
PHYSICAL REVIEW C 87, 025203 (2013)

Relativistic correction of the quarkonium melting temperature with a holographic potential
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we find the correction is significant in size for J/�.

DOI: 10.1103/PhysRevC.87.025203 PACS number(s): 25.75.−q, 12.39.Pn, 14.40.Pq, 11.25.Tq

I. INTRODUCTION

The phase structure of quantum chromodynamics (QCD)
remains an active field of research. At sufficiently high
temperature, hadronic matter will evolve into a quark-gluon
plasma (QGP), which has been explored experimentally by
relativistic heavy-ion collisions (RHIC). Quarkonium melting
is an important signal of this new phase [1].

A quarkonium is a bound state composed of a heavy quark q
and its antiparticle q̄. It is found that the level spacings between
the ground states and the excitations of the quarkonium are
much smaller than that of normal hadrons and that the pair
are very tightly bounded [2] in vacuum. Theoretically, there
are two approaches to study the quarkonium: lattice QCD and
potential models [3]. From lattice QCD, we can calculate the
spectral function numerically via the quarkonium correlators
and identify the quarkonium states with the resonance peaks
[4–8]. The potential model relies on the small velocity(v � 1)
of the constituent quarks. By solving a nonrelativistic
Schrödinger equation with a temperature-dependent effective
potential, we can determine the energy levels and thereby the
threshold temperature when the bound state dissolves [9–14].
The potential model will be applied in the present work.

Anti de Sitter space/conformal field theory (AdS/CFT)
correspondence is a powerful tool to explore the strongly cou-
pled N = 4 super Yang-Mills plasma. The equation of state,
viscosity ratio, etc. extracted from AdS/CFT show remarkable
agreement with lattice QCD or experimental data from RHIC.
It would be interesting to extend the comparison to a wide
range of other quantities, for instance heavy quark melting,
which are calculable in both ways to assess whether the super
Yang-Mills plasma serves as an important reference model of
the QGP phase of QCD. This is the primary motivation of the
research reported here and in a previous paper [15].

In the previous work [15], we examined heavy quarkonium
melting within the potential model with the AdS/CFT implied
potential function (holographic potential). We found that the
holographic potential can be approximated by a truncated
Coulomb potential to great accuracy. With the typical values
of the ’t Hooft coupling constant, λ ≡

√
Ncg

2
YM, considered
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in the literature [16],

5.5 < λ < 6π, (1.1)

our melting temperatures are systematically lower, though not
far from the lattice prediction [32]. On the other hand, an
estimate of the velocity of the constituent quarks inside the
bound state indicates that the nonrelativistic approximation
may be marginal, especially for J/�. This led us to examine
the relativistic corrections of the holographic potential with
the aid of a two-body Dirac equation (TBDE).

While the holographic potential alone is sufficient in
the nonrelativistic limit, it does not provide all information
necessary for the relativistic corrections even to the order
v4 term. Except for the correction brought about by the
relativistic kinetic energy, the spin-orbital coupling and the
Darwin term depend on how the holographic potential is
introduced in the two-body Dirac equation. In addition, the
gravity dual of spin-dependent forces is not available in the
literature. Therefore our result remains incomplete at this
stage. We would like to comment that the same issues exist
for the relativistic corrections of the heavy quark potential
extracted from lattice QCD simulations.

In the next section, the work reported in [15] will be
reviewed and the melting temperature beyond the truncated
Coulomb approximation is presented. The corrections to
the melting temperature are computed in Sec. III through
a Foldy-Wouthuysen (FW) transformation of a two-body
Dirac Hamiltonian. The kinetic energy contribution and the
contribution from the Darwin and the spin-orbit coupling
are calculated separately with the latter simply by replacing
the perturbative Coulomb potential in the two-body Dirac
Hamiltonian with the holographic heavy quark potential.
Section IV concludes the paper.

II. THE HOLOGRAPHIC POTENTIAL MODEL

In the conventional potential model of QCD, the nonrel-
ativistic wave function of a heavy quarkonium satisfies the
Schrödinger equation[

− 1

2μ
∇2 + U (r, T )

]
ψ = −E(T )ψ, (2.1)

where E(T ) is the binding energy and U (r, T ) is identified
with the internal energy of a static pair of q and q̄ in QGP and
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is related to the free energy F (r, T ) via

U (r, T ) = −T 2
[ ∂

∂T

(
F (r, T )

T

)]
r
. (2.2)

The free energy F (r, T ) can be extracted from the expectation
value of a Wilson loop operator that consists of a pair of Wilson
lines (Polyakov loops) operator according to

e− 1
T

F (r,T ) = tr〈W †(L+)W (L−)〉
tr〈W †(L+)〉〈W (L−)〉 , (2.3)

where L± stands for the Wilson line running in the Euclidean
time direction at spatial coordinates (0, 0,± 1

2 r) and is closed
with the periodicity β = 1

T
. We have

W (L±) = Pe
−i

∮
L± dxμAμ(x)

. (2.4)

where spatial coordinates of L± are (0, 0,± 1
2 r). The lattice

QCD simulation of the expectation value (2.3) can be found
in Refs. [10,17].

In case of super Yang-Mills, the holographic principle
places the Wilson lines L± on the boundary (y → ∞) of the
5D AdS-Schwarzschild metric [18]:

ds2 = π2T 2y2(f dt2 + d 
x2) + 1

π2T 2y2f
dy2, (2.5)

where f = 1 − 1
y4 and d 
x2 = dx2

1 + dx2
2 + dx2

3 with the

ansatz x1 = x2 = 0 and x3 = ± 1
2 r .

The free energy F (r, T ) of the corresponding super Yang-
Mills theory at large Nc and large ’t Hooft coupling is
proportional to the minimum area of the worldsheet in the
AdS bulk bounded by L+ and L− and is given parametrically
by [18–20]

F (r, T ) = T min(I, 0),
(2.6)

r = 2q

πT

∫ ∞

yc

dy√
(y4 − 1)

(
y4 − y4

c

) ,

where

I =
√

λ

[∫ ∞

yc

dy

(√
y4 − 1

y4 − y4
c

− 1

)
+ 1 − yc

]
(2.7)

and the parameter yc ∈ (1,∞). Eliminating yc between (2.6)
and (2.7), we find that

F (r, T ) = −α

r
	(ρ)θ (ρ0 − ρ), (2.8)

where α
.= 0.2285

√
λ, ρ = πT r , ρ0 = 0.7541, and 	(ρ) is a

screening factor. The corresponding internal energy is

U (r, T ) = −α

r

[
	(ρ) − ρ

(
d	

dρ

)
yc

− ρ

(
d	

dyc

)
ρ

(
dyc

dρ

)]
θ (ρ0 − ρ) (2.9)

and will be substituted into the Schrödinger equation (2.1).
The small-ρ expansion of 	(ρ) is

	(ρ) = 1 − �4
(

1
4

)
4π3

ρ + 3�8
(

1
4

)
640π6

ρ4 + O(ρ8). (2.10)

FIG. 1. (Color online) Comparison of the two-term series ap-
proximation to the exact 	. The vertical axis is the reduced internal
potential, which is convenient for us to do the nonrelativistic
calculation later, where m is the mass of the particle. The red dots
correspond to the Coulomb case, and the black dots correspond to the
exact case.

Within the screening radius ρ0, the first two terms of the
series (2.10) approximate the exact 	 well as is shown in
Fig. 1. If we keep only the first two terms, the screening
radius ρ0 � 0.7359 and U (r, T ) becomes a truncated Coulomb
potential

U = −α

r
θ (ρ0 − ρ) (2.11)

under the approximation.
We define the melting temperature Td as the temperature at

which the binding energy falls to zero, i.e., E(Td ) = 0, and the
corresponding radial Schrödinger equation reads [15]

d2R

dρ2
+ 2

ρ

dR

dρ
−

[
l(l + 1)

ρ2
+ V

]
R = 0, (2.12)

where the reduced potential V = mU
π2T 2 is dimensionless.

The truncated Coulomb potential approximation was em-
ployed in [15] and the melting temperature of the bound state
of the lth partial wave and the nth radial quantum number is
given by

Td = 4αρ0m

πx2
nl

, (2.13)

with xnl the nth nonzero root (ascending order) of the Bessel
function J2l(x). The corresponding radial wave function reads

R(r) = 1√
ρ

J2l+1

(
xnl

√
ρ

ρ0

)
(2.14)

for ρ � ρ0 and R(r) = const./rl+1 for ρ > ρ0.
In this work, we have calculated the melting temperature

with the exact holographic potential (2.9). The comparison
with that obtained from the truncated Coulomb potential in
[15] for J/� is shown in Table I, where we choose m =
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TABLE I. Comparison between the melting temperatures in
MeV for 1s, 2s, and 1p states with the exact holographic potential
and with the truncated Coulomb potential in the nonrelativistic limit.
The two sets of values are very close, which confirmed that the
truncated Coulomb approximation is excellent.

Td (λ = 5.5) Td (λ = 6π )

Exact Truncated Coulomb Exact Truncated Coulomb

1s 142 143 262 265
2s 27 27 50 50
1p 31 31 57 58

1.65 GeV for the mass of c quarks.1 From the comparison of
these two results we confirmed that the truncated Coulomb
approximation is a good approximation and we shall stay with
this approximation for the rest of the paper.

III. THE RELATIVISTIC CORRECTION OF THE
HOLOGRAPHIC POTENTIAL

As is mentioned in Sec. I, the velocity of the heavy
quarks is not low enough, so the relativistic correction may
be significant, especially for J/�. To explore this correction,
one has to go beyond the Schrödinger equation (2.1) and switch
to the two-body Dirac equation [21–24]

i
∂�

∂t
= H�. (3.1)

In the center-of-mass frame, the Hamiltonian of the two-body
Dirac equation is

H = 
α1 · 
p + β1 · m − 
α2 · 
p + β2 · m + U, (3.2)

where 
α1 = 
α ⊗ I , 
α2 = I ⊗ 
α, β1 = β ⊗ I , β2 = I ⊗ β, 
α
and β are the usual 4 × 4 Dirac matrices, 
p = −i 
∇, and U is
the interaction potential between the two particles. We shall
take the ansatz by identifying U here with the holographic
potential in the last section and other possible implementations
will be discussed in the next section. The Hamiltonian H is a
16 × 16 matrix. A quarkonium state corresponds to a bound
state of H with the eigenvalue 2m − E(T ) < 2m, which goes
to 2m at the melting temperature, i.e., E(T ) = 0. Since we
are interested in the leading order relativistic correction of the
melting temperature for the quarkonium, we have to expand
the Hamiltonian to the order v4. The sorting of the order in
v follows from the rules that 
p2

m
∼ U ∼ v2 and 
∇ ∼ 1

r
∼ mv.

Also the expectation values of 
α1 and 
α2 are of the order v.

1The mass we used here is the same as the mass used in [15], but for
the calculation of the relativistic correction in next section, we refit
the mass of the c quark. We set the mass of J/� in vacuum for our
relativistic case equal to the nonrelativistic limit case here, and we
got a mass of the c quark of 1649.998 MeV for our relativistic case.
Here we would like to thank Prof. Pengfei Zhuang for his valuable
suggestions.

In analogy to the one-body Foldy-Wouthuysen transforma-
tion [25], we introduce the unitary operator

U = eiS ′
2eiS ′

1eiS2eiS1 , (3.3)

where

S1 = − i

2m
β1 · O1, (3.4)

S2 = − i

2m
β2 · (−O2), (3.5)

S ′
1 = − i

2m
β1 · O ′

1, (3.6)

S ′
2 = − i

2m
β2 · (−O ′

2), (3.7)

with

O1 = 
α1 · 
p, O2 = 
α2 · 
p.

The transformed Hamiltonian reads

HFW = UHU†

= (β1 + β2)

(
m + 
p2

2m
− 
p4

8m3

)
+ U + 1

4m2
∇2U

+ 1

4m2r

dU

dr
(
σ1 + 
σ2) · 
L, (3.8)

where higher order terms in v have been dropped. The
details of the transformation are shown in the Appendix.
The nonrelativistic wave function, � = �s1s2 (
r1 − 
r2), with
subscripts s1 and s2 labeling the spin components of the two
quarks, corresponds to the sector with β1 = β2 = 1. (This
wave function can be expanded in a series of products of
the orbital wave functions of the preceding section and the
spin wave functions.) We may stay within this sector for
the first-order perturbation of the v4 terms of (3.8) with the
effective Hamiltonian Heff. = H0 + H1, where

H0 = 2m + 
p2

m
+ U

corresponds to the nonrelativistic limit, and

H1 = − 
p4

4m3
+ 1

4m2
∇2U + 1

4m2r

dU

dr
(
σ1 + 
σ2) · 
L

= − 
p4

4m3
+ 1

4m2
∇2U + 1

4m2r

dU

dr
(J 2 − L2 − S2) (3.9)

is the relativistic correction. We have introduced the total spin

S = 1

2 (
σ1 + 
σ2) and the total angular momentum 
J = 
L + 
S
in the last step. The contribution of H1 is somewhat similar
to that for the fine structure of the hydrogen atom. The first
term represents the relativistic correction to the kinetic energy,
the second term is the Drawin term, and the third term is the
spin-orbit coupling, which can be decomposed into spin singlet
and spin triplet channels.

Perturbatively, we may write E(T ) = E0(T ) + δE(T ) and
T = T0 + δT , where E0(T ) is the nonrelativistic binding
energy in (2.1), T0 is the melting temperature given by (2.13),
and δE(T ) and δT are the v4 corrections. We have E0(T0) = 0.
Expanding the melting condition E(T ) = 0 to the order v4, we
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obtain the formula for δT , i.e.,

δT = δ1T + δ2T = −δ1E(T0) + δ2E(T0)(
∂E0
∂T

)
T0

, (3.10)

where

δ1E(T0) = −
〈 
p4

4m3

〉
,

(3.11)

δ2E(T0) =
〈

1

4m2
∇2U

〉
+

〈
1

4m2r

dU

dr
(J 2 − L2 − S2)

〉
,

and (
∂E0

∂T

)
T =T0

=
〈
∂H0

∂T

〉
=

〈
∂U

∂T

〉
, (3.12)

and the average

〈O〉 ≡
∫

d3
rψ∗(
r)O(
r)ψ(
r)∫
d3
rψ∗(
r)ψ(
r)

, (3.13)

with ψ(
r) the nonrelativistic wave function. The reason for
our separating the contribution from p4, δ1T , and that from
the Darwin and spin-orbital terms, δ2T , is the uncertainty in
the representation of the holographic potential in (3.2), which
does not impact the p4 correction. We will come to this point
in the next section. In the limit of zero binding energy, we
find 〈 
p4

4m3 〉 = 〈 1
4m

U 2〉. Under the truncated Coulomb approxi-
mation,

∇2U = 4παπ3T 3δ3( 
ρ)θ (ρ0 − ρ) + απ3T 3

ρ
δ′(ρ − ρ0).

(3.14)

In terms of the radial wave function Rl(r) of ψ(
r),〈
− 
p4

4m3

〉
= − α2

4mπT

∫ ρ0

0
Rl(ρ)2dρ,〈

1

4m2
∇2U

〉
= α

4m2

{|Rl(0)|2 − 2Rl(ρ0)R′
l(ρ0)ρ0 − R2

l (ρ0)
}
,〈

1

4m2r

dU

dr

〉
= α

4m2

∫ ρ0

0

dρ

ρ
R2(ρ) + α

4m2
R2(ρ0),〈

∂U

∂T

〉
= απ

π3T 3
R2

l (ρ0)ρ2
0 . (3.15)

For the ns state, we find that

δ1T = παT 2
0

4mρ0

[
1

J 2
1 (xn0)

− J 2
0 (xn0)

J 2
1 (xn0)

− 1

]
,

(3.16)

δ1T + δ2T = −παT 2
0

4mρ0

[
J 2

0 (xn0)

J 2
1 (xn0)

+ 1 + 2

x2
n0

]
.

For the np states, we can also get analytical expressions which
are more lengthy.

The numerical values of the corrected temperature T0 +
δ1T and T0 + δ1T + δ2T in MeV for 1s, 2s, and 1p states of
J/�(cc̄) and ϒ(bb̄) are listed in Table II.

TABLE II. Melting temperatures in MeV with relativistic correc-
tions. The upper panel corresponds to the results of T0 + δ1T and the
lower one corresponds to T0 + δ1T + δ2T . For the lower panel, we
denote the states as nL2S+1

J in the first column, where n is the main
quantum number, L is the orbit angular momentum quantum number,
S is the spin quantum number, and J is the total angular momentum
quantum number. Since the spin-orbit coupling term vanishes for ns

states, the spin singlet and spin triplet are degenerate. This, however,
is not the case with a nonzero orbital angular momentum, such as np

states included in the table.

cc̄ bb̄

λ = 5.5 λ = 6π λ = 5.5 λ = 6π

1s 162.54 387.54 478.76 1139.11
2s 29.15 62.75 85.67 184.44
1p 32.04 62.14 94.18 182.66

1s1
0 130.79 188.65 385.63 555.58

1s3
1 130.79 188.65 385.63 555.58

2s1
0 26.71 48.16 79.15 142.59

2s3
1 26.71 48.16 79.15 142.59

1p1
1 31.53 61.33 93.54 180.79

1p3
0 32.65 68.48 96.85 201.80

1p3
1 32.09 64.90 95.20 191.30

1p3
2 30.96 57.76 91.89 170.29

IV. DISCUSSION

In summary, we have explored the leading relativistic
correction to the melting temperature of a heavy quarkonium
state through a FW-like transformation of the two-body Dirac
Hamiltonian with the AdS/CFT implied potential. Among
the contributions we considered, the p4 correction of the
kinetic energy, being negative, enhances the binding but the
Darwin term does the opposite and dominates. Consequently,
the melting temperature of the s state is lowered, leaving
the corrected values further below the lattice result. This
disagreement can be attributed to the short screening length
r0 = ρ0

πT
, about 0.25 fm at T = 200 MeV, of the AdS/CFT

potential and the sharp cutoff nature of the screening. For
J/�, the magnitude of the correction ranges from 8% for
λ = 5.5 to 30% for λ = 6π , indicating significant relativistic
effects toward the high end of the domain (1.1). The kink in
the holographic free energy (2.8), and consequently the cutoff
in the holographic potential (2.11), has been questioned in the
literature [26,27]. The authors of [26] argued that the potential
should never cross zero and approaches zero from below
exponentially as r → ∞ if an exchange of the supergravity
mode is included. This modification would certainly enhance
the binding and reduce the contribution of the Darwin term in
the relativistic correction. Then the melting temperature would
be raised. Alternatively, a complex potential was obtained
in [27] by including the contribution of a complex saddle
point in the path integral with the Nambu-Goto action. Its real
part, similar to the previous proposal, does not cross zero and
approaches zero from below following a power law O(r−4),
and thereby it strengthens the binding. But the imaginary part
triggers the melting once the wave function extends beyond
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the onset radius of the imaginary part. The net result requires
more careful investigation.

The holographic potential between moving q and q̄ through
a thermal medium has been calculated in the literature The
case with a center-of-mass motion alone has been addressed
in Refs. [28,29] and the effect of a rotation has been considered
in [30,31]. It is suggested in Ref. [28] that the screening radius,
rs ∼ (1 − V 2)

1
4 /πT , is reduced with increasing velocity. As

a crude estimate, the melting corresponds to a screening
radius less than or equal to the radius of the quarkonium and
therefore the potential alone with the center-of-mass velocity
will decrease the melting temperature. On the other hand, if the
center-of-mass momentum 
P is of the same order of magnitude
as the relative one, 
p, the expectation value of the 1st term on
the right-hand side (RHS) of (3.9) will be replaced by

−
〈 ∣∣ 
P

2 + 
p∣∣4 + ∣∣ 
P
2 − 
p∣∣4

8m3

〉
= − P 4

64m3
− 〈p4〉

4m3
− 5

12m3
P 2〈p2〉

(4.1)

for an s state. Unlike the nonrelativistic limit, the center-of-
mass momentum couples with the relative momentum through
the last term on the RHS of (3.9) and acts in the same direction
as the p4 term to raise the melting temperature. It would be
interesting to extend the analysis in this paper to work out the
details of the competition.

The melting temperature of a heavy quarkonium has
also been determined via holographic spectral analysis by
the authors of [32]. In contrast to (2.13), their melting
temperature, Td = 2.17m/

√
λ, is inversely proportional to

√
λ.

It follows that Td (cc̄) = 1.53 GeV (826 MeV) and Td (bb̄) =
4.50 GeV (2.43 GeV) for λ = 5.5 (6π ), which are higher than
the lattice results.

The potential model, though physically more transparent
than the spectral function approach, does not provide complete
v4 corrections with the holographic potential extracted from
the Wilson loop alone. The same deficiency applies to
the relativistic correction based on the lattice heavy quark
potential alone. As the Wilson loop for a non-Abelian theory
involves multigluon exchanges, its form in the two-body
Dirac Hamiltonian (3.2) may not be adequate unless single
gluon exchange serves as a reasonable approximation. A more
general form of the interaction in (3.2) without violating charge
conjugation symmetry is to replace U by

(�++ + �−−)U + (�+− + �−+)U ′ = U+ + β1β2U−,

(4.2)

where the projection operator �±1,±1 ≡ 1±β1

2
1±β2

2 , U ′ is the
potential between qq or q̄q̄, which is unknown from the
holograhpic dual, and U± = U±U ′

2 . U ′ = U in the previous
section. Repeating the steps of the FW transformation in the
Appendix, we find that the perturbing Hamiltonian (3.9) is
replaced by

H1 = − 
p4

4m3
+ 1

4m2
∇2U+ + 1

4m2r

dU+
dr

(
σ1 + 
σ2) · 
L

+ 1

8m2
{{
σ1 · 
∇, {
σ1 · 
∇, U−}} + {
σ2 · 
∇, {
σ2 · 
∇, U−}},

(4.3)

with {. . .} an anticommutator. This will modify the potential
part of (3.9). Only the correction from the kinetic energy, p4,
term of (3.9) is robust, which raises the melting temperature.

In addition to the holographic potential considered in
this work, there should be spin-dependent ones that split
degeneracies between spin singlets and spin triplets (e.g.,
between ηc and J/�). The gravity duals of the latter are
unknown in the literature. A first-principles derivation of
the spin-dependent forces [33] associates them with the
expectation value of Wilson loops with operator insertions,
〈trWμν(L+)†Wρλ(L−)〉, where

Wμν(L) = PFμν(x)e−i
∫
L

dxμAμ, (4.4)

with Fμν the Yang-Mills field strength and x a point along
L. Wμν(L) is obtained from Eqs. (2.4) by a small distortion
of L at x. Within the AdS/CFT framework, it corresponds to
the perturbation of the Nambu-Goto action of the worldsheet
underlying the holographic potential under a small distortion
of its boundary. It is a challenging boundary value problem
and we hope to report our progress along this line in future.

Finally, we would like to comment on a phenomenological
formulation of the two-body Dirac equation [34], which has
been applied recently to the same problem addressed in this
work [35]. It amounts to dividing the heavy quark potential
of Cornell type into a linearly confining term and a single-
gluon Coulomb term. While it is legitimate in vacuum in the
weak-coupling limit because of Lorentz invariance, a direct
application to a medium beyond weak coupling remains to
be justified, given the different screening properties of the
electric and magnetic gluons. Comparing Ref. [35] and our
works, we see that both approaches rely on the static potential
extracted from the expectation value of the Wilson loop with
one from the lattice QCD and the other from the gravity dual.
While the approximation in Ref. [35] mixed up different orders
in the velocity, we attempted a systematic expansion to the
order v4. The relativistic correction of the kinetic term, p4,
raises the melting temperature in both cases, as expected. But
the spin-dependent contribution is hard to compare since its
gravity dual is incomplete for the purpose. After all, a question
raised by the general formulation in Ref. [33] is whether the
static potential extracted either from lattice QCD or from the
gravity dual is sufficient to explore a heavy quarkonium beyond
the nonrelativistic limit.
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APPENDIX

In this Appendix, we shall fill in the details of the Foldy-
Wouthuysen transformation for the two-body Dirac equation
which we have done in Sec. IV.

Let us recall the Foldy-Wouthuysen transformation of the
one-body Dirac Hamiltonian, H = 
α · 
p + βm + V . For a
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four-component spinor with velocity v � 1 and a positive en-
ergy, one can work in the standard Dirac representation where
the upper two components correspond to the nonrelativistic
limit, referred to as the large components, while the lower two
components are suppressed by a power of v, referred to as the
small components. An operator is even (odd) if it is diagonal
(off-diagonal) with respect to large and small components.
For example, β is even and 
α is odd. The Foldy-Wouthuysen
transformation amounts to successive unitary transformations
that push the odd operators to higher orders in v.

The Foldy-Wouthuysen transformation can be easily gen-
eralized to the two-body case, the Hilbert space of which is
spanned by the direct products of two one-body spinors. To the
leading order relativistic correction, we stop at the v4 terms,
ignoring all higher order terms. Consider the two-body Dirac
Hamiltonian (3.2)

H = 
α1 
p + β1m − 
α2 
p + β2m + U (A1)

in terms of


α1 
p = O1, 
α2 
p = O2,
(A2)

H = β1m + O1︸ ︷︷ ︸+β2m − O2︸ ︷︷ ︸+U = H1 + H2 + U,

where H1 corresponds to the first underbrace, and H2

corresponds to the second underbrace. It is easy to prove
the commutation relations [O1,O2] = [β1, β2] = [O1, β2] =
[O2, β1] = 0, and O1 ∼ O2 ∼ v.

1. The first transformation

We select

S1 = − i

2m
β1O1,

S2 = − i

2m
β2(−O2),

so the transformed Hamiltonian turns into H ′ =
eiS2

︷ ︸︸ ︷
eiS1He−iS1 e−iS2︸ ︷︷ ︸. We calculate the mid overbrace

first:

eiS1He−iS1 = eiS1H1e
−iS1︸ ︷︷ ︸ + eiS1H2e

−iS1︸ ︷︷ ︸ + eiS1Ue−iS1︸ ︷︷ ︸
= H1 + H2 + Ū , (A3)

where H1 corresponds to the first underbrace, H2 corre-
sponds to the second, and Ū corresponds to the third. We
have

H1 = H1 + [iS1,H1] + 1

2!
[iS1, [iS1,H1]] + 1

3!
[iS1, [iS1, [iS1,H1]]]

+ 1

4!
[iS1, [iS1, [iS1, [iS1,H1]]]] + · · · , (A4)

[iS1,H1] = −O1 + 1

m
β1O

2
1

1

2!
[iS1, [iS1,H1]] = − 1

2m
β1O

2
1 − 1

2m2
O3

1 ,
1

3!
[iS1, [iS1, [iS1,H1]]] = 1

6m2
O3

1 − 1

6m3
β1O

4
1 ,

1

4!
[iS1, [iS1, [iS1, [iS1,H1]]]] ∼ 1

24m3
β1O

4
1 , H1 = β1m + 1

2m
β1O

2
1 − 1

8m3
β1O

4
1 − 1

3m2
O3

1 + O(v5). (A5)

Similarly,

H2 = H2 + [iS1,H2] + 1

2!
[iS1, [iS1,H2]] + 1

3!
[iS1, [iS1, [iS1,H2]]] + 1

4!
[iS1, [iS1, [iS1, [iS1,H2]]]] + · · · , (A6)

[iS1,H2] = 1

2!
[iS1, [iS1,H2]] = 1

3!
[iS1, [iS1, [iS1,H1]]] = · · · = 0, H2 = H2 = β2m − O2,

Ū = U + 1

2m
β1[O1, U ] − 1

8m2
[O1, [O1, U ]]. (A7)

It follows that

eiS1He−iS1 = H1 + H2 + Ū

= β1m + β2m − O2 + U + 1

2m
β1O

2
1 − 1

8m2
[O1, [O1, U ]] − 1

8m3
β1O

4
1 + 1

2m
β1[O1, U ] − 1

3m2
O3

1 + O(v5) = H,

(A8)

where we mark eiS1He−iS1 as H for convenience. Then

H ′ = eiS2He−iS2 (A9)

= H + [iS2,H ] + 1

2!
[iS2, [iS2,H ]] + 1

3!
[iS2, [iS2, [iS2,H ]]] + 1

4!
[iS2, [iS2, [iS2, [iS2,H ]]]] + · · · . (A10)
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Since

[iS2,H ] = O2 + 1

m
β2O

2
2 − 1

2m
β2[O2, U ] − 1

4m
β1β2[O2, [O1, U ]],

1

2!
[iS2, [iS2,H ]] = − 1

2m
β2O

2
2 + 1

2m2
O3

2 − 1

8m2
[O2, [O2, U ]],

1

3!
[iS2, [iS2, [iS2,H ]]] = − 1

6m2
O3

2 − 1

6m3
β2O

4
2 ,

1

4!
[iS2, [iS2, [iS2, [iS2,H ]]]] ∼ 1

24m3
β2O

4
2 , (A11)

we find that

H ′ =
(

β1m + U + 1

2m
β1O

2
1 − 1

8m2
[O1, [O1, U ]] − 1

8m3
β1O

4
1 + 1

2m
β1[O1, U ] − 1

3m2
O3

1

)
=⇒ mark : H ′

1

+
(

β2m + 1

2m
β2O

2
2 − 1

8m2
[O2, [O2, U ]] − 1

8m3
β2O

4
2 − 1

2m
β2[O2, U ] + 1

3m2
O3

2

)
=⇒ mark : H ′

2

− 1

4m2
β1β2[O2, [O1, U ]] + O(v5), (A12)

H ′
1 = β1m + U + 1

2m
β1O

2
1 − 1

8m2
[O1, [O1, U ]] − 1

8m3
β1O

4
1︸ ︷︷ ︸+ 1

2m
β1[O1, U ] − 1

3m2
O3

1︸ ︷︷ ︸ = β1m + U ′
1 + O ′

1, (A13)

H ′
2 = β2m + 1

2m
β2O

2
2 − 1

8m2
[O2, [O2, U ]] − 1

8m3
β2O

4
2︸ ︷︷ ︸−

(
1

2m
β2[O2, U ] − 1

3m2
O3

2

)
︸ ︷︷ ︸ = β2m + U ′

2 + O ′
2, (A14)

H ′ = H ′
1 + H ′

2 − 1

4m2
β1β2[O2, [O1, U ]], (A15)

where the first underbrace in the expression of H ′
1(H ′

2) corresponds to U ′
1(U ′

2), and the second corresponds to O ′
1(O ′

2).

2. The second transformation

We select

S ′
1 = − i

2m
β1O

′
1, S ′

2 = − i

2m
β2(−O ′

2),

where O ′
1 ∼ O ′

2 ∼ v3.
We have

H ′′ = eiS ′
2eiS ′

1H ′e−iS ′
1e−iS ′

2 = eiS ′
2 eiS ′

1H ′
1e

−iS ′
1︸ ︷︷ ︸ e−iS ′

2 + eiS ′
2 eiS ′

1H ′
2e

−iS ′
1︸ ︷︷ ︸ e−iS ′

2 − 1

4m2
eiS ′

2eiS ′
1β1β2[O2, [O1, U ]]e−iS ′

1e−iS ′
2

= eiS ′
2H ′

1e
−iS ′

2 + eiS ′
2H ′

2e
−iS ′

2 − 1

4m2
eiS ′

2eiS ′
1β1β2[O2, [O1, U ]]e−iS ′

1e−iS ′
2 , (A16)

where the first underbrace in the second line corresponds to H ′
1, and the second corresponds to H ′

2. Applying the results of the
first transformation, we obtain

H ′
1 = H ′

1 + [iS ′
1,H

′
1] + O(v5) = β1m + U ′

1 + 1

2m
β1[O ′

1, U
′
1], (A17)

eiS ′
2H ′

1e
−iS ′

2 = H ′
1 + [iS ′

2,H
′
1] + O(v5) = β1m + U ′

1 + 1

2m
β1[O ′

1, U
′
1] − 1

2m
β2[O ′

2, U
′
1], (A18)

H ′
2 = H ′

2 + [iS ′
1,H

′
2] + O(v5) = β2m + U ′

2 − O ′
2 + β1

2m
[O ′

1, U
′
2] − β1

2m
[O ′

1,O
′
2], (A19)

eiS ′
2H ′

2e
−iS ′

2 = H ′
2 + [iS ′

2,H
′
2] + O(v5) = β2m + U ′

2 − 1

2m
β2[O ′

2, U
′
2] + 1

2m
β1[O ′

1, U
′
2] − 1

2m
β1[O ′

1,O
′
2]. (A20)

Coming to the last term in H ′′, − 1
4m2 eiS ′

2

︷ ︸︸ ︷
eiS ′

1β1β2[O2, [O1, U ]]e−iS ′
1 e−iS ′

2︸ ︷︷ ︸, we do the calculation of the overbrace first:

eiS ′
1β1β2[O2, [O1, U ]]e−iS ′

1 = β1β2[O2, [O1, U ]] + [iS ′
1, β1β2[O2, [O1, U ]]] + O(v5)

=
(

β1β2[O2, [O1, U ]] + 1

4m2
[β1[O1, U ], [O2, [O1, U ]]]

)
=⇒ mark : A. (A21)
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By considering O1,O2 ∼ v and O ′
1,O

′
2 ∼ v3 we get

eiS ′
2Ae−iS ′

2 = A + O(v5) (A22)

= − 1

4m2
β1β2[O2, [O1, U ]]. (A23)

Then

H ′′ = β1m + U ′
1 + β2m + U ′

2 − 1

4m2
β1β2[O2, [O1, U ]]

= β1m + β2m + U + 1

2m
β1O

2
1 + 1

2m
β2O

2
2 − 1

8m2
[O1, [O1, U ]] − 1

8m2
[O2, [O2, U ]]

− 1

8m3
β1O

4
1 − 1

8m3
β2O

4
2 − 1

4m2
β1β2[O2, [O1, U ]]. (A24)

Substituting the explicit expressions of O1 and O2, we end up with

O2
1 = O2

2 = 
p2, O4
1 = O4

2 = 
p4, [O1, [O1, U ]] = −∇2U − 2

r

∂U

∂r

�1 
L,

[O2, [O2, U ]] = −∇2U − 2

r

∂U

∂r

�2 
L, [O2, [O1, U ]] = −α1iα2j∇i∇jU,

H ′′ = β1

(
m + 
p2

2m
− 
p4

8m3

)
+ β2

(
m + 
p2

2m
− 
p4

8m3

)
+ U + 1

4m2
∇2U

+ 1

4m2

1

r

∂U

∂r
( 
�1 + 
�2) 
L + 1

4m2
β1β2α1iα2j∇i∇jU. (A25)

The last term in (A25), though of the order of v4, is a direct product of two odd operators and therefore does not contribute to the
first-order perturbation considered in this paper.
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