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Exclusive diffractive processes in electron-ion collisions

Tobias Toll* and Thomas Ullrich†
Brookhaven National Laboratory, Upton, New York, USA

(Received 26 November 2012; published 26 February 2013)

We present a new technique to calculate the cross section for diffractive vector meson production and deeply
virtual Compton scattering (DVCS) in electron-ion collisions based on the dipole model. The measurement of
these processes can provide valuable information on nonlinear QCD phenomena, such as gluon saturation, and
is the the only known way to gain insight into the spatial distribution of gluons in nuclei. We present predictions
of differential cross-section distribution dσ/dQ2 and dσ/dt for J/ψ and φ meson production for diffractive
processes of heavy nuclei, and demonstrate the feasibility of extracting the gluon source distribution of heavy
nuclei, F (b), from coherent diffraction. We briefly introduce a new event generator based on our method that can
be used for studying exclusive diffractive processes at a future electron-ion collider.
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I. INTRODUCTION

The HERA accelerator at DESY, Germany, with collision
energies of

√
s = 320 GeV was hitherto the highest energy

lepton-hadron collider. One of the great achievements of
HERA was the determination of the partonic structure of the
proton [1]. A lepton-hadron collision is mediated by a virtual
photon, which interacts with a valence or sea quark within the
hadron at a resolution Q2. When probed at higher energies,
gluons fluctuating into gluon or quark pairs can be resolved
at smaller time scales, such that more partons share the
hadron’s longitudinal momentum at higher energies. At small
momentum fractions x � 10−2 of the participating partons,
measurements at HERA showed that the content of the proton
is dominated by gluons, and that the gluon number density
at smaller x seems to rise uncontrollably. When extrapolating
current measurements to small x values, the gluonic part of the
cross section becomes larger than the total proton cross section.
This violation of the unitarity bound can only be avoided by
introducing saturation effects that tame the explosive growth
of the gluon density. While many saturation models describing
these nonlinear effects were developed [2,3], there exists
no direct measurement that would allow us to verify these
models and ultimately prove the existence of gluon saturation.
Although more and more tantalizing hints of the onset of gluon
saturation coming from proton-ion collisions at the Relativistic
Heavy Ion Collider (RHIC) have become available [4–9],
alternative explanations currently cannot be ruled out [10–12].
The direct study of these nonlinear saturation effects would
require lepton-hadron collisions at energies far exceeding
those at HERA. Electron-ion collisions offer an alternative way
to study high-gluon-density phenomena at order-of-magnitude
lower center-of-mass energies. At high enough energies the
small x gluons in the heavy ion have a wavelength in
the longitudinal direction that encompasses the entire width
of the nucleus. A probe will thus coherently interact with
the bulk of low-x gluons. For a heavy ion, the thickness
is approximately constant away from the edges and is
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proportional to A1/3, where A is its atomic number. This
approximate dependence is supported by detailed studies
[13,14]. Therefore, probing a heavy ion with A ≈ 200 is
similar to probing a proton at six times higher energy, making
the nucleus an efficient amplifier of the physics of high gluon
densities.

There are two proposed future collider projects that aim
to directly measure the saturated gluon regime for the first
time: the Large Hadron-electron Collider (LHeC) at CERN
using the existing LHC machine [15] and the Electron-Ion
Collider (EIC) in the USA [16], using either the existing RHIC
accelerator complex at BNL (eRHIC), or the existing electron
beams at JLab (MEIC).

At HERA, an unexpected discovery was that approximately
10% of the ep cross section is from diffractive final states [17]
and that this fraction is fairly independent of W and Q2.
What characterizes these events experimentally is the presence
of a rapidity gap, a region in the angular coverage which
exhibits no hadronic activity. Diffractive interactions result
when the electron probe in Deeply Inelastic Scattering (DIS)
interacts with a color-neutral vacuum excitation. This vacuum
excitation, which in perturbative QCD may be visualized as a
colorless combination of two or more gluons, is often called the
Pomeron. The hard diffractive cross section is proportional to
the gluon-density squared, making it the most sensitive probe
of gluon density known. Thus, diffraction and saturation are
closely related phenomena.

Measurements of diffraction in an electron-ion collider also
have substantial potential to shed light on other unanswered
questions in heavy-ion collisions [16]. Measurements over
the last decade in heavy-ion collision experiments at RHIC
indicate the formation of a strongly coupled plasma of quarks
and gluons (sQGP). This sQGP appears to behave like a
“near-perfect liquid” with a ratio of the shear viscosity to
entropy density (η/s) approaching 1/4π [18–21]. Recent
experiments at the LHC with substantially higher energies
and thus a hotter and longer-lived plasma phase confirm this
picture [22]. Despite the significant insight that the sQGP is
a strongly correlated nearly perfect liquid, little is understood
about how the system is created. The largest uncertainty in
our understanding of the evolution of a heavy-ion collision
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comes from our limited knowledge of the initial condition, i.e.,
momentum and spatial distributions of gluons in the nuclei.
Also of importance is how the spatial distribution fluctuates
around its mean, since it affects the behavior of collective
effects such as flow and their higher moments. For example,
different assumptions about the nuclear initial distributions
give differences up to factors of 2 for the obtained η/s
value [23,24]. Measurements of the initial gluon distribution
with existing machines are only possible indirectly and with
large uncertainties. The study of gluon distributions using
diffractive events in electron-ion collisions would allow one
to directly measure the initial conditions of the colliding ions,
providing both their momentum and spatial distributions as
well as the underlying fluctuations (“lumpiness”). In fact,
exclusive diffractive eA events are the only way to study the
initial spatial distributions and shed light on these fundamental
questions.

In a diffractive eA event, the electron collides with the
ion producing one or more extra particles but leaving the
nucleus intact. The interaction with the nucleus is either elastic
or inelastic, and in the latter case the nucleus subsequently
radiates a photon or breaks up into color-neutral fragments.
When it stays intact, the event is called coherent and when
it breaks, the event is called incoherent. The spectrum of the
cross section with respect to the hadronic momentum transfer
t is related to the transverse spatial distribution of the gluons
in the ion through a Fourier transform. Also, according to the
Good-Walker picture [25], the incoherent cross section is a
direct measure of the lumpiness of the gluons in the ion. In
order to access t in these events, the complete final state has
to be measured. This is experimentally only possible in events
such as vector-meson production or deeply virtual Compton
scattering (DVCS).

At present, the most common approach to calculate diffrac-
tive cross sections at small x is in the dipole model, where
the exchanged virtual photon splits up into a quark-antiquark
pair, which forms a color dipole. The dipole subsequently
interacts with the target in the target’s rest frame. The dipole
model became an important tool for DIS when Golec-Biernat
and Wüsthoff (GBW) [26,27] observed that a simple ansatz
for the dipole model integrated over the impact parameter
was able to simultaneously describe the total inclusive and
diffractive cross sections. The GBW model also naturally
contains saturation in the small-x regime. A shortcoming of
the GBW model is that it cannot describe the high-Q2 scaling
violation in the inclusive cross sections measured at HERA,
something perfectly described by the collinear Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) formalism, which
in turn cannot describe the high fraction of diffractive events.
This sparked Bartels, Golec-Biernat, and Kowalski (BGBK) to
include an explicit DGLAP gluon distribution into the dipole
formalism [28], taken at a scale directly linked to the dipole
size. The BGBK model replicates the GBW model where it is
applicable and also manages do describe the Q2 dependence of
the cross sections. However, this approach still integrates out
the impact parameter dependence of the interaction, without
which the t dependence of the cross section is unknown. The
impact parameter dependence was introduced in the dipole
model by Kowalski and Teaney [14] and then modified to

also include exclusive processes by Kowalski, Teaney, and
Motyka [29]. This dipole model goes by the name bSat (or
sometimes IPSat), and is the main focus of this paper.

The bSat model has been studied in detail in the case
of electron-proton collisions at HERA. There are a few
theoretical attempts to expand the bSat model to also describe
exclusive eA collisions (see, e.g., Refs. [14,30,31]). Without
exception, these models fail to describe the disappearance of
the incoherent cross section as t → 0. Also, they turn out to
be poorly suited for implementation in a Monte Carlo event
generator.

In this paper we present calculations of not only the
coherent but also the incoherent cross sections in electron-ion
collision without making approximations larger than those
already inherently present in the bSat model, for all t . We
have implemented the calculation described in this paper in a
Monte Carlo event generator (Sartre).

The paper is organized as followed: In Sec. II we will show
our derivation of the dipole model in eA, taking as a starting
point the case of ep. In Sec. III we will present the resulting
cross sections, both as comparisons with HERA data and as
predictions for EIC and RHIC.

II. THE bSat DIPOLE MODEL

Earlier studies of the dipole model showed that a wide
variety of DIS data can be described with only a few
assumptions. In particular, it was demonstrated that inclusive
DIS can be described together with inclusive charm production
and exclusive diffractive vector meson photo- and electro-
production. Especially the bSat dipole model is very successful
in describing the exclusive J/ψ , φ, ρ, and photon (DVCS)
production at HERA. Here we only give a short overview of
the bSat model in ep before we discuss its extension to eA
collisions. For a detailed discussion on the bSat model see
Ref. [29].

A. A brief description of the bSat dipole model in diffractive ep

The amplitude for producing an exclusive vector meson or
a real photon diffractively in DIS can be written as

Aγ ∗p→Vp
T,L (x,Q,	)

= i

∫
dr

∫
dz

4π

∫
d2b(
∗

V 
)(r, z)

× 2πrJ0([1 − z]r	)e−ib·	 dσ
(p)
qq̄

d2b
(x, r, b), (1)

where T and L represent the transverse and longitudinal
polarizations of the virtual photon, r is the size of the dipole,
z is the energy fraction of the photon taken by the quark, 	 =√−t is the transverse part of the four-momentum difference
of the outgoing and incoming proton, and b is the impact
parameter of the dipole relative to the proton (see Fig. 1).
(
∗

V 
) denote the wave-function overlap between the virtual
photon and the produced vector meson. In this paper we use the
“boosted Gaussian” wave overlap with the parameters given
in Ref. [29].
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FIG. 1. (Color online) A schematic picture of the dipole model
and its variables. See text for details.

The dipole cross section dσ
(p)
qq̄ /d2b(x, r, b) is defined as

dσ
(p)
qq̄

d2b
(x, r, b) ≡ 2N (p)(x, r, b) = 2[1 − �(S)]. (2)

The first equality is the optical theorem, and we make the
approximation of only using the real part of the S matrix
for the definition of the scattering amplitude N , which then
becomes a real number between 0 and 1. Here (p) denotes
proton.

In the bSat model the scattering amplitude is

N (p)(x, r, b) = 1 − e
− π2

2NC
r2αS (μ2)xg(x,μ2)T (b)

, (3)

where μ2 = 4/r2 + μ2
0 and μ2

0 is a cutoff scale in the
DGLAP evolution of the gluons. The initial gluon density
xg(x, μ2

0) = Agx
−λg (1 − x)5.6. The nucleon profile function

T (b) = 1/(2πBG) exp[−b2/(2BG)]. All parameter values are
determined through fits to HERA data [29]. For all results in
this paper, we use BG = 4 GeV−2, μ2

0 = 1.17 GeV2, λg =
0.02, and Ag = 2.55. Also, the four lightest quark masses
are treated as parameters in the model, and are taken to
be mu = md = ms = 0.14 GeV, mc = 1.4 GeV. It should be
noted that bSat is a model of multiple two-gluon exchanges
at leading log, but some next-to-leading log effects are taken
into account by the running of the strong coupling.

The total diffractive γ ∗p cross section for this process is

dσγ ∗p

dt
= 1

16π
|A(x,Q2, t)|2. (4)

B. Extending the bSat model from ep to eA

The explicit impact parameter dependence of the bSat
model makes it especially well suited for the description of
processes in eA collisions. The b dependence allows one
to model the nucleus as a collection of nucleons according
to a given nuclear transverse density distribution, e.g., the
Woods-Saxon function. To this end we make two observations.
First, at small x, the life-time of the dipole is so large that the
dipole traverses the full longitudinal extent of the nucleus.
As a consequence the nucleus can effectively be treated
as a two-dimensional object in the transverse plane. Also,
when the gluon’s momentum fraction of the hadron is small,

its wavelength in the light-cone direction x− becomes so
large that it coherently probes the whole nucleus at x �
A−1/3/(MNRp) ∼ 10−2, where MN is the mass of the nucleus
and Rp is the proton radius. Consequently, the information
about which nucleon the gluon belongs to is lost, and the
exact position of each nucleon within the nucleus is not an
observable. In order to calculate the cross section correctly,
the average over all possible states of nucleon configurations
has to be taken:

dσtotal

dt
= 1

16π
〈|A(x,Q2, t, 
)|2〉
 (5)

where 
 denotes nucleon configurations.
One defines two different kinds of diffractive events in eA:

coherent and incoherent. In the Good-Walker picture [25] the
incoherent cross section is proportional to the variance of the
amplitude with respect to the initial nucleon configurations 

of the nucleus:

dσincoherent

dt
= 1

16π
(〈|A(x,Q2, t, 
)|2〉


− |〈A(x,Q2, t, 
)〉
|2), (6)

where the first term on the right-hand side is the total diffractive
cross section and the second term is the coherent part of the
cross section.

When extending the bSat model from ep to eA we will
use the independent scattering approximation to construct the
scattering amplitude for nuclei:

1 − N (A)(x, r, b) =
A∏

i=1

(1 − N (p)(x, r, |b − bi |)), (7)

where bi is the position of each nucleon in the nucleus in
the transverse plane. We assume that the positions of the
nucleons are distributed according to the three-dimensional
Woods-Saxon function projected onto the transverse plane.
For details see Appendix A.

Combining Eqs. (2), (3), and (7), the bSat scattering
amplitude for eA becomes

1

2

dσ
(A)
qq̄

d2b
(x, r, b,
)

= 1 − exp

(
− π2

2NC

r2αS(μ2)xg(x, μ2)
A∑

i=1

T (|b − bi |)
)

.

(8)

Note that the dependence on nucleon configurations 
 in the
amplitude is entirely contained in this dipole cross section.

1. The incoherent, coherent, and total diffractive cross sections

In order to obtain the total diffractive crosssection and its
coherent part, the second and first moments of the amplitude
have to be calculated respectively. For the first moment there is
a closed expression for the average of the dipole crosssection
[14]: 〈

dσqq̄

d2b

〉



= 2

[
1 −

(
1 − TA(b)

2
σ

p
qq̄

)A]
, (9)
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where σ
p
qq̄ is the ep dipole cross section, Eq. (3), integrated over

the impact parameter, and TA is the profile of the Woods-Saxon
potential in transverse space.

For the second moment of the amplitude, no analytical
expression exists. Similarly to Ref. [32], we derive it by
defining an average of an observable O(
) over nucleon
configurations 
i by

〈O〉
 = 1

Cmax

Cmax∑
i=1

O(
i). (10)

For a large enough number of configurations Cmax the sum on
the right-hand side will converge to the true average. For the
total diffractive cross section one gets

dσγ ∗A

dt
(x,Q2, t) = 1

16π

1

Cmax

Cmax∑
i=1

|A(x,Q2, t, 
i)|2. (11)

For large t the variance is several orders of magnitude larger
than the average. This means that the convergence of the
sum in Eq. (10) becomes extremely slow, as demonstrated in
Fig. 2(a), where we show the coherent cross section resulting
from averaging over 10, 100, 500, and 800 configurations.
As a comparison the “analytical average,” i.e., Eq. (9), is also
shown. As can be seen, not even 800 configurations are enough
for convergence at −t > 0.15.

The convergence of the second moment of the amplitude
is shown in Fig. 2(b). We conclude that around 500 config-
urations are needed to obtain a good description of the cross
section for −t < 0.3.

2. A nonsaturated bSat model

Saturation is introduced in the bSat model through the
exponential term in the scattering amplitude [Eq. (3)]. In

order to study the effects of saturation on the production cross
section we construct a nonsaturated version of the bSat model
by linearizing the dipole cross-section. It should be noted that
there is no taming of the rise of the cross section for small xIP or
large dipole radii in this case, and studies are only valid where
β = xIP /xBj is large. For exclusive diffraction this is equivalent
to keeping Q2 large. Any other way to impose a limit on the
rise of the cross section, e.g., through a cutoff, inevitably also
imposes some form of saturation into the formalism.

In the proton case, the bNonSat dipole cross section is
obtained by keeping the first term in the expansion of the
exponent in the bSat dipole cross section [14]:

dσ
(p)
qq̄

d2b
= π2

NC

r2αs(μ
2)xg(x, μ2)T (b). (12)

In the case of a nucleus the dipole cross section becomes

dσ
(A)
qq̄

d2b
= π2

NC

r2αs(μ
2)xg(x, μ2)

A∑
i=1

T (|b − bi |) (13)

and the coherent part of the bNonSat cross section can be
obtained through the average:〈

dσ
(A)
qq̄

d2b

〉



= π2

NC

r2αs(μ
2)xg(x, μ2)ATA(b). (14)

The parameters we use for the bNonSat model were obtained in
Ref. [14] by fits to HERA data. They are BG = 4 GeV−2, μ2

0 =
0.8 GeV2, λg = −0.13, and Ag = 3.5. The bNonSat quark
masses are mu = md = ms = 0.15 GeV, mc = 1.4 GeV.

Figures 3(a) and 3(b) show the wave overlap (
∗
V 
)

between the virtual photon and produced vector mesons as
a function of dipole size r , for transverse and longitudinal
polarizations of the photon respectively. The wave overlap is
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FIG. 2. (Color online) (a) The resulting coherent and (b) total cross section for γ ∗A → γ ∗J/ψA, averaged over 10, 100, 500, and 800
configurations. As reference, the coherent analytical average described by Eq. (9) is also shown.
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FIG. 3. (Color online) In (a) and (b) the wave overlaps between
the virtual photon and produced vector mesons are shown for
transverse and longitudinal polarizations respectively, as functions
of dipole radius r . In the third panel the dipole cross section is shown
as a function of r , with bSat (solid) and bNonSat (dashed) for protons
(black) and gold ions (red/grey).

taken at Q2 = 1 GeV2 and at z = 0.7. In Fig. 3(c) we show
the dipole cross section as a function of dipole size r . In bSat
the rise of the cross section at large r is tamed in the model,
while in bNonSat it is allowed to rise uncontrollably. Notice
that despite the uncontrolled rise of the dipole cross section,
the resulting cross section stays finite because of the steep
fall of the wave-overlap function at large r . As can be seen
in the figure, the lighter (larger) vector mesons ρ and φ are
more sensitive to saturation effects than heavier vector mesons
such as J/ψ . For J/ψ the wave overlap falls off so quickly at
large r that it is an unsuitable probe for accessing the saturated
regime, even for large nuclei.

3. Phenomenological corrections to the dipole cross section

In the derivation of the dipole amplitude only the real part
of the S matrix is taken into account. The imaginary part of
the scattering amplitude can be included by multiplying the
cross section by a factor (1 + β2), where β is the ratio of
the imaginary and real parts of the scattering amplitude. It is
calculated using [29]

β = tan

(
λ

π

2

)
, where λ ≡ ∂ ln

(Aγ ∗p→Vp
T,L

)
∂ ln(1/x)

. (15)

In the derivation of the dipole amplitude, the gluons in the
two-gluon exchange in the interaction are assumed to carry
the same momentum fraction of the proton or nucleus. To take
into account that they carry different momentum fractions, a
so-called skewedness correction is applied to the cross section
by multiplying it by a factor Rg(λ) defined by [29]

Rg(λ) = 22λ+3

√
π

�(λ + 5/2)

�(λ + 4)
, (16)

where λ is defined as above. Note that this definition of
skewedness correction for the bSat model is slightly different
from the one used in Ref. [29], but follows the description in
Ref. [31].

These corrections are important for describing HERA data:
where the models are valid the corrections are typically
around 60% of the cross section, out of which the skewedness
correction amounts to around 45%. The corrections grow
dramatically in the large-x range outside the validity of the
models, where x > 10−2.

C. Computing the eA cross sections

The differential ep and eA cross sections for exclusive
diffractive processes cannot be calculated analytically. In order
to obtain numerical solutions we have written a computer
program to sample and average over nuclear configurations.
This program is also the core of a novel event generator, Sartre,
which is briefly described in Appendix B.

The total differential cross section is

d3σtotal

dQ2dW 2dt
=

∑
T ,L

R2
g(1 + β2)

16π

dn
γ
T,L

dQ2dW 2
〈|AT ,L|2〉
, (17)

where dn
γ
T,L/dQ2dW 2 is the flux of transversely and lon-

gitudinally polarized virtual photons, and the average over
configurations 
 is defined in Eq. (10).

The coherent part of the cross section is

d3σcoherent

dQ2dW 2dt
=

∑
T ,L

R2
g(1 + β2)

16π

dn
γ
T,L

dQ2dW 2
|〈AT ,L〉
|2, (18)

while the incoherent part is the difference between the total
and coherent cross sections.

For the the second moment of the amplitude, for each
nucleon configuration 
i , one needs to calculate the integral

AT ,L(Q2,	, xIP ,
i)

=
∫

r dr
dz

2
d2b(
∗

V 
)T ,L(Q2, r, z)

× J0([1 − z]r	)e−ib·	 dσqq̄

d2b
(xIP , r, b,
i), (19)

where the dipole cross section is defined in Eq. (9) for bSat and
in Eq. (13) for bNonSat. For eA, there is no angular symmetry
in b, which makes this integral complex. We average over 500
nucleon configurations, giving 1000 such integrals for each
point in phase-space.
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For the first moment of the amplitude, the integral to
calculate is

〈AT ,L(Q2,	, xIP )〉

=

∫
πr dr dz b db(
∗

V 
)T ,L(Q2, r, z)

× J0([1 − z]r	)J0(b	)

〈
dσqq̄

d2b

〉



(xIP , r, b), (20)

where the average in the last term is defined in Eq. (9) for bSat
and in Eq. (14) for bNonSat.

The dipole models described here are only valid for small
values of x < 10−2 and not-too-small values of β ≡ x/xIP .
If β becomes too small the qq̄ dipole becomes unphysically
large [33]. To rectify this one would need to include higher
Fock state dipoles, such as qq̄g.

One should also note that the dipole cross section used in
Eqs. (2) and (3), when integrated over the impact parameter,
yields unphysical results for large dipole radii:

σ (p)(x, r) = 2
∫

d2bN (p)(x, r, b)

= 4πB2
G[ln(G) − Ei(−G) + γEuler], (21)

where G = [π2r2αS(μ2)xg(x, μ2)]/(2NC2πBG). For large
r the ln(r) contribution becomes dominant. However, as
demonstrated in Fig. 3, this growth has no effect on the
actual production cross sections [Eqs. (17) and (18)] due to the
implicit cutoff of the wave overlap at already moderate radii.

To nevertheless protect against this unphysical behavior, we
introduce a cutoff in the dipole radius of r < 3 fm for protons
and r < 3R0 for nuclei, where R0 is the nucleus’ radius given
in the Woods-Saxon parametrization. We varied the cutoff in
a wide range and did not observe any changes in the results
presented here.

III. RESULTS

In order to verify that our numerical implementation
reproduces measured data, we repeated the comparison to the
latest HERA data on ρ, φ, J/ψ , and DVCS. We find that
both models, bSat and bNonSat, describe HERA data well,
within the experimental uncertainties and within the kinematic
validity of the models. This is not surprising since the ep part is
a repetition of previous work [14,29], although our treatment
of the skewness correction differs slightly.

A. Predictions for eA collisions

To date, there exist no experimental data on diffractive
vector meson production in eA. However, these measurements
are integral parts of the physics programs of future facilities
such as the EIC [16] and the LHeC [17]. We show results
for J/ψ and φ production. We let the J/ψ mesons decay
into electron pairs, and the φ mesons into kaon pairs. The
pseudorapidity and momenta of these decay products are
restricted to |η| < 4 and p > 1 GeV, respectively. These
cuts are made to limit the predictions to an experimentally
accessible region of phase-space. We also limit the predictions
to x < 10−2 and Q2 > 1 GeV2. We have simulated data
corresponding to an integrated luminosity of 10 fb−1, with
EIC beam energies of 20 GeV for the electron, and 100 GeV/u
for the ion beam. This will amount to a few months of beam
operation. The errors shown are statistical only.

In Figs. 4(a) and 5(a) differential cross sections with respect
to Q2 for J/ψ and φ production respectively are shown for
both bSat and bNonSat models. The cross sections are scaled
by a factor A4/3. In the dilute limit (large Q2) this scaling
is expected to hold for the integral of the coherent peak,
which dominates the cross section, while deviations from it
is due to the dense gluon regime. In Figs. 4(b) and 5(b) the
ratios of ep to eAu cross sections are shown for both bSat
and bNonSat. As can be seen there are significant differences
between the two models, something not observed at HERA.
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FIG. 4. (Color online) (a) Cross sections for J/ψ production differential in Q2 for ep and eAu collisions for both bSat and bNonSat dipole
models. The cross sections are scaled by 1/A4/3. (b) Ratio of eA to ep cross sections for both models.
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FIG. 5. (Color online) (a) Cross sections for φ production differential in Q2 for ep and eAu collisions for both bSat and bNonSat dipole
models. The cross sections are scaled by 1/A4/3. (b) Ratio of eA to ep cross sections for both models.

Also, the difference is larger for φ mesons. The reason for
this is that the wave-function overlap between the φ meson
and virtual photon allows for larger dipoles than that for J/ψ
(see Fig. 3). Therefore, φ production can probe further into the
dense gluon regime and exhibits larger differences between
bSat and bNonSat.

1. Probing the spatial gluon distribution

In Fig. 6 we show the differential cross section with respect
to t , dσ/dt , for both J/ψ- and φ-meson production, again
for both dipole models. We assume a conservative t resolution
of 5%, which should be achievable by future EIC detectors.
The statistical error bars shown correspond to an integrated
luminosity of 10 fb−1. As can be seen, the coherent cross
section clearly exhibits the typical diffractive pattern. Also
depicted in Fig. 6 is the incoherent cross section, which is
proportional to the lumpiness of the nucleus. Experimentally

the sum of the coherent and incoherent parts of the cross
section is measured. Through the detection of emitted neutrons
(e.g., by zero-degree calorimeters) from the nuclear breakup
in the incoherent case it should be experimentally feasible to
disentangle the two contributions unambiguously.

The coherent distributions in Fig. 6 can be used to obtain
information about the gluon distribution in impact-parameter
space through a Fourier transform. In Eq. (20), the first moment
of the diffractive amplitude is a Fourier transform of the
dipole cross section averaged over nucleon configurations,
times the wave-function overlap between the vector meson
and virtual photon. This represents a transformation from
coordinate space to momentum space �. The coherent cross
section dσcoherent/dt is proportional to the absolute square of
this amplitude. Following Ref. [34], we can regain the impact-
parameter dependence by performing a Fourier transform on
the amplitude. The amplitude can be obtained by taking the
square root of the cross section. In order to maintain the
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FIG. 6. (Color online) Differential distributions with respect to t for exclusive J/ψ (a) and φ (b) for coherent and incoherent events. Both
bSat and bNonSat models are shown.
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FIG. 7. (Color online) The Fourier transforms obtained from the distributions in Fig. 6 for J/ψ mesons in (a) and (b) and φ mesons
in (c) and (d). The results from both bSat and bNonSat are shown with error bands. The input Woods-Saxon distribution is shown as a
reference.

oscillatory structure of the amplitude we have to switch its sign
in every second minimum. We call this modified amplitude√

dσcoherent/dt |mod. Its Fourier transform is

F (b) = 1

2π

∫ ∞

0
d		J0(	b)

√
dσcoherent

dt
(	)

∣∣∣∣
mod

, (22)

which is a function of impact parameter only. In our models
the impact-parameter dependence comes from the trans-
verse density function TA(b). For bNonSat, F (b) is directly
proportional to the input density function, while for bSat the
relation is more complex.

In Fig. 7 we show the resulting Fourier transforms of
the coherent curves in Fig. 6, using the range where −t <
0.36 GeV2. The obtained distributions have been normalized
to unity. For testing the robustness of the method, we used the
statistical errors in dσ/dt to generate two enveloping curves,
dσ/dt(ti) ± δ(ti), where δ is the one-sigma statistical error in
each bin ti . The curves are then transformed individually, and
the resulting difference defines the uncertainty band on F (b).
Surprisingly, the uncertainties due to the statistical error are
negligible, and are barely visible in Fig. 7.

As a reference we show (dotted line) the original input dis-
tribution TA(b), which is the Woods-Saxon function integrated
over the longitudinal direction and normalized to unity. The
bNonSat curves for φ- and J/ψ-meson production reproduce
the shape of the input distribution perfectly, as is expected
since the bNonSat amplitude is directly proportional to the
input distribution. For bSat, the shape of the J/ψ curve also
reproduces the input distribution, while the φ curve does not.
As explained earlier, this is not surprising, as the size of the

J/ψ meson is much smaller than that for φ, which makes the
latter more susceptible to differences in the dipole cross section
between bNonSat and bSat, as seen in Fig. 3. We conclude that
the J/ψ is better suited for probing the transverse structure
of the nucleus. However, by measuring F (b) with both J/ψ
and φ mesons, one can obtain valuable information on how
sensitive the measurement is to nonlinear effects. Thus, both
measurements are important and complementary to each other.
The results in Fig. 7 provide a strong indication that the EIC and
the LHeC will be able to obtain the nuclear spatial gluon distri-
bution from the measured coherent t spectrum from exclusive
J/ψ production in eA, in a model-independent fashion.

Strictly, the integral over 	 in Eq. (22) should be performed
up to 	 = ∞. In Fig. 8 we demonstrate the effect of
finite integration limits, using as an example the φ meson
curve. We show the transformation for four upper values:
|t |max = {0.025, 0.05, 0.1, 0.2} GeV2. The study shows a
surprisingly fast convergence towards the input Woods-Saxon
distribution.

B. Ultraperipheral collisions

The calculations described in this paper can also be applied
to ultraperipheral collisions (UPCs) at hadron colliders, such
as RHIC and the LHC. At very large impact parameters
between colliding hadrons, the long-range electromagnetic
force becomes dominant over short-range QCD. We substitute
the electron’s photon flux dnγ /dQ2dW 2 in Eq. (17) with that
from a proton or an ion, as described in, e.g., Ref. [35].

In Table I we list the predicted cross sections for J/ψ
mesons produced exclusively at RHIC energy in p + p, p +
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FIG. 8. (Color online) The Fourier transform of the t-spectrum of
φ-meson production in bNonSat, integrated to different upper values
of |t |.

Au, and Au + Au collisions. Each cross section is a sum
of the two possible photon directions in the events, such that
symmetric beam particles are multiplied by a factor 2, and the
p + Au cross section is the sum of the photons coming from the
proton and from the gold-ion respectively. Especially for light
mesons such as φ, these studies might provide new constraints
for nonlinear phenomena, such as saturation. Measurements
at existing hadron colliders are still limited in statistics at the
time of writing but more detailed measurements will become
available soon. The PHENIX experiment at RHIC measured
the central UPC diffractive J/ψ-production cross section at√

s = 200 GeV, for |η(J/ψ)| < 0.35 corresponding to 21 <
W < 30 GeV, when the J/ψ decays into an electron pair
[36]. The resulting cross section is measured to be dσ/dy =
76 ± 33(stat.) ±11(syst.) μb.

Our result is dσ/dy = 118.5 μb, which is within the exper-
imental uncertainty. It should be noted that this measurement is
at values of xIP 
 0.016, which is bordering the validity range
of the dipole model. In particular the phenomenological cor-
rections to the diffractive cross section described in Sec. II B3
become large and are not under solid theoretical control.

TABLE I. Cross sections of J/ψ in UPC events at RHIC.
All cross sections are for

√
s = 200 GeV/u, 10−6 � Q2 � 1

GeV2, 4 � W � 142 GeV, 0 � −t � 0.3 GeV2.

Process Cross section (nb)

p + p 0.716
p + Au 0.666 × 103

Au + Au 1.22 × 106

IV. CONCLUSIONS

We have presented a new method for calculating exclusive
diffractive vector meson and DVCS production in high-energy
eA collisions, based on the dipole model. This method is
the first to describe incoherent eA collisions without making
approximations larger than those already inherently present
in the dipole model, for all values of t . In some parts of
phase-space, the cross section is dominated by its incoherent
part, which is thus essential for making realistic predictions
for future eA experiments. High-energy eA collisions are
expected to be sensitive to nonlinear saturation effects.
We have therefore implemented our method in two dipole
models: the bSat model and its linearization the bNonSat
model.

In Figs. 4 and 5 we show that, in an eA collider, the
two models are clearly distinguishable, which is not the case
in previous ep experiments. We also show that φ-meson
production is considerably more sensitive to nonlinear effects
than J/ψ-meson production. This is due to the larger size of
the wave-function overlap for the φ meson. In Figs. 6 and
7, we show that one can probe the transverse spatial gluon
distribution of a nucleus by performing a Fourier transform of
the measured coherent t spectrum. This method is very robust
with respect to statistical uncertainties and only requires a
range of t � 0.2 GeV2 for gold. Due to its smaller wave
function, the J/ψ meson is considerably more suitable for
probing the spatial gluon distribution than the lighter φ meson.
In Fig. 6 we also show the incoherent t spectrum, which is
directly proportional to the lumpiness of the initial nucleus.
Our method can also be used to calculate UPC events in
present hadron-hadron colliders. We describe central J/ψ data
from the PHENIX experiment well within the experimental
uncertainties.
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APPENDIX A: GENERATING A NUCLEON
CONFIGURATION ACCORDING TO THE

WOODS-SAXON POTENTIAL

We generate the nucleus according to the Woods-Saxon
distribution, which is assumed to describe the number density
of nucleons per volume element, i.e.,

d3N

d3r
= ρ(r) = ρ0

1 + e
r−R0

d

, (A1)

where ρ0 is the central density, R0 is the radius of the
nucleus and d is the skin thickness which describes how fast
the potential falls off close to the edge of the nucleus. The
parameters ρ0, R0 and d have been measured for most nuclei
in low-energy experiments [37].
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Our method for generating a nucleus is as follows:

(i) We first generate the radial distribution of all nucleons
in a given nucleus specimen according to

dN

dr
= 4πr2ρ(r), (A2)

and sort them in r .
(ii) We then generate the angular distributions uniformly in

azimuthal angle, φ, and polar angle, cos θ , one at a time
beginning with the innermost nucleon.

(iii) If the newly generated nucleon position is within a
core distance of 0.8 fm from any other nucleon we
regenerate φ and cos θ , keeping the original r . If
this fails repeatedly, we drop the nucleus and restart
from 1.

(iv) Finally, when all nucleons have been placed, the origin
of the nucleus is shifted to its center of mass.

APPENDIX B: GENERATING EVENTS WITH SARTRE

Sartre is a novel Monte Carlo event generator, implementing
the models described in this paper. It generates exclusive events
in diffractive vector meson and DVCS production for ep and
eA collisions.

The master equation of Sartre is Eq. (17). In the event
generator, this cross section is simply used as a probability
density function from which a phase-space point in Q2, W 2,
and t is drawn. Given the beam energies and these three
kinematic variables, the final state of the event is fully defined

except for the azimuthal angle of the vector meson, which is
uniformly distributed.

To determine the total cross section in eA, the complex four-
dimensional integral described in Eq. (19) has to be calculated
for each phase-space point 1000 times, which is prohibitive for
efficient event generation. Therefore, we tabulate the first and
second moments of the amplitudes, for both longitudinally
and transversely polarized photons separately. The resulting
lookup tables are three dimensional in Q2, W 2, and t . There is
a set of four lookup tables (〈|AT |2〉, |〈AT 〉|, 〈|AL|2〉, |〈AL〉|)
for each species of produced vector meson or DVCS, and for
each species of nucleus.

When an event has been generated it is decided proba-
bilistically weather the event was coherent or incoherent by
comparing the coherent cross section in Eq. (18) with the
total one. In the incoherent case we let the nucleus break
up by assuming that the diffractive mass MY is distributed
according to

dN

dM2
Y

∝ 1

M2
Y

. (B1)

Note that MY cannot be uniquely determined from kinematics
alone. The corresponding excitation energy of the nucleus is

E∗ = (MY − mn) × A (B2)

We then use this excitation energy as input for GEMINI++
[38], a statistical model code which describes the nuclear
deexcitation, providing the breakup products from neutrons
up to the heaviest fragments.

[1] F. D. Aaron et al. (H1 and ZEUS Collaboration), J. High Energy
Phys. 01 (2010) 109.

[2] E. Iancu and R. Venugopalan, in Quark Gluon Plasma, edited
by R. C. Hwa (World Scientific, Singapore), pp. 249–3363.

[3] H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005).
[4] I. Arsene et al. (BRAHMS Collaboration), Phys. Rev. Lett. 93,

242303 (2004).
[5] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 97,

152302 (2006).
[6] E. Braidot (STAR Collaboration), Nucl. Phys. A 854, 168

(2011).
[7] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 107,

172301 (2011).
[8] J. L. Albacete and C. Marquet, Phys. Rev. Lett. 105, 162301

(2010).
[9] T. Lappi and H. Mantysaari, arXiv:1209.2853.

[10] M. Strikman and W. Vogelsang, Phys. Rev. D 83, 034029 (2011).
[11] Z.-B. Kang, I. Vitev, and H. Xing, Phys. Rev. D 85, 054024

(2012).
[12] Z.-B. Kang, I. Vitev, and H. Xing, Phys. Lett. B 718, 482 (2012).
[13] H. Kowalski, T. Lappi, and R. Venugopalan, Phys. Rev. Lett.

100, 022303 (2008).
[14] H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005 (2003).
[15] J. L. Abelleira Fernandez et al. (LHeC Study Group

Collaboration), J. Phys. G 39, 075001 (2012).
[16] A. Deshpande, Z.-E. Meziani, J.-W. Qiu, R. McKeown, S.

Vigdor, E. C. Aschenauer, W. Brooks, M. Diehl et al.,
arXiv:1212.1701.

[17] H. Abramowicz and A. Caldwell, Rev. Mod. Phys. 71, 1275
(1999).

[18] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757,
184 (2005).

[19] J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102
(2005).

[20] B. B. Back, M. D. Baker, M. Ballintijn, D. S. Barton, B. Becker,
R. R. Betts, A. A. Bickley, R. Bindel et al., Nucl. Phys. A 757,
28 (2005).

[21] I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A 757,
1 (2005).

[22] I. Tserruya, in EPIC@LHC: International Workshop on Early
Physics with Heavy-ion Collisions at the LHC, July 2011,
Giovinazzo, Bari, Italy, edited by D. Elia, G. E. Bruno,
L. Cosmai, D. Di Bari, and V. Lenti, AIP Conf. Proc. No. 1422
(AIP, New York, 2012), p. 166.

[23] Z. Qiu and U. W. Heinz, Phys. Rev. C 84, 024911
(2011).

[24] S. Esumi (PHENIX Collaboration), J. Phys. G 38, 124010
(2011).

[25] M. L. Good and W. D. Walker, Phys. Rev. 120, 1857-1860
(1960).

[26] K. J. Golec-Biernat and M. Wusthoff, Phys. Rev. D 59, 014017
(1998).

[27] K. J. Golec-Biernat and M. Wusthoff, Phys. Rev. D 60, 114023
(1999).

[28] J. Bartels, K. J. Golec-Biernat, and H. Kowalski, Phys. Rev. D
66, 014001 (2002).

024913-10

http://dx.doi.org/10.1007/JHEP01(2010)109
http://dx.doi.org/10.1007/JHEP01(2010)109
http://dx.doi.org/10.1016/j.ppnp.2005.01.029
http://dx.doi.org/10.1103/PhysRevLett.93.242303
http://dx.doi.org/10.1103/PhysRevLett.93.242303
http://dx.doi.org/10.1103/PhysRevLett.97.152302
http://dx.doi.org/10.1103/PhysRevLett.97.152302
http://dx.doi.org/10.1016/j.nuclphysa.2011.01.016
http://dx.doi.org/10.1016/j.nuclphysa.2011.01.016
http://dx.doi.org/10.1103/PhysRevLett.107.172301
http://dx.doi.org/10.1103/PhysRevLett.107.172301
http://dx.doi.org/10.1103/PhysRevLett.105.162301
http://dx.doi.org/10.1103/PhysRevLett.105.162301
http://arXiv.org/abs/arXiv:1209.2853
http://dx.doi.org/10.1103/PhysRevD.83.034029
http://dx.doi.org/10.1103/PhysRevD.85.054024
http://dx.doi.org/10.1103/PhysRevD.85.054024
http://dx.doi.org/10.1016/j.physletb.2012.10.046
http://dx.doi.org/10.1103/PhysRevLett.100.022303
http://dx.doi.org/10.1103/PhysRevLett.100.022303
http://dx.doi.org/10.1103/PhysRevD.68.114005
http://dx.doi.org/10.1088/0954-3899/39/7/075001
http://arXiv.org/abs/arXiv:1212.1701
http://dx.doi.org/10.1103/RevModPhys.71.1275
http://dx.doi.org/10.1103/RevModPhys.71.1275
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.084
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.084
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.130
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.130
http://dx.doi.org/10.1103/PhysRevC.84.024911
http://dx.doi.org/10.1103/PhysRevC.84.024911
http://dx.doi.org/10.1088/0954-3899/38/12/124010
http://dx.doi.org/10.1088/0954-3899/38/12/124010
http://dx.doi.org/10.1103/PhysRev.120.1857
http://dx.doi.org/10.1103/PhysRev.120.1857
http://dx.doi.org/10.1103/PhysRevD.59.014017
http://dx.doi.org/10.1103/PhysRevD.59.014017
http://dx.doi.org/10.1103/PhysRevD.60.114023
http://dx.doi.org/10.1103/PhysRevD.60.114023
http://dx.doi.org/10.1103/PhysRevD.66.014001
http://dx.doi.org/10.1103/PhysRevD.66.014001


EXCLUSIVE DIFFRACTIVE PROCESSES IN ELECTRON- . . . PHYSICAL REVIEW C 87, 024913 (2013)

[29] H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D 74, 074016
(2006).

[30] A. Caldwell and H. Kowalski, Phys. Rev. C 81, 025203
(2010).

[31] T. Lappi and H. Mantysaari, Phys. Rev. C 83, 065202 (2011).
[32] B. Z. Kopeliovich, J. Nemchik, A. Schaefer, and A. V. Tarasov,

Phys. Rev. C 65, 035201 (2002).
[33] H. Kowalski, T. Lappi, C. Marquet, and R. Venugopalan, Phys.

Rev. C 78, 045201 (2008).

[34] S. Munier, A. M. Stasto, and A. H. Mueller, Nucl. Phys. B 603,
427 (2001).

[35] S. R. Klein and J. Nystrand, Phys. Rev. Lett. 84, 2330 (2000).
[36] S. Afanasiev et al. (PHENIX Collaboration), Phys. Lett. B 679,

321 (2009).
[37] C. W. De Jager, H. De Vries, and C. De Vries, At. Data Nucl.

Data Tables 14, 479 (1974).
[38] D. Mancusi, R. J. Charity, and J. Cugnon, Phys. Rev. C 82,

044610 (2010).

024913-11

http://dx.doi.org/10.1103/PhysRevD.74.074016
http://dx.doi.org/10.1103/PhysRevD.74.074016
http://dx.doi.org/10.1103/PhysRevC.81.025203
http://dx.doi.org/10.1103/PhysRevC.81.025203
http://dx.doi.org/10.1103/PhysRevC.83.065202
http://dx.doi.org/10.1103/PhysRevC.65.035201
http://dx.doi.org/10.1103/PhysRevC.78.045201
http://dx.doi.org/10.1103/PhysRevC.78.045201
http://dx.doi.org/10.1016/S0550-3213(01)00168-7
http://dx.doi.org/10.1016/S0550-3213(01)00168-7
http://dx.doi.org/10.1103/PhysRevLett.84.2330
http://dx.doi.org/10.1016/j.physletb.2009.07.061
http://dx.doi.org/10.1016/j.physletb.2009.07.061
http://dx.doi.org/10.1016/S0092-640X(74)80002-1
http://dx.doi.org/10.1016/S0092-640X(74)80002-1
http://dx.doi.org/10.1103/PhysRevC.82.044610
http://dx.doi.org/10.1103/PhysRevC.82.044610



