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Spin response and neutrino emissivity of dense neutron matter
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We study the spin response of cold dense neutron matter in the limit of zero momentum transfer and show
that the frequency dependence of the long-wavelength spin response is well constrained by sum rules and
the asymptotic behavior of the two-particle response at high frequency. The sum rules are calculated using
an auxiliary field diffusion Monte Carlo technique and the high-frequency two-particle response is calculated
for several nucleon-nucleon potentials. At nuclear saturation density, the sum rules suggest that the strength
of the spin response peaks at ω � 40–60 MeV, decays rapidly for ω � 100 MeV, and has a sizable strength
below 40 MeV. This strength at relatively low energy may lead to enhanced neutrino production rates in dense
neutron-rich matter at temperatures of relevance to core-collapse supernova.
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I. INTRODUCTION

The spin response of dense neutron matter plays an essential
role in determining neutrino interaction rates in neutron stars
and supernovae [1–5]. (For the effect of spin response on
photon interaction with nucleon magnetic moments, see the
discussion in Ref. [6].) Since the energy and momentum
transfer between neutrinos and matter is small compared to
the Fermi energy and momentum, degeneracy and many-body
effects can strongly modify interaction rates. The spin response
of neutron matter is an intriguing problem in that a nonzero
response requires the coupling of spin and space through the
tensor and spin-orbit components of the nuclear force.

We study the response in the specific limit of zero
temperature and zero momentum transfer, and we discuss
how this limiting case will be useful to understand the more
general behavior encountered at finite temperatures in neutron
stars and supernovas. At zero temperature the spin response
can be obtained through a combination of sum rules and a
calculation of the high-energy part of the response. The sum
rules and the high-energy behavior resolve nuclear interactions
with momenta of the order of the pion wavelength, and we
use nuclear Hamiltonians previously found to be reliable in
describing relevant excitations and their coupling to the ground
state in the other contexts.

Bremsstrahlung reactions such as n + n → n + n + ν + ν̄
are an important source of neutrino pair production in dilute
neutron matter. When neutrons are nonrelativistic, neutrino
emission occurs primarily due to fluctuations of the nucleon
spin. Density and current fluctuations are suppressed by the
velocity due to particle number and momentum conservation.
This dominance of spin fluctuations is a unique feature of
nuclear systems because strong noncentral tensor and spin-
orbit forces that do not commute with the spin operator lead to
enhanced spin fluctuations even in the long-wavelength limit
(q → 0). Its importance in neutrino production rates was first
realized in pioneering work by Friman and Maxwell [1]. They
calculated the neutrino production rate in the long-wavelength
limit using the one-pion-exchange (OPE) potential in leading-
order perturbation theory (Born approximation). In subsequent
work, Hanhart et al. [7] calculated the neutrino production

rate in neutron matter using a low-energy approximation that
relates the rate directly to observed nucleon-nucleon phase
shifts, obviating the need to rely on either perturbation theory
or a specific choice for the nucleon-nucleon potential. While
these calculations have provided a useful benchmark, they
neglect many-body effects and their regime of validity is
restricted to weakly correlated dilute systems.

The inclusion of many-body effects has relied on diagram-
matic perturbation theory where specific corrections to long-
distance and long-time behavior of nucleon propagation in the
medium are incorporated. The finite lifetime of quasiparticles,
screening of the weak axial charge, as well as screening of
nucleon-nucleon interactions due to particle-hole polarization
effects at finite density have been investigated by several
authors [5,8–12]. These calculations have shown that these
corrections are important and generically tend to decrease neu-
trino production rates. On the other hand, attempts to include
in-medium softening of the pion propagator and corrections
to the nucleon propagators and weak vertices [13–15] have
shown that the neutrino emissivity can be enhanced. However,
these methods neglect terms in many-body perturbation theory
and it is presently difficult to estimate associated errors. To
overcome this shortcoming, we adopt a different strategy, using
a quantum Monte Carlo (QMC) method to compute the three
lowest order sum rules, which are described below in Sec. III.
We supplement these sum rules with the asymptotic form of
the two-particle response valid at high frequency to deduce the
distribution of strength of the spin response function at lower
energies of relevance to astrophysics.

II. NEUTRINO EMISSIVITY AND THE SPIN
STRUCTURE FUNCTION

From the point of view of many-body theory, neutrino
interaction rates in the medium can be factored into a product
of two terms: (i) the correlation functions of the dense medium
and (ii) kinematical factors and coupling constants associated
with neutrino currents. The latter are well known and relatively
simple functions of the neutrino energy and momentum. In
contrast, the spin, density, and current correlation functions
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are complex functions of temperature, density, and the energy
and momentum transfer because multiparticle dynamics and
correlations in the ground state of the strongly interacting
system play a critical role.

The dynamic spin structure factor Sσ (ω, q) of neutron
matter encodes the linear response of neutron matter to spin
fluctuations and is defined as [2]

Sσ (ω, q) = 4

3n

1

2π

∫ ∞

−∞
dt eiωt 〈s(t,q) · s(0,−q)〉

= 4

3n

∑
f

〈0|s(q)|f 〉 · 〈f |s(−q)|0〉δ[ω − (Ef − E0)],

(2.1)

where s(t,q) = V −1 ∑N
i=1 e−iq·r i (t)σ i and σ i is the spin op-

erator acting on the ith nucleon at time t . The second line
expresses the same response as a sum over final states |f 〉
coupled to the ground state through the time-independent spin
operator.

Alternatively, in terms of the field operators, s(t,q) is
the Fourier transform of the spin density operator s(x) =
1
2ψ+(x)τψ(x) with τ being the usual Pauli matrix and ψ(x)
is the nonrelativistic field operator. The normalization factor
4/3n, where n is the neutron number density, ensures that
the dynamic form factor is canonically normalized such that
S(q → ∞) = 1 for the noninteracting Fermi systems and
conforms to the standard definitions of the sum rules discussed
below in Sec. III.

The rate of neutrino pair production can be expanded in
powers of the nucleon velocity and the momentum of the
neutrino pair [1]. The neutrino emissivity of neutron matter
denoted by Q, and defined as the rate of energy loss due to
neutrino pair production per unit volume and per unit time, to
leading order in the neutron velocity and neutrino momentum
is given by [9]

Q = C2
AG2

F n

20π3

∫ ∞

0
dω ω6e−ω/T Sσ (ω), (2.2)

where GF = 1.18 × 10−11 MeV−2 is the Fermi constant of the
weak interaction and CA = −1.26/2 is the neutron neutral-
current axial coupling constant. Note that, due to the strange-
quark contribution to the nucleon spin, CA may be modified in
neutral current processes by a few percent in the energy range
of interest to supernova [16]. Here we have not included this
modification for simplicity. At low temperature, when T �
EFn, where EFn is the neutron Fermi energy, the neutrino pair
momentum q is small compared to both the Fermi momentum
kFn and the intrinsic momentum scales associated with the
strong interaction, and it may be neglected and Sσ (ω) =
Sσ (ω,q = 0). Hence in Eq. (2.2) only Sσ (ω) appears and it is a
function of both density and temperature as implied by the en-
semble average denoted on the right-hand side of the equation.

III. SUM RULES

The spin response describes the coupling to the ensemble
of final states obtained by flipping all the ground-state spins
in neutron matter. If spin and space are uncoupled, spin is

a good quantum number and there would be no response at
zero momentum transfer. However, the spin-orbit and tensor
interactions (acting only in relative p waves and higher in
neutron matter) induce a finite expectation value of 〈S2〉 even
at T = 0 and finite response results. The spin-orbit and tensor
interactions are of pion range or less, so they predominantly
affect neutrons coupled to spin 1 at a pair separation typical
for nearest neighbors at that density. Although there is zero
total momentum transfer, the two interacting particles can
nevertheless have significant relative momenta in the relevant
final states.

The overall strength and energy distribution of the response
can be characterized through the relevant sum rules. We
employ a QMC method to compute the low-order sum rules
that relate moments of Sσ (ω,q) to its ground-state properties.
We then combine these sum-rule constraints with asymptotic
high-energy behavior expected in the two-particle system to
obtain constraints on the distribution of strength Sσ (ω) as a
function of ω at q = 0. For the same reason, the response in
Eq. (2.1) is solely due to the excitation of multiparticle states
as single-particle excitations vanish for these kinematics.

Though we ultimately desire information about the spec-
trum and coupling to the excited states of the system, the
moments of the sum rules defined by the relation

Sn
σ =

∫ ∞

0
Sσ (ω,q = 0)ωn dω (3.1)

are calculable as ground-state properties. The sum rules
provide a simple and systematic means to eliminate explicit
dependence on the intermediate excited states of the system.
The relevant excited-state information is sampled by operators
contained in the nuclear Hamiltonian. In this study we use the
following sum-rule relations:

S−1
σ = χσ

2n
, (3.2)

S0
σ = 1 + lim

q→0

4

3N

N∑
i �=j

〈0|e−iq·(ri−rj)σ i · σ j |0〉, (3.3)

S+1
σ = − 4

3N
lim
q→0

〈0|[HN, s(q)] · s(−q)|0〉, (3.4)

where χσ = ∂nσ /∂μσ is the spin susceptibility of the interact-
ing ground state |0〉 of the nuclear Hamiltonian HN , and nσ and
μσ are number density and chemical potential of particles with
spin σ (±1/2). Our strategy here is to evaluate the right-hand
side of Eqs. (3.2), (3.3), and (3.4) using a QMC method and use
this information to constrain the behavior of S(ω) for values
of ω relevant to the calculation of neutrino production.

This strategy is not new; in Ref. [8] estimates of the S0
σ

and S1
σ sum rules were used to argue that spin response

function must saturate at high density, and in Ref. [17],
sum rules were used to estimate the relative importance
of multiparticle excitations to the response function in the
kinematical regime where ω � q. Our work improves upon
these earlier studies in two respects: (i) we compute and
combine for the first time all three sum rules to constrain both
low-frequency and high-frequency behavior of S(ω,q = 0);
and (ii) we deduce the high-frequency response or short-time
behavior of the two-particle dynamics where they dominate in

025802-2



SPIN RESPONSE AND NEUTRINO EMISSIVITY OF . . . PHYSICAL REVIEW C 87, 025802 (2013)

the many-body system by direct calculation of the two-particle
matrix elements.

To compute the expectation values of operators in the
ground state needed to evaluate the sum rules we use
a nonrelativistic nuclear Hamiltonian with local two-body
potentials of the form

HN =
N∑
i

p2
i

2m
+

∑
i<j

4∑
p

vp(rij )O(p)
ij , (3.5)

where O
p=1,4
ij = (1, σ i · σ j , Sij , L · S), Sij = (3σ 1 · r̂σ 2 ·

r̂ − σ 1 · σ 2) is the tensor operator, and L · S is the spin-orbit
operator. We employ the auxiliary field diffusion Monte Carlo
(AFDMC) method described in Refs. [18,19] and use the
Argonne AV8’ form for the two-body interaction as it provides
a good description of properties of light nuclei [20]. The
AFDMC calculations use auxiliary field quantum Monte Carlo
techniques to treat the spin and spatial degrees of freedom in
neutron matter. They have been used extensively to calculate
the equation of state of neutron matter and also the spin
susceptibility [21]. We use AFDMC to compute the sum
rules expressed in Eqs. (3.2), (3.3), and (3.4). Note the static
structure function S0

σ and energy-weighted sum rule S1
σ have

been previously evaluated for Argonne potentials [22], first
based on variational methods [23,24].

The S−1
σ sum rule is calculated by considering the ground

state of neutron matter in the presence of a magnetic field as
proposed in Ref. [21]. The energy of neutron matter in the
presence of a magnetic field is

E(p) = E(0) − bP + (1/2)P 2E′′(0), (3.6)

where E(0) is the ground-state energy in the absence of a
magnetic field, P = N↑−N↓

N↑+N↓
is the spin polarization, and the

spin susceptibility χσ is

χσ = μ2P
1

E′′(0)
. (3.7)

The calculations are performed for zero magnetic field and
a finite magnetic field for of order 60 particles in periodic
boundary conditions. The system we simulate has a finite
number of up and down neutrons, and the magnetic field
is chosen in such a way that the finite system is close to
the thermodynamic limit as described in Ref. [21]. In a
nonsuperfluid system, the calculation of the spin susceptibility
yields the S−1

σ sum rule.
We calculate S0

σ by computing the spin-dependent pair
correlation function and evaluating the structure function at
q = 0. The spin correlation function is defined by

gσ (r) = 1

2πr2ρN

∑
i<j

〈ψ |δ(rij − r)σ i · σ j |ψ〉
〈ψ |ψ〉 , (3.8)

where ψ is the ground state of the system. The AFDMC
method is useful to compute the expectation values of mixed
operators such as 〈�T |O|ψ〉. We use a variational Monte
Carlo (VMC) method to extrapolate the value of operators
that are given by 〈O〉 = 2〈O〉mix − 〈O〉vmc as described in
Refs. [19,25]. The resulting g(r) is used to obtain the structure
function S0

σ (q). We show gσ (r) and S0
σ (q) in Fig. 1. We finally
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FIG. 1. (Color online) The static structure function S0
σ (q) com-

puted at saturation density. In the inset we show the corresponding
spin pair correlation function gσ (r). Free particle results are given as
dashed lines.

evaluate the S0
σ sum rule by taking the q → 0 limit as indicated

in Eq. (3.3).
The energy-weighted sum rule can be calculated by the

expectation value of the tensor and spin-orbit interactions
when q = 0. For the Hamiltonian of Eq. (3.5) we have

S+1
σ = − 4

3N

∑
i<j

(3〈v3(rij )Sij 〉 + 〈v4(rij )L · S〉). (3.9)

Because the variational wave function �T used as input for
AFDMC contains neither tensor nor spin-orbit correlations,
the most accurate way to obtain these expectation values is
by calculating the energy as a function of the spin-orbit and
tensor interaction strengths and using the slope of the energy
with respect to these couplings to produce the true ground-state
expectation values.

These initial calculations are performed with the AV8’ NN
interaction without any three-nucleon interaction. Based upon
simple estimates of the strength of the three-nucleon force,
we would expect of order 10%–20% corrections to the sum
rules from the three-nucleon interaction. We are exploring this
dependence and will report these results separately.

In computing the ground-state properties in AFDMC we
neglect the role of pairing and superfluidity. This will restrict
our study to the calculation of the neutrino emissivity at
temperatures that are large compared to the neutron pairing
gaps in neutron matter but still small compared to the
Fermi energy. Thus, our results will be applicable to ambient
conditions in the supernova but will not apply to old neutron
stars where neutron matter is likely to be below the superfluid
critical temperature. For T � �, where � ≈ 1 MeV is the
superfluid gap, the number of quasiparticles is exponentially
suppressed and response is vanishingly small. In the vicinity of
the critical temperature, Cooper pair breaking and formation,
as well as collective modes, can enhance spin fluctuations
at a frequency ω ≈ (1–2)� [26]. The spin response function
and the neutrino emissivity in the superfluid phase are
expected to be qualitatively different and are dominated by the

025802-3



G. SHEN, S. GANDOLFI, S. REDDY, AND J. CARLSON PHYSICAL REVIEW C 87, 025802 (2013)

TABLE I. AFDMC results for the sum rules.

Density S−1
σ (MeV−1) S0

σ S+1
σ (MeV) ω̄0 (MeV) ω̄1 (MeV)

(fm−3)

n = 0.12 0.0057(9) 0.20(1) 8(1) 35(9) 40(8)
n = 0.16 0.0044(7) 0.20(1) 11(1) 46(11) 55(8)
n = 0.20 0.0038(6) 0.18(1) 14(1) 47(12) 78(10)

pair recombination processes and the decay of finite-energy
collective modes [27,28]. It may be possible in the future to
examine this regime more critically using techniques similar
to those developed here.

The AFDMC results for the sum rules are shown in Table I,
where the individual sum rules and average excitation energies
defined by ω̄0 = S0

σ /S−1
σ and ω̄1 = S1

σ /S0
σ are listed. The

density dependence of the S0
σ sum rule is quite modest over

the range of densities considered.
The spin susceptibilities shown in Table I correspond

to χ/χF = 0.37, 0.34, and 0.34 for ρ = 0.12, 0.16, and
0.20 fm−3, respectively, where χF = mkF /π2 is the spin
susceptibility for a free Fermi gas. At the lowest density
this is very similar to results obtained in [21], whereas
at the highest density our result is approximately 20% lower
for the susceptibility. The difference may lie in the fact that
the three-nucleon force used in [21] is repulsive in unpolarized
neutron matter, and less so in spin-polarized matter.

The average energies ω̄0 and ω̄1 are extracted from the
sum rules as estimates for the energy of the peak of the
response, and their difference is a measure of the width of
the distribution. The fact that the calculated ω̄0 and ω̄1 values
are fairly similar indicates a moderately narrow peak in the
response. A positive definite response requires ω̄1 � ω̄0.
The peaks shift to higher energy with increasing density, as
expected. The tables also indicate that the strength distribution
gets more diffuse with increasing density, with strength being
pushed out to higher energy.

IV. ASYMPTOTIC FORM AT HIGH ENERGY

In order to constrain the low-energy response relevant for
astrophysical applications using sum rules we need some
knowledge of the behavior of Sσ (ω) at large ω. In this
regime the response probes the short-time behavior of the
many-body correlation function and on general grounds we
can expect this to be dominated by two-particle dynamics.
This intuitive expectation can be cast in more formal terms
by using the operator product expansion originally developed
by Wilson as a standard technique in quantum field theory.
The operator product expansion has been used to analyze
short-time behavior of the density-density correlation function
in a strongly interacting nonrelativistic Fermi gas [29,30].
By adapting this to the spin-density operator, the relevant
expansion in this case organizes Sσ (ω) in terms of local
operators in inverse powers ω and is given by∫

dt eiωt

∫
d3x ψ†σψ(t,R + x)ψ†σψ(0,R − x)

= iW1(ω)O(1)(R) + iW2(ω)O(2)(R) + · · · , (4.1)

where the expectation value of the local operators O(n)(R)
depends on the many-body ground state but the Wilson
coefficients Wi(ω) depend only on few-body physics with
i incoming and outgoing asymptotic states. For q = 0 the
Wilson coefficient W1(ω) vanishes identically in spin-saturated
systems and the leading contribution is due to W2(ω). The
functional form of W2(ω) is determined by the matrix elements
of the spin operator between two-body scattering states. This
implies that up to an overall constant, which depends only on
the ground state, Sσ (ω) at high frequency is determined by
the the two-body matrix elements. In general, this will depend
sensitively on the short-distance behavior of the two-nucleon
interaction and will be model dependent. However, to extract
the response at low energy in a model-independent fashion
it suffices to use, in the two-body calculation, the same
Hamiltonian employed in the calculation of the sum rules in
the many-body calculation.

The spin response function S(q, ω) for two neutrons are
evaluated as follows:

S(q,ω) = |〈ψF |ÔA|ψI 〉|2δ(ω + EI − EF ). (4.2)

For spin response at q = 0, the operator is the sum of spins,
ÔA = σ1 + σ2. ψI and ψF are the eigenstates of two neutrons
in spin-triplet states and we take ψI to be the ground state.

We have calculated these matrix elements using the same
nuclear Hamiltonian employed in the AFDMC by solving
the Schrödinger equation for two neutrons with a simple
box boundary condition. These results indicate that the high-
frequency behavior denoted as S

high
σ (ω) is determined by

two-body physics and has the following asymptotic behavior:

Shigh
σ (ω) �

(
ωc

ω

)i

, (4.3)

where the density-dependent quantity ωc � 100–150 MeV for
the range of densities considered here, and for the nuclear
interaction used we find that i ≈ 9.

As mentioned earlier the high-frequency response will
depend on the model for nucleon-nucleon interactions at short
distance. For a correct description of the response at ω �
100 MeV, the inclusion of two-body currents and explicit pion
and � isobar degrees of freedom is likely to become important.
However, since they are absent in both the many-body and
two-body calculation, their consistent omission ensures that
we can still obtain useful constraints on Sσ (ω) at lower ω
values of interest without these ingredients.

Using the two-body axial currents adjusted to reproduce
measured tritium β decay [31], we calculated the contributions
to the static spin sum rule of Eq. (4.2) at q = 0 due to the
most important two-body currents—the axial π -exchange �-
excitation current and the π -exchange (pair) current. These
contributions were found to be a few percent of the total static
spin sum rule. Therefore we expect the contribution of two-
body currents to the dynamic spin response function at zero
momentum transfer to be around a few percent as well.

V. LOW-ENERGY FORMS FOR THE RESPONSE

In the regime where neutron matter behaves like a Fermi
liquid, the low-energy form of the response should be
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describable in terms of quasiparticles, though the coupling
of the ground state to the quasiparticle pairs as well as the
quasiparticle interactions may renormalize quantities in the
calculated response. At q = 0, a low-frequency form for Sσ (ω)
has been computed in Refs. [3,5] using the quasiparticle
approximation and is given by

Sσ (ω) = N (0)

nπ

ωτσ

(1 + G0)2 + (ωτσ )2
, (5.1)

where the frequency-dependent relaxation time τσ (ω) is the
time scale for damping of spin fluctuations, and N (0) is the
density of states at the Fermi surface and G0 is the Landau
parameter that encodes the spin susceptibility mentioned
earlier [Eq. (3.2)]. This form of the response incorporates
collisional broadening and mean-field effects but it is mostly
sensitive to τσ (ω). Note that this type of functional form
incorporates higher order terms in the scattering and thereby
takes into account the Landau-Pomeranchuk-Migdal effect
[32–35].

The spin relaxation time τσ is related to the quasiparticle
scattering amplitude Aσ 1,σ 2 (k,k′) and is given by [5]

1

τσ (ω + ε1)
= 2π

∑
2,3,4

|A|2Fδ(ω + ε1 + ε2 − ε3 − ε4)

× δ(P1 + P2 − P3 − P4), (5.2)

where

|A|2 = 1

12

∑
j

Tr
[Aσ 1,σ 2 (k,k′)

× σ
j
1

[
(σ 1 + σ 2)j ,Aσ 1,σ 2 (−k,k′)

]]
, (5.3)

where the first sum is over the momenta of all initial
states of particle 2 and all final states of particle 3 and 4,
and F = f2(1 − f3)(1 − f4) + (1 − f2)f3f4 Pauli blocking
factors, where fi is the Fermi-Dirac distribution for particle
i in the reaction 1 + 2 → 3 + 4 with incoming momenta
P1 and P2 and outgoing momenta P3 and P4 and relative
momenta k = P1 − P3, k′ = P1 − P4. The squared matrix
element in Eq. (5.3) is a sum over the spin projections
j = 1, 2, 3 of the spin operators σ 1 and σ 2 acting on nucleons
1 and 2, respectively. In the limit of ω � EF and T �
EF , the appropriate average relaxation time from Eq. (5.2)
reduces to

1

τσ

= Cσ

[(
ω

2π

)2

+ T 2

]
, (5.4)

where Cσ characterizes the strength of noncentral interactions
and depends on the ambient density and T is the temperature.
Cσ has been calculated using different models for the nucleon-
nucleon potential for a range of densities in Ref. [36]. At
nuclear density these authors find that Cσ � 0.22 MeV−1

for OPE, while it is reduced to Cσ � 0.08 MeV−1 for
realistic nucleon-nucleon and next-to-next-to-next-to-leading-
order chiral perturbation theory (χPT) potentials.

From Eq. (5.4) it follows that the form of the quasiparticle
approximation is valid when ω � (2π )2/Cσ (and ω � EF )
and inserting Eq. (5.4) into Eq. (5.1) we can obtain a low-

frequency form of the zero-temperature structure function,

S low
σ (ω,q = 0) = N (0)

nπ

C̃σω

1 + (1 + G0)2(C̃σω)2
, (5.5)

where C̃σ = Cσ/(2π )2. This form of the structure function
satisfies the S−1

σ sum rule by construction but produces
divergent results for S0

σ and S1
σ . In the following section we will

combine the low- and high-frequency forms in Eq. (5.5) and
Eq. (4.3), respectively, with the sum-rule constraints discussed
in the preceding section to construct a structure function that
can be used in calculations of the neutrino emissivity.

Another commonly used limiting form of Sσ (ω) can be
obtained by ignoring any many-particle correlations in the
ground state. Here neutrons are distributed as free fermions in
the ground state and excitations with q = 0 and ω �= 0 arise
as two-particle two-hole states. Following Ref. [7] we denote
this as the two-body (2b) response and this is given by

S2b
σ (ω) = 2

3πn

∫ [ ∏
i=1..4

d3pi

(2π )3

]
(2π )4δ3(P1 + P2 − P3 − P4)

× δ(ε1 + ε2 − ε3 − ε4 − ω)F2H, (5.6)

F4 = f1f2(1 − f3)(1 − f4), and H is related to the square of
the matrix element defined in Eq. (5.3). For the nn system
where only the spin-triplet two-nucleon state contributes it is
explicitly given by

H = 1

ω2

∑
MsM ′

s

|〈1M ′
s ,p

′|[S,TNN ]|p,1Ms〉|2, (5.7)

where S is the total spin and p (p′) is the relative initial (final)
momentum of the two-nucleon system. The matrix element is
computed by assuming plane-wave in and out states for the
two-nucleon system and thus ignores many-body effects and
initial- and final-state correlations. In Ref. [7] it was argued
that this result can be expected to be valid up to ω � mπ in the
absence of many-body corrections.

VI. CONSTRUCTING Sσ (ω)

While it is clear that a unique reconstruction of Sσ (ω)
would require an infinite number of moments, here we show
that the lowest order sum rules and the asymptotic forms
discussed in the preceding section already provide significant
constraints. The three sum rules S−1

σ , S0
σ , and S+1

σ provide a
useful sampling of the function at low, intermediate, and high
energy, respectively. Their utility in constraining the neutrino
emissivity will depend on the redistribution of strength due to
finite-temperature effects. We postpone a discussion of these
finite-temperature effects to the subsequent section. Here,
using as guidance the limiting forms discussed previously,
we examine simple ansatze for the functional form of Sσ (ω)
at T = 0 by imposing sum-rule constraints.

The striking feature of the sum-rule results shown in
Table I is that at nuclear density ω̄0 ≈ ω̄1 and is comparable to
the Fermi energy EF = k2

F /2m. This suggests that the function
Sσ (ω) contains significant strength in the region ω̄0 to ω̄1. To
properly account for this we study the following simple ansatz
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for the frequency dependence of Sσ (ω) given by the form
S low

σ (ω) but the with a more complex behavior of τ (ω) given
by the following forms:

1

τ (ω)
=

(
C̃σω2 + α

ω2+n

(ω + ω0)2

) (
ωc

ω + ωc

)m

, (6.1)

where the constants α and ω0 and indices n and m are fit to
ensure that the three sum rules and the asymptotic forms are
satisfied. At low frequency, this ansatz ensures that out results
coincide with the results obtained in Ref. [5] by Lykasov,
Pethick, and Schwenk, where only the first term containing
C̃σ contributes. On general grounds (unitarity of scattering
amplitudes) at large frequency, pair excitation should be
quenched due to the retarded nature of nuclear interaction,
and this quenching is naturally incorporated through the
asymptotic form discussed in relation to Eq. (4.3).

To better understand the sensitivity of our results to
the choice of parametrization, we have also used a simple
phenomenological form for the spin response:

Sσ (ω) = α
ωj

[1 + (ω/ωc)i]4
. (6.2)

The high-frequency tail is forced to fall off appropriately by
choosing 4i − j = 9. The parameters α, ωc, and i are then
fitted to the three sum rules. This simple form ensures that the
response goes to zero at low frequency, has the correct high-
frequency tail, and has a single-peak structure. Comparisons
of the two parametrizations provide some information on the
reliability of the extracted spin response.

Figure 2 shows the response function obtained by fitting
the sum rules and the high-energy response at saturation
density using the two different parametrizations, Eqs. (5.5)
and (6.2). For comparison, the low-frequency forms of the
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]
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χPT
OPE: Eq. (5.6)
sum-rule
ind. fit

FIG. 2. (Color online) The spin response function Sσ (q = 0,ω)
of neutron matter at saturation density obtained by fitting to AFDMC
sum rules using two different ansatze (shown as the black solid and
dashed curves). The inset compares the fits and the two-particle
response at high energy obtained by confining two neutrons in a
spherical cavity of radius = 7 fm (red) or 8 fm (green). The linear,
low-frequency forms predicted in Ref. [36], labeled as OPE and χPT,
are shown for comparison. The dot-dot-dashed curve is obtained by
using the two-body approach in Eq. (5.6) with OPE.
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FIG. 3. (Color online) The spin response function Sσ (q = 0,ω) of
neutron matter at ρ = 0.12, 0.16, and 0.20 fm−3 from fits to AFDMC
sum-rule results at zero temperature.

structure function obtained in Ref. [36] are shown for the two
choices of C̃σ corresponding to the OPE and χPT potentials
discussed earlier. The form of the low-frequency response in
Eq. (5.1) is valid only at ω � EF . In the figure we also show
the results from the two-body approach [described in Eq. (5.6)]
in the Born approximation with OPE. At low frequency
ω � EF /2, it gives similar results to the quasiparticle picture,
then becomes larger at higher frequency since it includes the
exact phase-space integrals. The inset compares the fits and
the two-particle response at high energy obtained by confining
two neutrons in a spherical cavity of radius = 7 fm (red)
or 8 fm (green). The asymptotic forms and sum rules force
significantly more strength at lower energy than obtained
previously.

The simple phenomenological fit [dashed line; Eq. (6.2)]
and the fit to the quasiparticle form [solid line; Eqs. (5.5) and
(6.1)] produce very similar response functions. In addition to
the sum-rule constraints, we are forcing the response to go
to zero at low frequency, have a single-peak structure, and to
fall off fairly rapidly at high energy as obtained from the two-
neutron response. When combined, these considerations place
fairly tight constraints on the spin response of neutron matter.

In Fig. 3 we compare the response functions obtained over a
range of densities ρ = 0.12, 0.16, and 0.20 fm−3. As expected
from the sum rules, the peak of the response functions shifts
to larger energy with increasing density. The tensor and spin-
orbit correlations are naturally of shorter range at the higher
densities where the mean interparticle spacing is shorter, and
hence the peak shifts to higher energy. The total strength in the
response is fairly flat over the regime of densities we consider
as obtained in the sum-rule calculations for S0.

Finally, at higher density the distribution is somewhat
broader as ω1 increases more rapidly with density than ω0.
Both ω0 and ω1 increase rapidly, presumably associated with
the increasing importance of the shorter range components of
the nuclear force at and above saturation density. While we
expect this trend to be qualitatively correct, contributions due
to three-body forces and from two-body currents are able to
play a role in modifying this behavior.
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VII. EXTENSION TO FINITE TEMPERATURE AND
IMPACT ON NEUTRINO PRODUCTION

The AFDMC method we employ is restricted to zero tem-
perature and we have not explicitly computed the temperature
corrections to the sum rules. Hence there will be several
caveats to consider when using our results in finite-temperature
applications such as supernova where Sσ (ω) plays a role in
neutrino production rates. To discuss these we first note that
there are three fundamental energy scales inherent to our
present analysis of the structure function and the neutrino
emissivity: (i) the typical energy at which the structure function
has significant strength and is given by ω̄0 and ω̄1; (ii) the
energy scale at which the structure function is sampled in
the neutrino emissivity, denoted as ων , whose expected value
from the expression for Q in Eq. (2.2) is ων � 5T –6T ; and
(iii) the high-energy scale ωc at which the asymptotic two-body
behavior dominates.

At very low temperature where ων � ω̄0 and ων � ω̄1, the
sum rules do not provide useful constraints. Here the low-
frequency form of Sσ (ω) given in Eq. (5.5) can be used to
calculate the neutrino emissivity with the requirement that
ων � EF and C̃σων � 1. In practice, at nuclear density, the
condition that ων � EF is more restrictive and limits the use
of the low-frequency form to the region where T � EF /6. At
intermediate temperature when ων � ω0 or ω1 and T � EF ,
the zero-temperature sum-rule constraints on the form of S0

σ

and S1
σ become relevant. Here the temperature is intermediate

and corrections to the T = 0 sum rules are expected to be
small due to the Pauli principle.

At finite temperature, the dynamic structure factor obeys
the detailed balance

Sσ (−ω) = exp

(
−ω

T

)
Sσ (ω), (7.1)

and this is reflected in Eq. (2.2) for the neutrino emissivity
where the exponential term accounts for the fact that neutrino
emission corresponds to thermal fluctuations with negative ω.
There are residual temperature dependencies in the function
Sσ (ω). First, from the fluctuation-dissipation theorem we have

Sσ (ω) = −2

[
1 − exp

(
−ω

T

)]−1

Im�R(ω), (7.2)

where �R is the retarded polarization function, which is an
odd function of ω and vanishes at ω = 0. To extend to finite
temperature the zero-temperature ansatz in Sec. VI needs to
be multiplied by the factor [1 − exp (−ω/T )]−1. A second
source of temperature corrections arise from the fact that at low
frequency the spin relaxation time τ−1

σ � CσT 2 is dominated
by scattering between thermally excited quasiparticles as de-
scribed in Eq. (6.1). We incorporate this expected behavior by
using the finite-temperature expression for τσ given in Eq. (6.1)
in the low-frequency form given for Sσ (ω) in Eq. (5.5). Other
sources of temperature corrections exist such as those arising
from transitions in which the excited many-particle states do
not decay to the ground state, and these should be investigated
in the future. We leave this for future work as it would require
the development of finite-temperature QMC techniques.
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FIG. 4. (Color online) The energy-loss rate Q at various temper-
ature as defined in Eq. (2.2), for OPE, χPT, and our results.

With the aforementioned finite-temperature extensions we
employ the Sσ (ω) obtained using the sum-rule constraints
to compute the neutrino emissivity. In Fig. 4, the resulting
energy-loss rates Q are shown for various temperatures T .
The large strength required by the sum rules at intermediate
energy leads to a larger neutrino emissivity compared to the
simple extrapolation of results obtained in the quasiparticle
approximation with only two-particle–two-hole excitations.
Our results are almost a factor of 2 larger than either those
obtained using χPT in Ref. [36] or those obtained directly
from nucleon-nucleon phase shifts in Ref. [7] at T � 5 MeV.
We suspect that this enhancement is due to correlations in
the ground state that are not captured in the quasiparticle
approximation.

VIII. DISCUSSION

Our study of the zero-temperature sum rules suggests that
the spin response function of neutron matter has a significant
strength at energy between 40 and 60 MeV in the vicinity
of nuclear density. This strength should be accessible at
temperatures of the order of 5–30 MeV encountered in the
supernova environment and could influence the rate of neutrino
pair production from nucleon-nucleon processes. Although
the zero-temperature sum rules do not directly constrain the
finite-temperature response functions needed in the calculation
of the neutrino emissivity they provide a useful guidance.
For example, they can be used to test predictions obtained
using quasiparticle methods at zero temperature, and with
some caveats they can be extended to low temperature where
response is still dominated by transitions to the ground state.

Comparisons with earlier calculations of the dynamic
structure factor indicate that they significantly underpredict
the response in the regime where ω � EF /5 − EF for the
densities considered. There are several possible resolutions to
this discrepancy. The quasiparticle interactions and dispersion
relations used in earlier studies may not be adequate as finite
density effects are ignored. Similarly, the use of plane-wave
states augmented with the T matrix may be too simple to
reproduce the coupling between the ground state and the
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excitations. Alternatively, our ansatz for the response function
may be too simple to capture the complex structure of Sσ (ω).

All of these possibilities can be studied in more detail.
To quantify the interplay between increasing phase space
and decreasing strength of the two-body interaction with
increasing ω we have calculated Sσ (ω) in the standard
approach using realistic potentials. Within the QMC approach
there are two ways to address these issues. First, the calculation
of higher order moments at zero temperature can provide
additional constraints and test our ansatze at intermediate
energy. Second, extensions to finite temperature will shed light
on the importance of transitions not involving the ground state.
We hope to pursue these in future work.
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