connected to neutron
0h9/2 to proton 0h11/2 transitions. However, it is expected that
first-forbidden transitions can compete, mainly via neutron
0i13/2 to proton 0h11/2 transitions. Full diagonalization in this
model space exceeds current computer capabilities. Hence,
we performed truncated calculations following a generalize
seniority scheme that allows for configurations with maximum
seniority 8; that is, we consider a maximum of 4 non-J = 0
pairs, for even-even nuclei. For odd-even nuclei, the number
of broken pairs had to be limited to three, while for 199Ta no
limitation has been enforced. We expect our model spaces to
be large enough to give a reasonable account for the low-lying
Gamow-Teller and first-forbidden transitions. Nevertheless,
the model spaces are too restricted to recover the full Gamow-
Teller and first-forbidden strengths built on the ground or
isomeric states. The missed strength, however, resides mainly
outside the Qβ window and hence does not affect our half-life
calculations.

Although the shell model usually gives a good account of
the relative strength distributions, it overestimates the total
strength. For Gamow-Teller transitions, this shortcoming can
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be corrected by replacing the bare Gamow-Teller operator
with an effective operator GTeff = q σ t . The quenching
factor q has been found to be approximately constant over
the nuclear chart [43–45]. In practice, using q ≈ 0.7 has
been shown to give a good reproduction of the absolute
Gamow-Teller distributions. There is also evidence that the
absolute first-forbidden transition strength is overestimated
within shell-model approaches. Ejiri and collaborators [46,47]
related this fact to core polarization effects and suggested the
introduction of a constant hindrance factor. Based on pertur-
bation theory, Warburton [42,48] showed that the quenching
of first-forbidden transitions depends slightly on the initial
and final single-particle orbits. In particular, Warburton found
that transitions mediated by the rank 0 operator [Eq. (8h)]
(called the relativistic matrix element) appear to be enhanced
compared to the other first-forbidden transitions, due to meson
exchange effects [49].

To treat the quenching of the Gamow-Teller and first-
forbidden transitions in our shell-model calculations, we
have assumed that the quenching factors are the same for
all nuclei. Following the findings of Warburton [48,49], we
have furthermore assumed that the quenching factors for
the operators of rank 0, 1, and 2 contributing to the first-
forbidden transitions as defined in Eq. (8) can be different.
To determine these individual quenching factors, we have
performed shell-model calculations for experimentally known
β-decays of nuclei in the vicinity of the magic neutron numbers
N = 82 and N = 126. Here, we have adopted a similar set of
first-forbidden transitions of nuclei in the lead region as chosen
in the study of Warburton [49], supplemented by the decays of
the ground state of 205Au (N = 126) and the (1/2)− isomeric
states in 131In (N = 82) and 129In (N = 80), which are both
known to decay by first-forbidden transitions. By performing
a least-squares fit to the experimental data, we obtained the
following quenching factors for the various matrix elements
defined in Eq. (8):

q(ξ ′v) = 1.266, q(w) = q(w′) = 0.66,

q(x) = q(x ′) = 0.51, q(u) = q(u′) = 0.38, (16)

q(z) = 0.42.

The calculated half-lives and the corresponding average shape
factors are summarized in Table I. Figure 1 compares the
experimental and calculated shape factors.

Upon closer inspection, there is quite a good agreement
between our shell-model half-lives for the isomeric states in
the In isotopes and the experimental values. For the nuclei
in the vicinity of N = 126, however, we find a noticeably
larger scatter between calculation and data, but there are no
systematic deviations. With the exception of the two 205Au
decays, where our calculation overestimates (to the 5/2−
state in 205Hg) or underestimates (to the 1/2− state) the
average shape factor roughly by a factor of 9, we generally
find agreement of our calculated ¯C(W ) with data within
a factor of 4. As already observed while determining the
quenching factor for GT transitions in shell-model calculations
[53], the description of a decay between specific states is
noticeably more sensitive to nuclear structure effects than
global quantities such as half-lives or total strengths. Hence

TABLE I. Comparison of calculated log f0t and (C(W ))1/2 for
first-forbidden transitions with experimental data [50–52].

Transition log f0t (C(W ))1/2

Initial Final Theory Expt. Theory Expt.

131In( 1
2

−
) 131Sn( 3

2

+
) 5.32 ≈5.1 65.8 85.4

131Sn( 1
2

+
) 5.74 6.5 41.1 17.1

129In( 1
2

−
) 129Sn( 3

2

+
) 5.57 5.9(3) 49.8 34(12)

129Sn( 1
2

+
) 5.80 5.5(1) 38.1 54(6)

205Hg( 1
2

−
) 205Tl( 1

2

+
1

) 5.37 5.257(11) 62.3 71.3(9)
205Tl( 1

2

+
2

) 6.77 7.03(25) 12.5 9(3)
205Tl( 3

2

+
1

) 7.26 6.51(21) 18.9 17(4)
205Tl( 3

2

+
2

) 6.32 7.61(22) 10.3 5(1)
205Tl( 5

2

+
) 8.16 8.70(21) 1.91 1.3(3)

206Hg(0+) 206Tl(0−) 5.42 5.41(6) 59.2 60(4)
206Tl(1−

1 ) 5.18 5.24(10) 77.6 73(8)
206Tl(1−

2 ) 5.68 5.67 43.6 44.3
207Tl( 1

2

+
) 207Pb( 1

2

−
) 5.14 5.108(6) 81.7 84.5(6)

207Pb( 3
2

−
) 6.18 6.157(22) 24.7 25.3(6)

206Tl(0−) 206Pb(0+
1 ) 5.42 5.1775(13) 52.4 78.0(1)

206Pb(0+
2 ) 5.18 5.99(6) 32.4 31(2)

206Pb(2+) 5.68 8.60(3) 1.87 1.52(5)
205Au( 3

2

+
) 205Hg( 1

2

−
1

) 6.79 5.79(9) 12.1 39(4)
205Hg( 3

2

−
1

) 7.33 6.43(11) 6.5 18(2)
205Hg( 5

2

−
1

) 5.82 6.37(12) 37.3 20(3)

we expect that our prescription of quenching for first-forbidden
transitions yields a fair description of the N = 126 half-lives.

As was stressed by Warburton [49], the relativistic matrix
element [Eq. (8h)] is enhanced compared to the other first-
forbidden transitions. We confirm this finding as the value for
q(ξ ′v) is noticeably larger than the other quenching factors.

Having determined the quenching of first-forbidden tran-
sitions, we adjust the quenching of the Gamow-Teller tran-
sition to the half-life of 130Cd, which is expected to decay
predominantly by Gamow-Teller. This is indeed borne out
in our calculation. Using the quenching factor qGT = 0.66,
we reproduce the measured half-life using both GT and
first-forbidden transitions. The latter contribute about 13% to

FIG. 1. Comparison of calculated first-forbidden average shape
factors, obtained for the best-fit values of the quenching factors
[Eq. (16)], with experimental data [50–52].
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FIG. 2. Partial decay rates for 199Ta calculated from first-
forbidden rank 1 transitions only. Panels (a) and (b) show the decay
rates obtained by using the linear combinations ξ ′y − ξ (x + u) and
(x + u), respectively, as pivot elements to calculate the contributions
of rank 1 operators within a Lanczos scheme with 100 iterations. Panel
(c) shows the partial decay rate using a Lanczos scheme with 300
iterations in which the states within the Qβ window are converged.
These shell-model calculations have been performed in a truncated
model space compared to other studies of the N = 126 isotones.

the half-life and hence are small but not negligible. Our factor
qGT is only slightly smaller than the customary quenching
value of 0.7.

All half-lives presented in the next sections for the r-process
waiting-point nuclei have been obtained using the quenching
factors for Gamow-Teller and first-forbidden transitions de-
rived above.

Before we present our results, we have to discuss another
potential shortcoming of our calculations of first-forbidden
transitions and how we handle it. A completely converged
calculation of the first-forbidden transition strength in our
chosen model space is prohibited due to computational
limitations. We have derived the strength within the Lanczos

FIG. 3. (Color online) Comparison of Qβ values of the N = 50
isotones between experimental data [54] and theoretical results from
FRDM [14] and the present shell-model approach.

TABLE II. Comparison of the present shell model half-lives and
the ones of Ref. [18]. All half-lives are in seconds.

Nucleus Half-life (s)

Expt. Present Shell model (Ref. [18])

82Ge 4.55 ± 0.05 6.90 2.057
81Ga 1.217 ± 0.005 1.03 0.577
80Zn 0.545 ± 0.016 0.53 0.432
79Cu 0.188 ± 0.025 0.27 0.222
78Ni 0.11+0.1

−0.06 0.15 0.127
77Co 0.016 0.016
76Fe 8.26 × 10−3 7.82 × 10−3

75Mn 3.66 × 10−3 3.52 × 10−3

74Cr 2.23 × 10−3 2.07 × 10−3

scheme using 100 iterations. As a consequence, the lowest
states are converged and correspond to physical states, while
the Lanczos states at higher excitation energies are unphysical
and represent strength per energy interval. Furthermore, their
energy positions depend on the sum rule (pivot) state used
for the calculation of the strength function. For example,
starting from the pivot state of the x operator, one obtains
different energy positions for the nonconverged states than
when starting from the sum rule state of the u operator. As
we need to compute superpositions of operators like u + x,
where both the magnitude and the phase of the individual
operators matter, we have followed the same procedure as
used in shell-model calculations of double-β decays [31].
Hence, we start with an arbitrary sum rule state that can be any
linear combination of operators of the same rank. During the
Lanczos iteration procedure, we compute the overlaps with the
individual operators. This iteration procedure is stopped when
at least 80% of the total strength for each individual operator
is recovered.

To illustrate this point, we have performed calculations for
199Ta in the model space defined above and have used two
different linear combinations of rank 1 operators, ξ ′y − ξ (x +
u) and (x + u), as pivots for the Lanczos calculations of the
operators x and u. For the combination ξ ′y − ξ (x + u) we

FIG. 4. (Color online) Comparison of half-lives of the N = 50
isotones between experimental data and theoretical results from
FRDM + QRPA [14], HFB + QRPA [16], DF3 + QRPA [20,55],
and the present shell-model approach.
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FIG. 5. (Color online) Percentage of the contributions from first-
forbidden transitions to the half-lives of the N = 50 isotones from
FRDM + QRPA [14], DF3 + QRPA [20,55], and the present shell
model.

obtain 92% and 80% of the total strength for the operators
x and u, respectively, while for the combination x + u we
recover 85% and 95% after 100 iterations. We stress that
these shortcomings have a small effect on the first-forbidden
half-lives that are dominated by the contribution of low-lying
states, which converge in our Lanczos scheme and are strongly
enhanced by the phase space energy dependence.

To quantify the potential uncertainty in our first-forbidden
half-lives, we have performed calculations for 199Ta in the
model space as defined above but allowing only one proton
pair to be broken in our seniority scheme. This truncated space
allows for the calculation of a fully converged first-forbidden
strength distribution in the Qβ window. Figure 2 compares
the partial decay rates to the various states in the daughter

nucleus obtained in the fully converged calculation (with 300
Lanczos iterations) with those where the rank 1 contributions
were derived using the linear combinations ξ ′y − ξ (x + u) and
(x + u) as pivots for the Lanczos scheme with 100 iterations.
As expected, the lowest Lanczos states are converged and
hence the calculated strength is the same for either choice of
pivot combination. The Lanczos scheme with 100 iterations
is not sufficient to converge the states for excitation energies
larger than about 2.5 MeV. They represent unphysical states as
discussed above. Obviously, further iterations lead to a stronger
fragmentation of the strength in a small energy interval around
the unphysical states. The energy interval is small enough
that this redistribution of strength due to different phase-space
weighting has negligible effect on the half-life. However, the
interference contributions also lead to rather mild differences
between the truncated and the converged calculations. We find
a partial half-life due to rank 1 first-forbidden operators of 655
and 716 ms when calculating the rank 1 operators from the
linear combinations ξ ′y − ξ (x + u) and (x + u), respectively,
while the partial half-life in the converged study is 651 ms, in
agreement within 10% of the two approximate calculations.
In the following, we calculate the contributions from the first-
forbidden rank 1 operators using a Lanczos scheme with the
pivot state ξ ′y − ξ (x + u) and 100 iterations.

IV. HALF-LIVES OF THE N = 50 WAITING-POINT
NUCLEI

To calculate half-lives, a good description of the transition
matrix elements and also of the Qβ values is required. As is
demonstrated in Fig. 3, our shell-model calculation reproduces
the Qβ values as given in the Audi-Wapstra compilation well

FIG. 6. (Color online) Partial decay rates including GT and FF transitions for the N = 50 isotones 74Cr (a), 78Ni (b), 77Co (c), and 82Ge (d).
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FIG. 7. (Color online) Neutron emission probability for N = 50
isotones from FRDM + QRPA [14], DF3 + QRPA [20,55], the
present shell model, and the experiment [52].

[54]. Hence, we use the shell-model Qβ values in the following
calculation of the half-lives and β-delayed neutron emission
probabilities for the N = 50 waiting-point nuclei.

As shown in Table II and Fig. 4, the shell-model half-lives
agree quite well with the data, although they overestimate
the ones of 82Ge and 79Cu by about 50%. Nevertheless, the
agreement is significantly better than that obtained based
on the global FRDM and ETFSI models. The HFB results
[16], which are restricted to the decay of even-even nuclei,
are very similar to the shell-model results, except for the
half-life of the double-magic nucleus 78Ni. Here, only the
shell-model reproduces the measured value [7], while all other
models predict a significantly longer half-life. This underlines
the fact that many-body configuration mixing is needed to
reproduce the cross-gap correlations in double-magic nuclei.
Similar results have been found in studies of the isotope shifts
in calcium [56] and the M1 strength distributions in argon
isotopes [57].

The contribution of first-forbidden transitions to the N =
50 half-lives is shown in Fig. 5. For the decay of the nuclei with
Z � 28 the probability is very small (less than 5%). However,
first-forbidden transitions contribute about 25% to the 77Co

FIG. 8. (Color online) Comparison of Qβ values of the N =
82 isotones between theoretical results from the FRDM [14],
HFB [16], the present shell-model approaches, and experimental
data [52].

TABLE III. Comparison of the present shell-model half-lives and
the ones of Ref. [19] with experimental data [50,58]. All half-lives
are in milliseconds.

Nucleus Half-life (ms)

Expt. Present Shell model (Ref. [19])

131In 280 ± 30 247.53 260
130Cd 162 ± 7 164.29 162
129Ag 46+5

−9 69.81 70
128Pd 47.25 46
127Rh 27.98 27.65
126Ru 20.33 19.76
125Tc 9.52 9.44
124Mo 6.21 6.13

decay, while they are smaller but still sizable for the decay of
the nuclei with charge numbers Z = 24–26.

To understand this behavior, we note that first-forbidden
contributions are related to the transition from a g9/2 neutron
orbital to a f7/2 proton orbital for the rank 1 operators and
to a f5/2 proton orbital for rank 2 operators. (There are no
contributions from rank 0 operators in our model space.) In
the simple independent particle model, the f7/2 level gets
completely occupied for 78Ni and consequently this transition
is Pauli-blocked for N = 50 nuclei with Z � 28. In the shell
model, the blocking is partially removed by configuration
mixing, but the importance of the first-forbidden transitions
stays low. For these nuclei, they are nearly exclusively due to
contributions from the rank 2 operators. For the nuclei with
Z < 28, the proton f7/2 orbital is not fully occupied and first-
forbidden transitions due to the rank 1 operators are possible.
They are noticeably larger those of the rank 2 operators.
Hence, the total first-forbidden strength is significantly larger
for nuclei with Z < 28 than for the nuclei with Z � 28.
Furthermore, it increases with decreasing charge number due
to the depopulation of the proton f7/2 orbital in the daughter
nucleus. However, Gamow-Teller transitions from the neutron
f5/2 orbital into the proton f7/2 orbital become unblocked.
Hence, reducing the charge number increases both the GT and
first-forbidden transitions due to decreasing Pauli blocking of

FIG. 9. (Color online) Comparison of half-lives of the N = 82
isotones as calculated in the FRDM, HFB, DF3 + QRPA [20], and
the present shell-model approaches with data.
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FIG. 10. (Color online) Percentage of the contributions from first-
forbidden transitions to the half-lives of the N = 82 isotones from
FRDM + QRPA [14], DF3 + QRPA [20,55], and the present shell-
model data.

the dominant transitions into the f7/2 orbital. However, the
relative decrease for the GT half-lives with decreasing charge
number is stronger than for the first-forbidden transitions. This
is related to phase space. Examples of differential decay rates
as function of excitation energies for nuclei 74Cr, 77Co, 78Ni,
and 82Ge are shown in Fig. 6. From these figures we note that
the first-forbidden transitions dominantly proceed to daughter
states at low excitation energies (usually up to 2–2.5 MeV)
for the N = 50 nuclei with Z < 28, while the GT transitions
go to states with excitation energies on the order of 5–7 MeV,
simply reflecting the fact that it is energetically more favorable
to have a f5/2 neutron hole and a closed g9/2 shell than to have
a hole in the g9/2 orbital. As the energy gain in the transitions
is smaller for the GT transitions, they are more sensitive to
the increase of the Qβ value with decreasing charge number.
This explains why the relative contribution of first-forbidden
transitions decreases with reduced charge number below the
double-magic 78Ni. Above 78Ni, the GT transitions proceed to
daughter states at relatively low excitation energies. (Figure 6
shows the differential decay rates for 82Ge as an example.)
As a consequence, first-forbidden transitions, due to their

smaller transition matrix elements, cannot compete with GT
transitions.

We have used the shell-model neutron separation energies to
calculate the β-delayed neutron emission probabilities, which
are shown in Fig. 7. As demonstrated above, GT transitions
dominate the decays of the N = 50 r-process waiting points.
As for the nuclei with Z � 29, these transitions connect mainly
to daughter states at excitation energies above the respective
neutron threshold, and the decay is accompanied by a high
degree of neutron emission. The probability comes close to
100% for the decays of 55Mn and 54Cr associated with the
very low neutron separation energies in the daughters. For
the nuclei with Z > 29, the GT transitions reside at lower
excitation energies in the respective daughters, while the
neutron thresholds increases. As a result, the neutron emission
probability is strongly reduced in these nuclei.

V. HALF-LIVES OF THE N = 82 WAITING-POINT NUCLEI

The present interaction and model spaces, based on a 88Sr
core, are not the same as used in Ref. [19] to calculate Qβ

values and Gamow-Teller strength functions. However, we
stress that the present shell-model calculation gives results
very similar to the ones of Ref. [19]. In particular, we reproduce
the experimentally available Qβ values very well, as shown in
Fig. 8. This figure also shows that the agreement of the Qβ

values obtained in other models is usually not as good as
that by the shell-model results. In the following, we use the
shell-model Qβ values for the calculation of the half-lives.

The 1/2− isomer in 131In corresponds approximately to
a 132Sn configuration with a hole in the 1p1/2 orbital. Our
calculation reproduces the energy of the isomer at 0.302 MeV.
(This quantity was one of the experimental ingredients to
which the interaction has been adjusted.)

The calculated half-lives for the N = 82 waiting point
nuclei are summarized in Table III and are compared to data
and previous theoretical estimates in Fig. 9. Compared to ex-
periment, the half-life of 131In is well reproduced, while the one
for 129Ag is somewhat too long. This shortcoming had already
been observed in the previous shell-model calculations. In

FIG. 11. (Color online) Partial decay rates including GT and FF transitions for the N = 82 isotones 124Mo (a), 126Ru (b), and 128Pd (c).

025803-8



SHELL-MODEL HALF-LIVES INCLUDING FIRST-FORBIDDEN . . . PHYSICAL REVIEW C 87, 025803 (2013)

FIG. 12. (Color online) β-delayed neutron emission probability
for selected N = 82 r-process nuclei from FRDM + QRPA [14],
DF3 + QRPA [20,55], the present shell model, and experimental
data [52].

fact, the present shell-model results, including contributions
from first-forbidden transitions, agree very well with the
shell-model results of Ref. [19]. However, this does not mean
that first-forbidden transitions are negligible. As shown in
Fig.10, first-forbidden transitions contribute about 13% to the
half-life. However, this value is nearly the same for all N = 82
waiting-point nuclei, which explains the similarity between the
present shell-model results and those of Ref. [19]. Only for
131In do the first-forbidden transitions contribute somewhat
more, resulting in a slightly smaller half-life than in the
shell-model study based solely on Gamow-Teller transitions.
We note that our prediction of an 18% contribution stemming
from first-forbidden transitions to the decay of the 131In ground
state is in agreement with the experimental limit of �20%. We
further add that we calculate a Gamow-Teller contribution
to the half-life of the 1/2− isomer in 131In that is less than
1%, confirming our assumption to fix the quenching of the
first-forbidden transition to this decay. Figure 11 shows the
partial decay rates to different final states for the nuclei 124Mo,
126Ru, and 128Pd. We note that Gamow-Teller transitions are
larger than first-forbidden transitions, which proceed to levels
at lower excitation energies and enhance them by phase space.

FIG. 13. (Color online) Comparison of Qβ values of the N = 126
isotones as calculated in the FRDM [14] and the present shell-model
approaches.

TABLE IV. Comparison of the present shell-model half-lives and
the ones of Ref. [59]. All half-lives are in milliseconds.

Nucleus Half-life (ms)

Present Shell model (Ref. [59])

199Ta 286.17 278.88
198Hf 193.28 129.65
197Lu 107.85 84.81
196Yb 68.98 44.18
195Tm 36.03 29.49
194Er 24.58 18.11
193Ho 13.58 10.94
192Dy 10.10 7.75

The β-delayed neutron emission probabilities (i.e., the
probabilities that the decay leads to states in the daughter
nucleus above the neutron separation threshold and hence is
followed by the emission of a neutron) is obviously sensitive
to a good description of both the neutron separation energies
and the β strength functions in the Qβ window. As has
been stressed in Refs. [17,19], the improved description of
correlations in shell-model calculations gives a more realistic
account of the fragmentation of the strength function than is
obtained in QRPA studies. Figure 12 compares the present
shell-model probabilities to those obtained in Ref. [19]. We
find that the inclusion of first-forbidden transitions leads only
to minor changes. A detailed comparison of the shell-model
results [19] to those obtained in other theoretical approaches
is given in Refs. [17,19].

VI. HALF-LIVES OF THE N = 126 WAITING-POINT
NUCLEI

Figure 13 compares the calculated Qβ values of the N =
126 isotones with other theoretical models. While the general
trend of Qβ is quite similar to that obtained in the FRDM
model, the shell-model values are slightly smaller than those
from the FRDM model. However, as no experimental data exist
for these very neutron-rich N = 126 nuclei, it is not possible

FIG. 14. (Color online) Comparison of half-lives of the N = 126
isotones as calculated in the FRDM + QRPA, DF3 + QRPA(I) [20],
DF3 + QRPA(II) [60], and the present shell model approaches [59].
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FIG. 15. (Color online) Percentage of the contributions from first-
forbidden transitions to the half-lives of the N = 126 isotones are
compared with results from DF3 + QRPA(I) [20], DF3 + QRPA(II)
[60], and shell-model approaches [59].

to decide which Qβ are more realistic. In the following, we
use the shell-model values to calculate the half-lives and β-
delayed neutron emission probabilities for the N = 126 r-
process waiting-point nuclei.

The shell model half-lives are listed in Table IV and are
compared to other theoretical predictions in Fig. 14. Although
recently researchers at GSI have successfully measured the
half-lives of nuclei close to N = 126 with charge numbers
below lead [12], supplying important constraints about the
half-life trend toward the r-process nuclei, experimental data
for the N = 126 r-process nuclei do yet not exist. Hence, our
results can be compared only to other theoretical predictions.
We note that the present half-lives for Z > 70 are faster, by
about a factor of two, than those obtained by Borzov within a
QRPA approach on top of the density functional DF3, showing
a similar dependence on charge number [55]. Adopting a
different parametrization, Borzov has also calculated half-
lives for N = 126 isotones with Z < 70, which are slightly
faster than the shell-model values [61]. The shell model

half-lives are noticeably faster than those predicted previously
by global models, for example, by the QRPA calculation
on top of the microscopic-macroscopic FRDM or ETFSI
approaches.

Recently Suzuki et al. [59] have presented the first shell-
model half-lives for N = 126 r-process nuclei, including both
GT and first-forbidden contributions. However, our present
model space including the (0g7/2, 1d5/2,3/2, 0h11/2, 2s1/2)
proton orbits is noticeably larger than the one used in Ref. [59]
(the 1d3/2, 0h11/2, 2s1/2 proton orbits). The two shell-model
calculations differ in the residual interaction and additionally
in the adopted quenching scheme for first-forbidden transi-
tions. Nevertheless, as is shown in Table IV and Fig. 14,
both shell model calculations predict very similar half-lives
for the N = 126 nuclei. Both studies do not predict the strong
odd-even staggering in the half-lives as observed in the QRPA
results on top of the FRDM model.

As already noted in Ref. [20], based on the density
functional calculations, first-forbidden transitions are expected
to contribute significantly to the half-lives of the N = 126
r-process nuclei. This finding is supported by our shell-model
calculations (Fig. 15). One observes an increasing contribution
from the first-forbidden transitions with increasing proton
number. In fact, for nuclei with proton number Z � 70,
contributions from first-forbidden transitions to the half-life
dominate over Gamow-Teller transitions. This behavior can be
understood by inspecting the partial decay rates arising from
Gamow-Teller and first-forbidden transitions, which are shown
in Fig. 16 for selected nuclei. We note that Gamow-Teller
transitions are related to the change of a neutron in the
0h9/2 orbit to a proton in the 0h11/2 orbit, which, however,
is fragmented over several states in the daughter nucleus due
to correlations. Nevertheless, for the nuclei studied here, these
final proton states reside at moderately high excitation energies
around 3 MeV, while first-forbidden transitions connect to
excited states at lower excitation energies. With increasing
proton number, more protons occupy the final 0h11/2 orbit and
the GT transitions get gradually Pauli blocked. This explains
why the GT strength gets strongly reduced with increasing

FIG. 16. (Color online) Partial decay rates including Gamow-Teller and FF transitions for the N = 126 isotones 194Er (a), 196Yb (b), and
198Hf (c).
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FIG. 17. (Color online) Neutron emission probability of N = 126.

proton number. Actually, first-forbidden transitions also get
blocked with increasing proton number, which is a signifi-
cantly milder effect than for the GT transitions. We note that for
all nuclei studied here, first-forbidden transitions are mainly
mediated by rank 0 and 1 operators (the latter contributes
about 70% to the forbidden strength), while the contribution
arising from rank 2 operators are very small. Due to its larger
sensitivity to phase space (∼Q7) the relative contribution of
rank 2 transitions increases slightly with decreasing charge
number. For the N = 126 nuclei studied here, the depopulation
of the 0h11/2 proton orbital with decreasing charge number,
which increases both the Gamow-Teller and first-forbidden
transitions, dominates the trend observed in our half-lives.
Changes in phase space and pairing have lesser effects on our
half-life systematics.

Gamow-Teller transitions proceed to final states mainly
above the neutron threshold and hence are accompanied by
neutron emission, while the final states populated by first-
forbidden transition predominantly reside below the neutron
threshold. Hence, we expect from the Z dependence of the
GT and first-forbidden transitions that the β-delayed neutron
emission probability decreases with increasing proton number.
This is indeed confirmed by Fig. 17. The striking odd-even

staggering is related to pairing, which reduces the neutron
threshold energies in odd-odd daughter nuclei relatively to
odd-A nuclei but basically does not affect the strength
distributions, as discussed in Ref. [62]. The QRPA-FRDM
neutron emission probabilities show a rather abrupt increase at
Z = 68, which is likely due to the fact that QRPA calculations
show significantly less fragmentation of the strength than
shell-model studies and that, for Z < 69, the few dominant
transitions reside above the neutron threshold.

VII. SUMMARY AND CONCLUSIONS

We have calculated the half-lives and β-delayed neutron
emission probabilities of the r-process waiting-point nuclei
with magic neutron numbers N = 50, 82, and 126 within the
framework of the large-scale shell model. The calculations
include contributions both from allowed Gamow-Teller and
first-forbidden transitions. We find good agreement with the
existing experimental data, i.e., the half-lives for the N = 50
nuclei with charge numbers Z = 28–32 and for the N = 82
nuclei 129Ag and 130Cd. In our calculations, first-forbidden
transitions significantly reduce the half-lives of the N = 126
waiting-point nuclei, while they have a smaller effect on the
half-lives of the N = 50 and 82 r-process nuclei.
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