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We investigate the low-energy elastic D̄N interaction using a quark model that confines color and realizes
dynamical chiral symmetry breaking. The model is defined by a microscopic Hamiltonian inspired in the
QCD Hamiltonian in Coulomb gauge. Constituent quark masses are obtained by solving a gap equation, and
baryon and meson bound-state wave functions are obtained using a variational method. We derive a low-energy
meson-nucleon potential from a quark-interchange mechanism whose ingredients are the quark-quark and quark-
antiquark interactions and baryon and meson wave functions, all derived from the same microscopic Hamiltonian.
The model is supplemented with (σ , ρ, ω, a0) single-meson exchanges to describe the long-range part of the
interaction. Cross sections and phase shifts are obtained by iterating the quark-interchange plus meson-exchange
potentials in a Lippmann-Schwinger equation. Once coupling constants of long-range scalar σ and a0 meson
exchanges are adjusted to describe experimental phase shifts of the K+N and K0N reactions, predictions for
cross sections and s-wave phase shifts for the D̄0N and D−N reactions are obtained without introducing new
parameters.
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I. INTRODUCTION

The interaction of heavy-flavored hadrons with ordinary
hadrons like nucleons and light mesons is focus of great con-
temporary interest in different contexts. One focus of interest
is in experiments of relativistic heavy ion collisions. In heavy
ion experiments, charm and bottom quarks are produced in the
initial stages of the collision by hard scattering processes. Since
they are much heavier than the light partons making up the bulk
of the matter produced in the collision, it is likely that they
will not equilibrate with the surrounding matter and therefore
they might be ideal probes of properties of the expanding
medium; for a recent review on the subject and an extensive
list of references, see Ref. [1]. However, the heavy quarks
will eventually hadronize and information on the medium
will be carried out of the system by heavy-flavored hadrons.
In their way out of the system, the heavy-flavored hadrons
will interact with the more abundant light-flavored hadrons,
and a good understanding of the interaction is crucial for a
reliable interpretation of experimental data. Another focus of
interest is an exciting physics program that will be carried out
with the 12 GeV upgrade of the Continuous Electron Beam
Facility (CEBAF) accelerator at the Jefferson Laboratory in
the USA and the construction of the Facility for Antiproton
and Ion Research (FAIR) facility in Germany. At the Jefferson
Laboratory charmed hadrons will be produced by scattering
electrons off nuclei and at FAIR they will be produced by
the annihilation of antiprotons on nuclei. One particularly
exciting perspective is the possibility of creating exotic nuclear
bound states by nuclei capturing charmonia states like J/�
and ηc [2–5] or heavy-light D and D∗ mesons [6–8]. In
addition, the quest for experimental signals of chiral symmetry
restoration in matter is a subject of immense current interest
and open-charm D and D∗ mesons are expected to play
an important role in this respect; for a recent review, see
Ref. [9]. In D mesons, properties of the light constituent
quarks determined by dynamical chiral symmetry breaking

(DχSB), like masses and magnetic moments, are sensitive to
the surrounding environment, and changes in those properties
will impact the structure and interactions of the mesons in
medium. Evidently, a prerequisite for reliable predictions
of modifications of hadron properties in medium is a good
understanding of the free-space interaction of these hadrons.
Knowledge of the interaction in free space is also essential for
guiding future experiments aiming at producing exotic bound
states and measuring in-medium hadron properties.

The present paper is concerned with the low-energy inter-
action of D̄ = (D̄0,D−) mesons with nucleons in free space.
There is a complete lack of experimental information on this
reaction; all of what is presently known about the interaction
in free space has been apprehended from model calculations
based on hadronic Lagrangians motivated by flavor SU(4)
symmetry [10–12], models using hadron and quark degrees
of freedom [13] and heavy-quark symmetry [14,15], and the
nonrelativistic quark model [16]. Although the first lattice
QCD studies of the interaction of charmed hadrons like J/�
and ηc with nucleons are starting to appear in the literature
[17–19], the D̄N interaction does not seem to have been
considered by the lattice community. In view of this situation,
the use of models seems to be the only alternative for making
the urgently needed predictions for, e.g., low-energy cross
sections of reactions involving charmed hadrons. However, as
advocated in the works of Refs. [13,20–22], minimally reliable
predictions of unknown cross sections need to be founded
on models constrained as much as possible by symmetry
arguments, analogies with other similar processes, and the
use of different degrees of freedom. In the specific case
of the D̄N reaction, Ref. [13] extended a very successful
model for the KN reaction [23], in which the long-range
part of the interaction is described within a meson-exchange
framework [24,25] and the short-distance part is described
by a quark-interchange mechanism from one-gluon exchange
(OGE) of a nonrelativistic quark model (NRQM) [26–31].
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The model of Ref. [23] describes the available low-energy
experimental data for the KN reaction and was used to set
limits on the width of the hypothetical �+(1540) pentaquark
state [32]. For the D̄N reaction, the model predicts cross
sections that are on average of the same order of magnitude
but larger by a factor roughly equal to 2 than those of the
analogous K+N and K0N reactions for center-of-mass kinetic
energies up to 150 MeV. Two interesting findings of the study
of Ref. [13] are noteworthy: (1) quark interchange contributes
about the same amount as meson exchanges to the D̄N s-wave
phase shifts and (2) among the meson exchanges processes,
scalar (σ ) and vector (ω,ρ) are the most important contributors:
Single 	c, 
c baryon-exchange diagrams and higher-order
box diagrams involving D̄∗N , D̄�, and D̄∗� intermediate
states contribute very little. Recall that single-pion exchange
is absent in this reaction. The same model was also used
to examine the possibility of extracting information on the
DN and D̄N interactions in an antiproton annihilation on the
deuteron [20].

The fact that quark-interchange plays a prominent role in
the D̄N reaction is very significant to the quest of experimental
signals of chiral symmetry restoration via changes in the
interactions of D̄ mesons in matter. As said, such changes
would be driven at the microscopic level by modifications of
the properties of the light u and d constituent quarks. However,
within a NRQM there is no direct way to link DχSB in
medium and the effective hadron-hadron interactions, since
constituent quark masses and microscopic interactions at the
quark level are specified independently in the model [33]. Also,
any temperature or density dependence on constituent quark
masses has to be postulated in an ad hoc manner [34,35] to
account for effects of DχSB restoration. As a step to remedy
this limitation of the NRQM, in the present paper we use a
model that realizes DχSB in a way that the same microscopic
interaction that drives DχSB also confines the quarks and
antiquarks into color singlet hadronic states and in addition
is the source of the hadron-hadron interaction. The model is
defined by a microscopic Hamiltonian inspired in the QCD
Hamiltonian in Coulomb gauge, in that an infrared divergent
interaction models the full non-Abelian color Coulomb kernel
in QCD and leads to hadron bound states that are color singlets.
The Hamiltonian also contains an infrared finite interaction to
model transverse-gluon interactions and leads to, among other
effects, hyperfine splittings of hadron masses [36–38]. We
implement an approximation scheme that allows calculation
with little computational effort of variational hadron wave
functions and effective hadron-hadron interactions that can
be iterated in a Lippmann-Schwinger equation to calculate
phase shifts and cross sections. An early calculation of the
KN interaction within such a model, but using a confining
interaction only, was performed in Ref. [39].

The paper is organizes as follows. In the next section we
present the microscopic quark-antiquark Hamiltonian of the
model. We discuss DχSB in the context of two models for the
infrared divergent potentials that mimic the full non-Abelian
color Coulomb kernel in QCD and obtain numerical solutions
of the constituent quark mass function for different current
quark masses. In Sec. III we discuss a calculation scheme
for deriving effective low-energy hadron-hadron interactions

within the context of the Hamiltonian of the model. A
low-momentum expansion of the quark mass function is
used to obtain variational meson and baryon wave functions
and explicit, analytical expressions for the effective meson-
baryon potential. In Sec. IV we present numerical results
for phase shifts and cross sections for the K+N , K0N ,
D̄0N , and D−N reactions at low energies. Initially we use
the short-ranged quark-interchange potential derived within
the model and add potentials from one-meson exchanges
to fit experimental s-wave phase shifts of the K+N and
K0N reactions. Next, without introducing new parameters, we
present the predictions of the model for the D̄0N and D−N
reactions. Our conclusions and perspectives are presented
in Sec. V. The paper includes one appendix that presents
the meson Lagrangians and respective one-meson exchange
potentials.

II. MICROSCOPIC HAMILTONIAN AND THE
CONSTITUENT QUARK MASS FUNCTION

The Hamiltonian of the model is given as

H = H0 + Hint, (1)

where H0 and Hint are given in terms of a quark field operator
�(x) as

H0 =
∫

dx �†(x)(−iα · ∇ + βm)�(x) (2)

and

Hint = − 1

2

∫
dx d y ρa(x) VC(|x − y|) ρa( y)

+ 1

2

∫
dx d y J a

i (x) Dij (|x − y|) J a
j ( y). (3)

In the above, m is the current-quark mass matrix of the light
l = (u, d), strange s, and charm c quarks:

m =

⎛
⎜⎜⎜⎝

mu 0 0 0

0 md 0 0

0 0 ms 0

0 0 0 mc

⎞
⎟⎟⎟⎠ , (4)

ρa(x) is the color charge density

ρa(x) = �†(x) T a �(x), (5)

and J a
i (x) is the color current density

J a
i (x) = �†(x) T aαi �(x), (6)

with T a = λa/2, where λa are the SU(3) Gell-Mann matrices.
VC and Dij are the effective Coulomb and transverse-gluon
interactions; the transversity of Dij implies

Dij (|x − y|) =
(

δij − ∇ i∇j

∇2

)
DT (|x − y|). (7)

The problem of DχSB with such an Hamiltonian has been
discussed in the literature for a long time in Bardeen-
Cooper-Schriefer (BCS) mean-field-type approaches via
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Bogoliubov-Valatin transformations or Dyson-Schwinger
equations in the rainbow approximation [40–54]. For our
purposes in the present paper, it is more convenient to follow
the logic of the Bogoliubov-Valatin transformations. In this
approach, DχSB is characterized by a momentum-dependent
constituent-quark mass function M(k), so that the quark field
operator of a given color and flavor can be expanded as

�(x) =
∑

s

∫
dk

(2π )3
[us(k)qs(k) + vs(k)q̄†

s (−k)]eik·x, (8)

where us(k) and vs(k) are Dirac spinors:

us(k) =
√

E(k) + M(k)

2E(k)

(
1

σ ·k
E(k)+M(k)

)
χs, (9)

vs(k) =
√

E(k) + M(k)

2E(k)

(
− σ ·k

E(k)+M(k)

1

)
χc

s , (10)

with E(k) = [k2 + M2(k)]1/2, χs is a Pauli spinor, χc
s =

−i σ 2χ∗
s , and q

†
s (k), q̄

†
s (k), qs(k), and q̄s(k) are creation and

annihilation operators of constituent quarks; qs(k) and q̄s(k)
annihilate the vacuum state |�〉:

qs(k)|�〉 = 0, q̄s(k)|�〉 = 0. (11)

For m = 0, the Hamiltonian is chirally symmetric, but |�〉 is
not symmetric, 〈�|�̄�|�〉 �= 0.

By substituting in Eqs. (2) and (3) the expansion of �,
Eq. (8) and rewriting H in Wick-contracted form, one obtains
an expression for H that can be written as a sum of three parts:

H = E + H2 + H4, (12)

where E is the c-number vacuum energy and H2 and H4 are
normal-ordered operators, respectively, quadratic and quartic
in the creation and annihilation operators. The mass function
M(k) is determined by demanding that H2 is diagonal in
the quark operators. This leads to the gap equation for the
constituent quark mass function Mf (k) of flavor f :

Mf (k) = mf + 2

3

∫
dq

(2π )3

[
F

(1)
f (k, q) VC(|k − q|)

+ 2 G
(1)
f (k, q) DT (|k − q|)], (13)

where mf is the current quark mass and

F
(1)
f (k, q) = Mf (q)

Ef (q)
− Mf (k)

Ef (q)

q

k
k̂ · q̂, (14)

G
(1)
f (k, q) = Mf (q)

Ef (q)
+ Mf (k)

Ef (q)

q

k

× (k · q − k2)(k · q − q2)

kq|k − q|2 , (15)

and VC(k) and DT (k) are the Fourier transforms of VC(|x|)
and DT (|x|). The quadratic Hamiltonian H2 is given by

H2 =
∑
s,f

∫
dk εf (k)[q†

sf (k)qsf (k) + q̄
†
sf (k)q̄sf (k)], (16)

where εf (k) is the constituent-quark single-particle energy of
flavor f , given by

εf (k) = k2 + mf Mf (k)

Ef (k)

+ 2

3

∫
dq

(2π )3

[
F

(2)
f (k, q) VC(|k − q|)

+ 2G
(2)
f (k, q) DT (|k − q|)], (17)

with

F
(2)
f (k, q) = Mf (k)

Ef (k)

Mf (q)

Ef (q)
+ k · q

Ef (k)Ef (q)
(18)

and

G
(2)
f (k, q) = Mf (k)

Ef (k)

Mf (q)

Ef (q)
+ (k · q − k2)(k · q − q2)

Ef (k)Ef (q)|k − q|2 .

(19)

The four-fermion term H4 is simply the normal-ordered form
of Hint:

H4 = : Hint : . (20)

The color-confining feature of the Hamiltonian is discussed in
the next section.

To solve the gap equation on needs to specify the inter-
actions VC and DT . For the confining Coulomb term VC , we
use two analytical forms, model 1 and model 2, to assess
the sensitivity of results with respect to VC . Model 1 is a
parametrization of the lattice simulation of QCD in Coulomb
gauge of Ref. [55]:

VC(k) = 8πσCoul

k4
+ 4πC

k2
, (21)

with σCoul = (552 MeV)2 and C = 6. Model 2 for VC was used
in recent studies of glueballs [56] and heavy hybrid quarkonia
[57]; it is written as

VC(k) = Vl(k) + Vs(k), (22)

where

Vl(k) = 8πσ

k4
, Vs(k) = 4πα(k)

k2
, (23)

with

α(k) = 4πZ

β3/2 ln3/2
(
c + k2/	2

QCD

) . (24)

The parameters here are 	QCD = 250 MeV, Z = 5.94, c =
40.68, and β = 121/12. For the transverse-gluon interaction
DT we use

DT (k) = − 4παT

(k2 + m2) ln1.42
(
τ + k2/m2

g

) . (25)

This choice is guided by previous studies of spin-hyperfine
splittings of meson masses [38] using a Hamiltonian as in the
present work. Moreover, the Yukawa term multiplying the log
term is to model lattice results [55,58] that indicate that the
gluon propagator in Coulomb gauge is finite at k2 = 0, i.e.,
not divergent like the free propagator 1/k2. Further ahead we
discuss the impact of this particular choice of infrared behavior

025206-3



C. E. FONTOURA, G. KREIN, AND V. E. VIZCARRA PHYSICAL REVIEW C 87, 025206 (2013)

on our numerical results. Parameters here are mg = 550 MeV,
m = mg/2, τ = 1.05, and αT = 0.5. We use the same DT for
both models. We note that we could have used a log running
similar to the one in VC , Eq. (24), but results would not change
in any significant way.

We have solved the gap equation in Eq. (13) by iteration.
The angular integrals can be performed analytically, but special
care must be taken with the strongly peaked confining term
1/|k − q|4 at q ≈ k in the numerical integration over q.
There is no actual divergence here: the terms M(q)/E(q) and
M(k)/E(q) (q/k) k̂ · q̂ in Eq. (14) cancel exactly when q = k,
but this cancellation can be problematic in the numerical
integration. This problem can be handled in different manners,
like via the use of a momentum mesh containing node and
half-node points with, e.g., k at nodes and q at half-nodes
[44], or via the introduction of a mass parameter μir such
k4 → (k2 + μ2)2 in Eq. (21) and varying μir until results
become independent of μir [59]. In the present paper we use
a different method [60]; we add a convenient zero to the gap
equation:

−
∫

dq
(2π )3

1

|k − q|4
M(k)

E(k)

1

k
k̂ · (k − q), (26)

and rewrite F (1)(k, q) in Eq. (13) as

F (1)(k, q) → F (1)(k, q) − M(k)

E(k)

1

k
k̂ · (k − q)

=
(

M(q)

E(q)
− M(k)

E(q)

)

−
(

q

k
k̂ · q̂ − 1

)(
M(k)

E(q)
− M(k)

E(k)

)
, (27)

so that angle-independent and angle-dependent terms vanish
independently when q = k. This feature makes the numerical
cancellation of the divergences very stable.

In Fig. 1 we present solutions M(k) of the gap equation
for different values of current-quark masses. The dramatic
effect of DχSB mass generation is seen clearly in the figure:
for the fictitious limit of a zero current-quark mass (solid
line), the mass function M(k) acquires a sizable value in the
infrared, M(k = 0) ≈ 250 MeV. In the ultraviolet, the mass
function runs logarithmically with k, in a manner dictated by
the running of the microscopic interactions. Since the model
interactions used here have a different ultraviolet running from
the one dictated by perturbative QCD, the logarithm running
of the quark-mass function must be different; the interactions
here fall off faster than those in QCD. One consequence
of this is that the momentum integral over the trace of the
quark propagator, which gives the quark condensate, does not
run and is ultraviolet finite in the present case; we obtain
(−〈�̄�〉)1/3 = 280 MeV. For nonzero current-quark masses,
Fig. 1 shows that the effect of mass generation diminishes
as the value of mf increases: Here mu = md = 10 MeV,
ms = 150 MeV in both models, and mc = 950 MeV in model
1 and mc = 600 MeV in model 2. On the logarithm scale,
one sees that the mass function varies substantially in the
ultraviolet, from k 	 3	QCD = 750 MeV onward. It is worth
noticing that although the momentum dependence of the mass
function of the charm quark is much less dramatic than of
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FIG. 1. (Color online) Constituent quark mass M(k) as a function
of the momentum for different values of current-quark masses.

the corresponding for light quarks, there is still a significant
dressing effect, Mc(0)/mc ∼ 1.5–3, similarly to what is found
with covariant Dyson-Schwinger equations [61–63].

Finally, we comment on the impact of the momentum
dependence of DT (k) in the infrared on the mass function. In
the absence of DT , using only VC with the parameters above,
M(0) would be of the order of 100 MeV in the chiral limit. On
the other hand, using a DT (k) that vanishes at k = 0, like in the
form of a Gribov formula [64], would give M(0) ∼ 200 MeV
in the chiral limit. This is in line with the recent finding of
Ref. [65], which studies DχSB in a framework based on a
quark wave functional determined by the variational principle
using an ansatz that goes beyond the BCS-type of wave
functionals.

III. BARYON-MESON INTERACTION

In this section we set up a calculation for deriving effective
low-energy hadron-hadron interactions with the Hamiltonian
discussed above. We seek a scheme that makes contact with
traditional quark-model calculations and can be systematically
improved with some computational effort. Since the early
1980s, the great majority of calculations of hadron-hadron
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scattering observables in the quark model are based on methods
to handle cluster dynamics adapted from nuclear or atomic
physics; for reviews on methodology and fairly complete
lists of references, see Refs. [66–68]. Such methods require
a microscopic Hamiltonian and hadron bound-state wave
functions given in terms of quark degrees of freedom. Within
the context of the model discussed in the previous section, the
starting point is the microscopic Hamiltonian of Eq. (1), with
quark field operators given in terms of the constituent quark
mass function M(k) obtained from the numerical solution of
the gap equation in Eq. (13).

The sector of the Hamiltonian relevant for the elastic
meson-baryon interaction can be written in a compact notation
as

Hqq̄ = ε(μ) q†
μqμ + ε(ν) q̄†

ν q̄ν + 1
2Vqq(μν; σρ) q†

μq†
νqρqσ

+ 1
2Vq̄q̄(μν; σρ) q̄†

μq̄†
ν q̄ρ q̄σ + Vqq̄ (μν; σρ) q†

μq̄†
ν q̄ρqσ ,

(28)

where the indices μ, ν, ρ, and σ denote collectively the
quantum numbers (orbital, color, spin, flavor) of quarks and
antiquarks. The first two terms in Eq. (28) are the quark and
antiquark single-particle self-energies coming from Eq. (16),
and Vqq , Vqq̄ , and Vq̄q̄ are respectively the quark-quark,
quark-antiquark, and antiquark-antiquark interactions from H4

in Eq. (20). The one-baryon state in the BCS approximation
can be written in the schematic notation as [47,51,52]

|a〉 = B†
a|�〉 = 1√

3!
ψμ1μ2μ3

a q†
μ1

q†
μ2

q†
μ3

|�〉, (29)

with ψ
μ1μ2μ3
a being the Fock-space amplitude, with a denoting

the (orbital, spin, flavor) quantum numbers of the baryon.
Likewise, the one-meson state is written as

|a〉 = M†
a |�〉 = φμν

a q†
μq̄†

ν |�〉, (30)

where φ
μν
a is the corresponding Fock-space amplitude, with

a representing the quantum numbers of the meson. The
Fock-space amplitudes ψ and φ can be obtained by solving a
Salpeter-type equation [47,51,52].

Given a microscopic Hamiltonian Hqq̄ and hadronic states
|a〉 as in Eqs. (28)–(30), an effective low-energy meson-
baryon potential for the process Meson(a) + Baryon(b) →
Meson(c) + Baryon(d), VMB(ab, cd), can be written as [67]

VMB (ab, cd) = − 3 φ∗μν1
c ψ

∗νμ2μ3
d Vqq(μν; σρ)φρν1

a ψ
σμ2μ3
b

− 3 φ∗σρ
c ψ

∗μ1μ2μ3
d Vqq̄ (μν; σρ)φμ1ρ

a ψ
μμ2μ3
b

− 6 φ∗μ1ν1
c ψ

∗νμμ3
d Vqq(μν; σρ)φρν1

a ψ
μ1σμ3
b

− 6 φ∗ν1ν
c ψ

∗ν1μμ3
d Vqq̄ (μν; σρ)φν1ρ

a ψ
μ1σμ3
b ,

(31)

where φ
μν
a , ψ

μνσ
b , . . ., are the meson and baryon Fock-space

amplitudes of Eqs. (29) and (30) and Vqq , Vqq̄ , and Vq̄q̄ are
respectively the quark-quark, quark-antiquark, and antiquark-
antiquark interactions in Hqq̄ of Eq. (28). The expression
in Eq. (31) is completely general, in that it is valid for any
low-energy meson-baryon process for which the baryon and
meson Fock-space states and Hqq̄ are as given above. It
can be iterated in a Lippmann-Schwinger equation to obtain
scattering phase shifts and cross sections; for details, see

Ref. [67]. There is, however, one difficulty: VMB involves
multidimensional integrals over internal quark and antiquark
momenta of products of baryon and meson wave functions
and products of Dirac spinors u(k) and v(k) that depend on
the quark mass function M(k). Although this is not a major
difficulty, an approximation can be made, noting that the
bound-state amplitudes ψ and φ are expected to fall off very
fast in momentum space for momenta larger than the inverse
size of the hadron, and therefore only low-momentum quark
and antiquark processes contribute in the multidimensional
integrals. In view of this, and the fact that M(k) changes
considerably only at large momenta, a natural approximation
scheme to simplify the calculations without sacrificing the
low-energy content of the effective interaction is to retain the
first few terms in the low-momentum expansion for the mass
function M(k):

M(k) = M + M ′(0) k + 1
2M ′′(0) k2 + · · · , (32)

where M ′(k) = dM(k)/dk and M ′′(k) = d2M(k)/dk2. In par-
ticular, by retaining terms up to O(k2/M2) in the expansion, it
is not difficult to show that the Dirac spinors us(k) and vs(k)
in Eqs. (9) and (10) become

us(k) =
(

1 − k2

8M2

σ ·k
2M

)
χs, (33)

vs(k) =
(

− σ ·k
2M

1 − k2

8M2

)
χc

s . (34)

By using these spinors in Eq. (3), the expressions one obtains
for Vqq , Vqq̄ , and Vq̄q̄ are very similar to those of the
Fermi-Breit expansion of the OGE interaction [69]. There is,
however, one important difference here: While for the OGE
one has VC(k) = DT (k) ≈ 1/k2, in the present case VC(k) and
DT (k) are different and represent very different physics; VC

is a confining interaction and DT is a (static) transverse gluon
interaction.

The evaluation of multidimensional integrals can be further
simplified using the variational method of Refs. [47,51]
with Gaussian ansatz for the bound-state amplitudes ψ and
φ, instead of solving numerically Salpeter-type equations.
Specifically,

ψP (k1, k2, k3) = δ(P − k1 − k2 − k3)

×
(

3

π2α4

)3/4

e− ∑3
i=1( ki−P/3 )/2α2

, (35)

φP (k1, k2) = δ(P − k1 − k2)

×
(

1

πβ2

)3/4

e−(M1 k1−M2 k2)2/8β2
, (36)

where α and β are variational parameters, P is the center-of-
mass momentum of the hadrons, and

M1 = 2Mq̄

(Mq + Mq̄)
, M2 = 2Mq

(Mq + Mq̄)
, (37)
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TABLE I. Variational size parameters of the hadron amplitudes
and hadron mass differences. All values are in million electron volts.

α βK βD �MNK �MDN �MDK

Model 1 568 425 508 350 990 1345
Model 2 484 364 423 205 1010 1220
OGE Refs. [13,23] 400 350 383.5
Experiment 443 928 1371

with Mq and Mq̄ being the zero-momentum constituent-
quark masses. The variational parameters are determined by

minimizing the hadron masses:

Ma = 〈a| (H2 + H4) |a′〉
〈a|a′〉

∣∣∣∣
Pa=Pa′=0

, (38)

where we left out the constant E , defined in Eq. (12), which
cancels in the hadron mass differences (see Table I).

In this work we consider the elastic scattering of the
pseudoscalar mesons (K+,K0) and (D̄0,D−) off nucleons,
with both the mesons and nucleons in their ground states.
Using the Gaussian forms for the amplitudes ψ and φ, Eqs. (35)
and (36), one obtains for the nucleon mass, MN , and for the
pseudoscalar meson mass, MP , the following expressions:

MN = 3

(
3

πα2

)3/2 ∫
dk

[
k2

El(k)
+ ml

Ml(k)

El(k)

]
e−3k2/α2

+
(

3

2πα2

)3/2 ∫
dkdq
(2π )3

[
2F

(2)
l (k, q) + 3 CN e−(k−q)2/2α2]

VC(|k − q|) e−3k2/2α2

+
(

3

2πα2

)3/2 ∫
dkdq
(2π )3

[
4G

(2)
l (k, q) − (k − q)2

3M2
l

e−(k−q)2/2α2

]
DT (|k − q|) e−k2/α2

, (39)

MP =
(

1

πβ2

)3/2 ∫
dk

[
k2

El(k)
+ ml

Ml(k)

El(k)
+ k2

Eh(k)
+ mh

Mh(k)

Eh(k)

]
e−k2/β2

+
(

1

πβ2

)3/2 ∫
dkdq
(2π )3

{
2

3

[
F

(2)
l (k, q) + F

(2)
h (k, q)

] + CP e−(k−q)2/2β2

}
VC(|k − q|) e−k2/β2

+ 4

3

(
1

πβ2

)3/2 ∫
dkdq
(2π )3

[
G

(2)
l (k, q) + G

(2)
h (k, q) + 1

2

(k − q)2

MlMh

e−(k−q)2/2β2

]
DT (|k − q|) e−k2/β2

, (40)

where F
(2)
l,h (k, q) and G

(2)
l,h(k, q) are given in Eqs. (18) and

(19) and the indices l and h refer to light and heavy flavors,
l = (u, d) and h = (s, c). The matrix elements of the color
matrices, CN = 〈N |T aT a|N〉 and CP = 〈P |T a(−T a)T |P 〉,
in the terms proportional to the Coulomb potential VC—
that come from H4—are written to emphasize the color-
confinement feature of the model [47]: For k = q, these terms
are divergent, unless the color matrix elements are such that the
corresponding expressions vanish. The terms F

(2)
l,h (k, q) come

from H2, which is diagonal in color. For baryon and meson
color singlet states, the contributions from H2 and H4 cancel
exactly for k = q, since

CN = εc1c2c3εc′
1c

′
2c3

3!
(T a)c1c

′
1 (T a)c2c

′
2 = −2

3
, (41)

CP = δc1c2 δc′
1c

′
2

3
(T a)c1c

′
1 (−T a)c

′
2c2 = −4

3
, (42)

and

lim
k→q

F
(2)
l,h (k, q) = 1. (43)

Such a cancellation of infrared divergences also plays an
important role in context of a conjectured [70] new high-
density phase of matter composed of confined but chirally
symmetric hadrons [71,72].

Next, we obtain an explicit expression for the effective
meson-nucleon interaction VMB , given in a compact notation
by Eq. (31). This effective interaction is generated by a quark-
interchange mechanism. The use of Gaussian wave functions
is very helpful for getting a VMB in closed form [67]: It can
be written as a sum of four contributions (see Eqs. (9) and
(10) of Ref. [13]), each contribution corresponding to a quark-
interchange diagram shown in Fig. 2:

VMB( p, p′) = 1

2

4∑
i=1

ωi[ Vi( p, p′) + Vi( p′, p) ], (44)

(d)(c)

(a) (b)

FIG. 2. Pictorial representation of the quark-interchange pro-
cesses that contribute to a meson-baryon interaction. The curly lines
represent the interactions VC and DT .
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where p and p′ are the initial and final center-of-mass
momenta and the Vi( p, p′) are given by

Vi( p, p′) =
[

3g

(3 + 2g)πα2

]
e− aip

2−bip
′2+ci p· p′

×
∫

dq
(2π )3

v(q) e−diq
2+ei ·q, (45)

where the ai , bi , ci , di , and ei involve the hadron sizes α and
β and the constituent quark masses Mu, Ms , and Mc, and g =
(α/β)2. Since we are using the same Fock-space amplitudes ψ
and φ as those used in Ref. [13], the expressions for ai , bi , . . .,
are the same as there. It is important to note that the essential
difference here as compared to Ref. [13] is that the constituent
quark masses Mu, Ms , and Mc; the width parameters α and
β; and the meson-baryon interaction are all derived from
the same microscopic quark-gluon Hamiltonian. Another very
important difference here is v(q): While in Ref. [13] it comes
from the OGE, here v(q) = VC(q) for the spin-independent
interaction and v(q) = 2q2/(3MlM

′) DT (q) for the spin-spin
interaction, with M ′ = Ml for diagrams (a) and (c), and
M ′ = Mh for diagrams (b) and (d). The ωi are coefficients that
come from the sum over quark color-spin-flavor indices and
combinatorial factors, whose values for the D̄N interaction are
given in Table 3 of Ref. [13]. The corresponding coefficients
for the KN reaction can be extracted from that table by
identifying D̄0 with K+ and D− with K0. Note that VMB ( p, p′)
is symmetric under interchange of p and p′ and therefore
possess post-prior symmetry [67,73], a feature that is not
always satisfied when using composite wave functions that
are not exact eigenstates of the microscopic Hamiltonian [74].
As mentioned earlier, the quark-interchange mechanism leads
to an effective meson-baryon potential that is of very short
range. It depends on the overlap of the hadron wave functions
and contributes mostly to s waves. As shown in Ref. [23],
in order to describe experimental data for the K+N and
K0N reactions, light-meson exchange processes are required
to account for medium- and long-ranged components of the
force. Quark interchange generated by OGE accounts roughly
for only 50% of the experimental s-wave phase shifts; vector-
(ω and ρ) and scalar-meson exchanges are crucial for the
correct description of this wave and higher partial waves as
well [23]. Moreover, in order to describe the correct isospin
dependence of the data, it is essential to include the exchange
of the scalar-isovector a0 meson [23]. With these facts in mind,
we follow Ref. [13] and include meson-exchanges in the D̄N
system. As in that reference, we parametrize correlated ππ
exchange in terms of a single σ -meson exchange: This is not
a bad approximation for the I = 0 channel, but for I = 1
channel it underestimates the total strength by 50% [13]. In
Appendix we present the effective Lagrangians densities and
corresponding one-meson-exchange amplitudes.

IV. NUMERICAL RESULTS FOR PHASE SHIFTS AND
CROSS SECTIONS

As mentioned previously, not much is known experimen-
tally about the D̄N interaction at low energies. In view
of this, and in order to have a comparison standard, we

also consider within the same model, without changing any
parameters besides the current quark masses, the K+N and
K0N elastic processes, for which there are experimental data.
It is important to reiterate that the effective short-range meson-
baryon potential derived from quark-interchange driven by
the microscopic interactions of model 1 or model 2 are very
constrained, in the sense that they are determined by the
microscopic interactions VC and DT via a chain of intermediate
results for hadron properties driven by DχSB. That is, the
microscopic interactions VC and DT determine the constituent
quark masses Ml = (Mu,Md ) and Mh = (Ms,Mc), and these
quark masses together with VC and DT determine the hadron
wave functions. The effective meson-baryon interaction is
determined by all these ingredients simultaneously, since
it depends explicitly on the hadron wave functions, the
quark masses, and VC and DT . Such an interdependent
chain of results determining the effective meson-baryon
interaction is absent in the NRQM with OGE, where quark
masses are independent of the microscopic quark-antiquark
Hamiltonian.

Having determined the constituent quark masses Ml =
(Mu,Md ) and Mh = (Ms,Mc), the next step is the deter-
mination of the variational parameters α and β of the ψ
and φ wave functions. Minimization of MN and MP with
respect to α and β leads to the results shown in Table I;
also shown are the parameters used with the OGE model in
Refs. [13,23].

As expected, because the charm quark is heavier than the
strange quark, the charmed D mesons are smaller objects than
the kaons; recall that the meson root mean square radii are
inversely proportional to β. One also sees that hadron sizes of
models 1 and 2 are smaller than those used in the OGE model.
Although the sizes of the wave functions have an influence on
the degree of overlap of the colliding hadrons, the microscopic
interactions VC and DT also play roles in the effective meson-
baryon potentials. As we discuss shortly, there is an interesting
interplay between these two effects. For a recent discussion
on the influence of hadron sizes on the quark-interchange
mechanism, see Ref, [75]. Regarding the hadron masses, one
sees a discrepancy of 25% (model 1) and 50% (model 2) on
the kaon-nucleon mass difference; this does not come as a
surprise in view of the pseudo-Goldstone boson nature of the
kaon, in that a BCS variational form for the kaon wave function
is a poor substitute for the full Salpeter amplitude [51,52]. On
the other hand, the DN mass difference is within 10% of the
experimental value in both model 1 and model 2.

We are now in position to discuss numerical results for
scattering observables. We solve numerically the Lippmann-
Schwinger equation for the potentials derived from the quark-
interchange mechanism and one-meson exchanges, using the
method discussed in Sec. 2.4 of Ref. [76]. The importance of
going beyond quark-Born diagrams by iterating the quark-
interchange potentials in a scattering equation has been
stressed previously [13,23,68]. For the specific case of the
OGE quark-interchange in D̄N scattering, unitarization of the
scattering amplitude by iteration in a Lippmann-Schwinger
equation leads to a decrease of the cross section at low
energies by a factor of three as compared to the nonunitarized
quark-Born amplitude [13].
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FIG. 3. (Color online) KN s-wave phase shifts for isospin (a) I =
0 (upper panel) and (b) I = 1 channels from the quark-interchange
meson-baryon potential driven by the microscopic interactions of
model 1 (solid lines) and model 2 (dashed lines). The curve with
diamond symbols and denoted PSA GWDAC are the results from
a phase-shift analysis from the George Washington Data Analysis
Center (GWDAC), Ref. [77].

In Fig. 3 we present results for the s-wave phase shifts for
the isospin I = 0 and I = 1 of the K+N and K0N reactions.
Here we show the results derived from the baryon-meson
potential obtained from the quark-interchange mechanism
driven by the microscopic interactions of model 1 and model
2. Also shown in the figure are results from a phase shift
analysis from the George Washington Data Analysis Center
(GWDAC) [77]. As in the case of the model with OGE [23],
both model 1 and model 2 reproduce the experimental fact
that the s-wave phase shifts for I = 0 are much smaller
than for I = 1. This is due to the combined effects that
for I = 0, the confining interaction VC does not contribute
at all and DT contributes only via diagrams c and d of
Fig. 2.

Also seen in Fig. 3 is the fact that both model 1 and model 2
provide large repulsion: The confining interaction VC of model
2 provides a little more repulsion than the VC from model 1. As
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FIG. 4. (Color online) Same as in Fig. 3, but with meson-
exchange potentials added to the quark-interchange meson-baryon
potential.

in the case of OGE, meson exchanges can be added to obtain
a fair description of the data, as we discuss next.

In Fig. 4 we present results for the phase shifts when (σ ,
ω, ρ, and a0) one-meson exchanges are added to the quark-
interchange potential. The input parameters for the meson-
exchange potential are cutoff masses in form factors and
coupling constants: We take the values used in Refs. [13,23],
with the exception of the σ and a0 couplings, and the product
gσMMgσBB is increased by four and the product ga0MMga0BB is
increased by three for a reasonable description of the phases.
This is because the quark-interchange potential gives strong
repulsion. Once the K+N and K0N phase shifts are fitted,
we use the same values of the cutoff masses and couplings
to make predictions for the D̄N system, which we discuss
next. We note that through fine tuning of the cutoff masses
and further fine adjustments of couplings, the fits in Fig. 4 can
be improved. However, for the purposes of the present paper,
such a fine adjustment is not important.

In Fig. 5 we present the s-wave phase shifts for isospin
I = 0 and I = 1 states of the D̄0N and D−N reactions.
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FIG. 5. (Color online) D̄N s-wave phase shifts for (a) I = 0
and (b) I = 1 channels from the quark-interchange meson-baryon
potential driven by the microscopic interactions of model 1 (solid
lines) and model 2 (dashed lines).

Results are obtained with a meson-baryon potential from
quark-interchange driven by the interactions of model 1 and
model 2. Like in the similar KN system, the phases for
the I = 1 channel are much bigger than those for the I = 0
channel. Also, one sees that model 2 gives a stronger repulsion.

Adding (σ , ω, ρ, and a0) one-meson exchanges to the
quark-interchange potential leads to the results shown in Fig. 6.
Parameters of the meson-exchange potentials are the same
used for the KN . The predictions for the s-wave phase shifts
for D̄N system are qualitatively similar to the results for the
KN system but are roughly a factor of two larger than the
latter ones.

The quark-interchange meson-baryon potential leads to
much smaller phase shifts for the higher partial waves. Like in
the KN system, meson exchanges play a much more important
role in those waves. Although not shown here, many important
features of the mesonexchanges discussed in Ref. [13], as the
interference pattern between ρ and ω contributions (destructive
for I = 0 and constructive for I = 1) are seen in the present
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FIG. 6. (Color online) Same as in Fig. 5, but with meson-
exchange potentials added to the quark-interchange meson-baryon
potential.

model as well. We do not show these detailed results here, as
they concern the meson exchange part of the full interaction,
but we present in Fig. 7 the final predictions for D̄N cross
sections. However, for comparison, we also show in the same
figure the corresponding predictions for cross sections of
Ref. [13].

The results from both confining models are qualitatively
similar, although the results from model 1 for the I = 1
state are on average larger by a factor roughly equal to
2. It is important to note that in the present paper we are
approximating the correlated two-pion exchange contribution
by single σ -meson exchange. As seen in Ref. [13], this seems
to be a reasonable approximation for the I = 0 channel but
underestimates the I = 1 cross section by a factor roughly
equal to 2; this can be seen in panel (b) of Fig. 7, where the
blue (dash-dotted) line is obtained with correlated two-pion
exchange while the green (dash-double-dotted) line is obtained
with single σ -meson exchange. We expect that a similar
feature would be seen with the quark models discussed in
the present paper. The corresponding I = 0 and I = 1 s-wave
scattering lengths a0 and a1 are for model 1, a0 = 0.16 fm and
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FIG. 7. (Color online) Predictions of D̄N cross sections for (a)
I = 0 and (b) I = 1 using the full meson-baryon potential with quark-
interchange and meson exchanges. Also shown are the predictions of
Ref. [13].

a1 = −0.25 fm; for model 2, a0 = 0.03 fm and a1 = −0.20 fm
[the sign convention is k cot δ = 1/a]. These values should be
contrasted with those of the full model of Ref. [13]: a0 =
0.07 fm and a1 = −0.45 fm.

As a final remark, we note that the results for the cross
sections are of the same order of magnitude as those from
OGE quark interchange, but the shapes of the curves for the
I = 1 cross sections from model 1 and model 2 are different at
very low energies from those from OGE. This last feature can
possibly be attributed to the drastically different momentum
dependences of VC(k) and VT (k) from the 1/k2 dependence
of the OGE.

V. CONCLUSIONS AND PERSPECTIVES

There is great contemporary interest in studying the
interaction of charmed hadrons with ordinary hadrons and
nuclei. Of particular interest is the study of D mesons in
medium, mainly in connection with the possibility of creating

new exotic nuclear bound states by nuclei-capturing charmonia
states like J/� and ηc [2–5] or D and D∗ mesons [6–8].
One major difficulty here is the complete lack of experimental
information on the free-space interactions that would be of
great help to guide model building; this is not the case for
the similar problems involving strange hadrons. In a situation
with a lack of experimental information, one way to proceed
in model building is to use symmetry constraints, analogies
with other similar processes, and different degrees of freedom
[13,20–22]. With such a motivation, we have implemented a
calculation scheme for deriving effective low-energy hadron-
hadron interactions based on a phenomenological Hamiltonian
inspired in the QCD Hamiltonian in Coulomb gauge. The
model Hamiltonian, defined in Eqs. (1)–(7), confines color
and realizes DχSB. The scheme makes contact with traditional
constituent quark models [33] but it goes beyond such models:
The constituent quark masses are derived from the very same
interactions that lead to hadron bound states and hadron-
hadron interactions, while in the traditional quark models,
quark masses and quark-quark interactions are specified
independently. Moreover, the model confines color, in that
only color-singlet hadron states are of finite energy. These
features of the model are essential for studies seeking signals
of in-medium modifications of hadron properties.

The model Hamiltonian requires as input a Coulomb-like
term VC and a transverse-gluon interaction DT . We used two
analytical forms for VC : Model 1 is a parametrization of the
lattice simulation of QCD in Coulomb gauge of Ref. [55]
and model 2 was used in recent studies of glueballs [56]
and heavy hybrid quarkonia [57]. For DT we were guided
by previous studies of spin-hyperfine splittings of meson
masses [38]. Initially, we obtained the constituent quark mass
function Mf (k) for different flavors f . Next, we derived
an effective low-energy meson-baryon interaction from a
quark-interchange mechanism, whose input is the microscopic
Hamiltonian and hadron bound-state wave functions given
in terms of quark degrees of freedom [67,68]. We derived
explicit analytical expressions for the effective meson-baryon
interaction by using a low-momentum expansion of the
constituent quark mass function and variational hadron wave
functions [47,51]. Initially we used the short-ranged quark-
interchange potential derived within the model and added
one-meson-exchange potentials to fit experimental s-wave
phase shifts of the K+N and K0N reactions. Next, without
changing any parameters besides the strange to charm current
quark masses, ms → mc, we presented the predictions of the
model for the D̄0N and D−N reactions. The results for the
cross sections obtained with the present model are of the same
order of magnitude as those from OGE quark interchange, of
the order of 5 mb for the I = 1 state and 10 mb for the I = 0
state, on average. However, the shapes of the curves for the
I = 1 cross sections from model 1 and model 2 are different at
very low energies from those from OGE, a feature we attribute
to the drastically different momentum dependences of VC(k)
and VT (k) from the 1/k2 dependence of the OGE.

The model can be improved in several directions. First of all,
without sacrificing the ability to obtain analytical expressions
for the effective meson-baryon interaction, one can expand
the amplitudes ψ and φ in a basis of several Gaussians
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and diagonalize the resulting Hamiltonian matrix together
with a variational determination of the size parameters of
the Gaussians. Another improvement that certainly will be
necessary for studying in-medium chiral symmetry restoration
is to use the full mass function Mf (k) for the light u and d
flavors, instead of the low-momentum expansion of Eq. (32).
This is because at finite baryon density and/or temperature,
the mass function Mf (k) for f = (u, d) loses strength in the
infrared [45,78–81] and the expansion in powers of k2/M2

evidently loses validity. However, this will have a slight impact
on the numerics, since in this case multidimensional integrals
for the determination of the hadron sizes and the effective
meson-baryon interaction need to be performed numerically.
The low-momentum expansion must also be abandoned in
the calculation of hadron wave functions when the quark mass
function Mf (k) in the infrared is much smaller than the average
momentum of the quark in the hadron. Such a situation can
happen when DT (k) is suppressed in the infrared, as in the
study of Ref. [65].

Finally, another subject that needs careful scrutiny is the
use of SU(4) flavor symmetry, Eq. (A10), to fix the coupling
constants in the effective meson Lagrangians. A recent
estimation [82], using a framework in which quark propagators
and hadron amplitudes are constrained by Dyson-Schwinger
equation studies in QCD, finds that while SU(3) flavor
symmetry is accurate to 20%, SU(4) relations underestimate
the DDρ coupling by a factor of 5. On the other hand, a study
employing a 3P0 pair-creation model with nonrelativistic quark
model hadron wave functions finds smaller SU(4) breakings
[83]. In addition, one should note that use of the vector-meson
dominance hypothesis to the process e−D+ → e−D+ leads to
a value for the gDDρ coupling which is very close to the SU(4)
symmetry prediction [84].
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APPENDIX: MESON-EXCHANGE CONTRIBUTIONS

The meson-exchange contributions are obtained from the
following effective Lagrangian densities [84,85]:

LNNS(x) = gNNSψ̄
(N)(x)τ · φ(S)(x)ψ (N)(x), (A1)

LNNV (x) = gNNV

[
ψ̄ (N)(x)γ μψ (N)(x)τ · φ(V )

μ (x)

+
(

κV

2MN

)
ψ̄ (N)(x)σμνψ (N)(x)τ · ∂νφ

(V )
μ (x)

]
,

(A2)

LPPS(x) = gPPSϕ
(P )(x)φ(S)(x)ϕ(P )(x), (A3)

LPPV (x) = igPPV [ϕ(P )(x)(∂νϕ
(P )(x))τ

− (∂νϕ
(P̄ )(x)) τϕ(P )(x)] · φ(V )

ν (x). (A4)

In these, ψ (N) denotes the nucleon doublet, φ(P )(x) is the
charmed and strange meson doublet, φ(V )

μ (x) is the isotriplet
of ρ mesons, and τ are the Pauli matrices. The Lagrangians
for the σ and ω mesons are obtained by taking τ → 1 in the
expressions above and in addition κV = 0 for the case of ω.

The tree-level potentials derived from the above Lagrangian
densities lead to the following expressions for the vector-
meson exchanges (v = ρ, ω):

V v( p, p′) = gNNv gPPv

(2π )3
√

4ω(p)ω(p′)
(p′ + p)μ �μν

v (q)

×
[
Aν(ps, p′s ′) +

(
κv

2mN

)
Bν(ps, p′s ′)

]
.

(A5)

For the scalar-meson exchanges (S = σ, a0),

V S( p′, p) = gNNS gPPS

(2π )3
√

4ω(p)ω(p′)
�S(q)ū( p′, s ′)u( p, s),

(A6)

where mN is the nucleon mass and ω(q) = (q2 + m2)1/2 with
m the meson masses, �μν

v (q) and �S(q) are the vector-meson
and scalar-meson propagators, u( p, s) are the Dirac spinors of
nucleons [same expression as in Eq. (9), with M(k) replaced
by the nucleon mass mN ], and the quantities Aμ and Bμ are
given by

Aμ(ps, p′s ′) = ū( p′, s ′)γμu( p, s), (A7)

Bμ(ps, p′s ′) = ū( p′, s ′) iσμν qν u( p, s). (A8)

To avoid divergences in the Lippmann-Schwinger equation,
the meson-exchange potentials are regularized phenomeno-
logically by monopole form factors at each vertex:

Fi(q2) =
(

	2
i − m2

i

	2
i + q2

)
, (A9)

where q = p′ − p, mi is the mass of the exchanged meson
and 	i is a cutoff mass. The coupling constants are fixed by
SU(4) symmetry as in Ref. [13]:

gD̄D̄ρ = gD̄D̄ω = gKKρ = gKKω = gππρ

2
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