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Electromagnetic radiation by quark-gluon plasma in a magnetic field
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The electromagnetic radiation by quark-gluon plasma in a strong magnetic field is calculated. The contributing
processes are synchrotron radiation and one-photon annihilation. It is shown that in relativistic heavy-ion collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) synchrotron
radiation dominates over the annihilation. Moreover, it constitutes a significant part of all photons produced by
the plasma at low transverse momenta; its magnitude depends on the plasma temperature and the magnetic field
strength. Electromagnetic radiation in a magnetic field is probably the missing piece that resolves a discrepancy
between the theoretical models and the experimental data. It is argued that electromagnetic radiation increases
with the magnetic field strength and plasma temperature.
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I. INTRODUCTION

It has been known for a long time that strong magnetic fields
can be generated in heavy-ion collisions. Recent calculations
[1–5] confirm this wisdom and predict, using essentially
classical electrodynamics, that a magnetic field shortly after
the collision reaches 1018–1019 G, which by far exceeds the
critical value Bc = 4.41 × 1013 G for electrons, known also as
the Schwinger field. However, it was only recently appreciated
that such fields may have great phenomenological signifi-
cance. There are two observations leading to this conclusion:
(i) phenomenological models suggest that the quark gluon
plasma (QGP) is formed after a very short time after the heavy-
ion collision—on the order of a few tenths of a fm/c; (ii) the
relaxation time of magnetic field in the presence of QGP is
proportional to the plasma electric conductivity due to the
induction of electric Foucault currents by the time-dependent
magnetic field [6].1 The relaxation time of magnetic field is
estimated to be about 1–2 few fm/c [6]. Therefore, magnetic
field has a profound influence on all aspects of the physics
of relativistic heavy-ion collisions. In particular, it was argued
in [6] that magnetic field induces energy loss by fast quarks and
charged leptons via the synchrotron radiation and polarization
of the fermion spectra. It contributes to enhancement of
dilepton production at low invariant masses [7] and enhances
the azimuthal anisotropy of the quark-gluon plasma (QGP)
[8,9]. It causes dissociation of the bound states, particularly
charmonia, via ionization [10,11]. Additionally, a magnetic
field may drive the chiral magnetic effect (CME) [1,12], which
is the generation of an electric field parallel to the magnetic
one via the axial anomaly in the hot nuclear matter. The effect
of magnetic field on the QCD phase diagram was studied using
model calculations [13–31] and lattice simulations [31–35]. It
is also argued in the Appendix, that at the BNL Relativistic
Heavy Ion Collider (RHIC), at early times after heavy ion
collision, about 3% of energy density of plasma resides in

1For our argument it is crucial that the medium produced at early
stages after the collision be electrically conducting. Should it happen
that the electrical conductivity is negligible for several fm/c, the initial
magnetic field can drop below a phenomenologically important value.

a magnetic field, while at the CERN Large Hadron Collider
(LHC), this fraction reaches as much as 40%.

This paper addresses the problem of photon radiation by
quarks and antiquarks of QGP moving in external magnetic
field. This radiation originates from two sources: (i) syn-
chrotron radiation and (ii) quark and antiquark annihilation.
QGP is transparent to the emitted electromagnetic radiation
because its absorption coefficient is suppressed by α2. Thus,
QGP is shinning in magnetic field. The main goal of this
paper is to calculate the spectrum and angular distribution
of this radiation. In strong magnetic field it is essential to
account for quantization of fermion spectra. Indeed, spacing
between the Landau levels is of the order eB/ε (ε being quark
energy), while their thermal width is of the order T . Spectrum
quantization is negligible only if eB/ε � T which is barely
the case at RHIC and certainly not the case at LHC (at least
during the first few fm’s of the evolution). Fermion spectrum
quantization is important not only for hard and electromagnetic
probes but also for the bulk properties of QGP.

Throughout this article it is assumed that magnetic field is
approximately constant during the first 1–2 few fm/c after
heavy-ion collision, based on the arguments of [6]. This
assumption dramatically simplifies calculations as it makes
possible using exact solutions to the Dirac equation. At times
larger than about 2 fm/c magnetic field rapidly decays and
the corresponding contribution to the synchrotron radiation is
neglected.

The presentation is structured as follows. In Sec. II the
spectrum and angular distribution of synchrotron radiation
by QGP is calculated in the ideal gas approximation and
compared to the experimental data. The results exhibited in
Figs. 3, 4 indicate that photon radiation in magnetic field
gives a significant contribution to the total photon yield.
This contribution seems to be large enough to account for
the discrepancy between the model calculations assuming
no magnetic field and the experimental data at RHIC [36].2

Moreover, the electromagnetic radiation rapidly increases with
B and T suggesting that it plays even more important role

2Another possible explanation has been recently suggested in [37].
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at LHC. In Sec. III the photon spectrum emitted in pair
annihilation is calculated and it is shown that it is small
as compared to synchrotron contribution. A possible way to
ascertain existence of synchrotron radiation is discussed in
Sec. IV.

II. SYNCHROTRON RADIATION

Motion of charged fermions in external magnetic field,
which we will approximately treat as spatially homogeneous,
is quasiclassical in the field direction and quantized in the
reaction plane, which is perpendicular to the magnetic field
and span by the impact parameter and the heavy ion collision
axis. In high energy physics one usually distinguishes the
transverse plane, which is perpendicular to the collision axis
and span by the magnetic field and the impact parameter. The
notation is adopted in which three-vectors are discriminated
by the bold face and their component along the field direction
by the plain face. Momentum projections onto the transverse
plane are denoted by subscript ⊥.

In the configuration space, charged fermions move along
spiral trajectories with the symmetry axis aligned with the
field direction. Synchrotron radiation is a process of photon
γ radiation by a fermion f with electric charge ef = zf e in
external magnetic field B:

f (ef , j, p) → f (ef , k, q) + γ (k) , (1)

where k is the photon momentum, p, q are the momentum
components along the magnetic field direction and indices
j, k = 0, 1, 2, . . . label the discrete Landau levels in the
reaction plane. The Landau levels are given by

εj =
√

m2 + p2 + 2jef B , εk =
√

m2 + q2 + 2kef B .

(2)

In the constant magnetic field only momentum component
along the field direction is conserved. Thus, the conservation
laws for synchrotron radiation read

εj = ω + εk , p = q + ω cos θ , (3)

where ω is the photon energy and θ is the photon emission
angle with respect to the magnetic field. Intensity of the
synchrotron radiation was derived in [38]. In [39–42] it was
thoroughly investigated as a possible mechanism for γ -ray
bursts. In particular, synchrotron radiation in electromagnetic
plasmas was calculated. Spectral intensity of angular distribu-
tion of synchrotron radiation by a fermion in the j th Landau
state is given by

dI j

dωd�
=

∑
f

z2
f α

π
ω2

j∑
k=0

	jk{|M⊥|2 + |M‖|2}

× δ(ω − εj + εk), (4)

where 	jk = (1 + δj0)(1 + δk0) accounts for the double degen-
eration of all Landau levels except the ground one. The squares
of matrix elements M, which appear in Eq. (4), corresponding

to photon polarization perpendicular and parallel to the
magnetic field are given by, respectively,

4εj εk|M⊥|2 = (εj εk − pq − m2)
[
I 2
j,k−1 + I 2

j−1,k

]
+ 2

√
2jef B

√
2kef B[Ij,k−1Ij−1,k], (5)

4εj εk|M‖|2
= cos2 θ

{
(εj εk − pq − m2)

[
I 2
j,k−1 + I 2

j−1,k

]
− 2

√
2jef B

√
2kef B[Ij,k−1Ij−1,k]

}
− 2 cos θ sin θ{p√

2kef B[Ij−1,kIj−1,k−1 + Ij,k−1Ij,k]

+ q
√

2jef B[Ij,kIj−1,k + Ij−1,k−1Ij,k−1]}
+ sin2 θ

{
(εj εk + pq − m2)

[
I 2
j−1,k−1 + I 2

j,k

]
+ 2

√
2jef B

√
2kef B(Ij−1,k−1Ij,k)

}
, (6)

where for j � k,

Ij,k ≡ Ij,k(x) = (−1)j−k

√
k!

j !
e− x

2 x
j−k

2 L
j−k
k (x). (7)

and Ij,k(x) = Ik,j (x) when k > j . (Ij,−1 are identically zero).
The functions L

j−k
k (x) are the generalized Laguerre polyno-

mials. Their argument is

x = ω2

2ef B
sin2 θ . (8)

Angular distribution of radiation is obtained by integrating
over the photon energies and remembering that εk also depends
on ω by virtue of Eqs. (2) and (3):

dI j

d�
=

∑
f

z2
f α

π

j∑
k=0

ω∗(εj − ω∗)

εj − p cos θ − ω∗ sin2 θ
	jk

×{|M⊥|2 + |M‖|2} , (9)

where photon energy ω is fixed to be

ω∗ = 1

sin2 θ
{(εj − p cos θ ) − [(εj − p cos θ )2

− 2ef B(j − k) sin2 θ ]1/2} . (10)

In the context of heavy-ion collisions the relevant observable
is the differential photon spectrum. For ideal plasma in
equilibrium each quark flavor gives the following contribution
to the photon spectrum:

dN synch

dtd�dω
=

∑
f

∫ ∞

−∞
dp

ef B(2Nc)V

2π2

∞∑
j=0

j∑
k=0

dI j

ωdωd�

× (2 − δj,0)f (εj )[1 − f (εk)] , (11)

where 2Nc accounts for quarks and antiquarks each of Nc

possible colors, and (2 − δj,0) sums over the initial quark spin.
Index f indicates different quark flavors. V stands for the
plasma volume. The statistical factor f (ε) is

f (ε) = 1

eε/T + 1
. (12)
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The δ function appearing in Eq. (4) can be rewritten using
Eqs. (2) and (3) as

δ(ω − εj + εk) =
∑
±

δ(p − p∗
±)∣∣ p

εj
− q

εk

∣∣ , (13)

where

p∗
± = {

cos θ
(
m2

j − m2
k + ω2 sin2 θ

)
±

√
[(mj + mk)2 − ω2 sin2 θ ][(mj − mk)2 −ω2 sin2 θ ]

}
/

(2ω sin2 θ ) . (14)

The following convenient notation was introduced:

m2
j = m2 + 2jef B , m2

k = m2 + 2kef B . (15)

The physical meaning of Eq. (14) is that synchrotron radiation
of a photon with energy ω at angle θ by a fermion undergoing
transition from j th to kth Landau level is possible only if the
initial quark momentum along the field direction equals p∗

±.
Another consequence of the conservation laws (3) is that

for a given j and k the photon energy cannot exceed a certain
maximal value that will be denoted by ωs,jk . Indeed, inspection
of Eq. (14) reveals that this equation has a real solution only
in two cases

(i) mj − mk � ω sin θ or (ii) mj + mk � ω sin θ . (16)

The first case is relevant for the synchrotron radiation while the
second one for the one-photon pair annihilation as discussed
in the next section. Accordingly, allowed photon energies in
the j → k transition satisfy

ω � ωs,jk ≡ mj − mk

sin θ
=

√
m2 + 2jef B − √

m2 + 2kef B

sin θ
.

(17)

No synchrotron radiation is possible for ω > ωs,jk . In partic-
ular, when j = k, ωs,jk = 0, i.e., no photon is emitted, which
is also evident in Eq. (10). The reason is clearly seen in the
frame where p = 0: since εj � εk , constraints (2) and (3) hold
only if ω = 0.

Substitution of Eq. (4) into Eq. (11) yields the spectral
distribution of the synchrotron radiation rate per unit volume

dN synch

V dtd�dω
=

∑
f

2Ncz
2
f α

π3
ef B

∞∑
j=0

j∑
k=0

ω(1 + δk0)

×ϑ(ωs,ij − ω)
∫

dp
∑
±

δ(p − p∗
±)∣∣ p

εj
− q

εk

∣∣
×{|M⊥|2 + |M‖|2}f (εj )[1 − f (εk)] , (18)

where ϑ is the step function.
The natural variables to study the synchrotron radiation are

the photon energy ω and its emission angle θ with respect to
the magnetic field. However, in high energy physics particle
spectra are traditionally presented in terms of rapidity y (which
for photons is equivalent to pseudorapidity) and transverse
momentum k⊥. k⊥ is a projection of three-momentum k onto
the transverse plane. These variables are not convenient to
study electromagnetic processes in external magnetic field. In
particular, they conceal the azimuthal symmetry with respect
to the magnetic field direction. To change variables, let z be
the collision axis and ŷ be the direction of the magnetic field.
In spherical coordinates photon momentum is given by k =
ω(sin α cos φ x̂ + sin α sin φ ŷ + cos α ẑ), where α and φ are
the polar and azimuthal angles with respect to the z axis. The
plane xz is the reaction plane. By definition, k̂ · ŷ = cos θ
implying that cos θ = sin α sin φ. Thus,

k⊥ =
√

k2
x + k2

y = ω cos θ

sin φ
, y = − ln tan

α

2
. (19)

The second of these equations is the definition of
(pseudo)rapidity. Inverting Eq. (19) yields

ω = k⊥ cosh y , cos θ = sin φ

cosh y
. (20)

Because dy = dkz/ω the photon multiplicity in a unit volume
per unit time reads

dN synch

dV dt d2k⊥dy
= ω

dN synch

dV dt d3k
= dN synch

dV dt ωdωd�
. (21)

Figure 1 displays the spectrum of synchrotron radiation
by u quarks as a function of k⊥ at fixed φ. At midrapidity
y = 0 Eq. (20) implies that k⊥ = ω. The contribution of d and
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FIG. 1. (Color online) Spectrum of synchrotron radiation by u quarks at eB = m2
π , y = 0, φ = π/3: (a) contribution of ten lowest Landau

levels j � 10; several cutoff frequencies are indicated; (b) summed over all Landau levels. mu = 3 MeV, T = 200 MeV.
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FIG. 2. (Color online) Azimuthal distribution of synchrotron
radiation by u quarks at k⊥ = 0.2 GeV, eB = m2

π , y = 0. mu =
3 MeV.

s quarks is qualitatively similar. At eB 	 m2, quark masses
do not affect the spectrum much. The main difference stems
from the difference in electric charge. In panel (a) only the
contributions of the first ten Landau levels are displayed.
The cutoff frequencies ωs,jk can be clearly seen and some of
them are indicated on the plot for convenience. The azimuthal
distribution is shown in Fig. 2. Note, that at midrapidity
φ = π/2 − θ . Therefore, the figure indicates that photon
production in the direction of magnetic field (at φ = π/2)
is suppressed. More photons are produced in the direction of
the reaction plane φ = 0. This results in the ellipticity of the
photon spectrum that translates into the positive “elliptic flow”
coefficient v2. It should be noted, that the classical synchrotron
radiation has a similar angular distribution.

In order to compare the photon spectrum produced by
synchrotron radiation to the photon spectrum measured in
heavy-ion collisions, the u, d, and s quarks contributions were
summed up. Furthermore, the experimental data from [36] was
divided by V t , where t is the magnetic field relaxation time.
The volume of the plasma can be estimated as V = πR2t with
R ≈ 5 fm being the nuclear radius. Therefore,

dN
γ
exp

dV dt d2k⊥dy
= dN

γ
exp

d2k⊥dy

1

πR2t2

= dN
γ
exp

d2k⊥dy

(
GeV

14.9

)4 (
1 fm

t

)2

. (22)

The results are plotted in Fig. 3. In panel (a) it is seen that
synchrotron radiation gives a significant contribution to the
photon production in heavy-ion collisions at RHIC energy.
This contribution is larger at small transverse momenta. This
may explain enhancement of photon production observed
in [36]. Panel (b) indicates the increase of the photon spectrum
produced by the synchrotron radiation mechanism at the
LHC energy. This increase is due to enhancement of the
magnetic field strength, but mostly because of increase of
plasma temperature. This qualitative features can be better
understood by considering the limiting cases of low and high
photon energies.

A. Low photon energy

The low energy part of the photon spectrum satisfies
the condition ω � √

ef B. The corresponding initial quark
momentum component along the field p and energy εj follow
from Eqs. (14) and (2) and are given by

p∗
± ≈ (j − k)ef B(cos θ ± 1)

ω sin2 θ
+ O(ω) ,

(23)
εj ≈ |p∗

±| + O(ω) .

Evidently, εj 	 eB. In practice, the magnetic field strength
satisfies

√
eB � T , so that εj 	 T . Therefore, synchrotron

radiation is dominated by fermion transitions from low Landau
levels due to the statistical factors appearing in Eq. (11).

For a qualitative discussion it is sufficient to consider the
1 → 0 transition. In this case the matrix elements (5) and (6)
read

|M1,0|2 = 1

2ε1ε0

{
I 2

1,0(ε1ε0 − pq cos2 θ − m2)

+ cos θ sin θq
√

2ef BI1,0I0,0
}
. (24)

Assuming that the field strength is supercritical, i.e., ef B 	
m2, but keeping all powers of ω (for future reference) Eq. (14)
reduces to

p∗
± ≈ 1

2ω sin2 θ
{2ef B(cos θ ± 1) + ω2 sin2 θ (cos θ ∓ 1)} .

(25)
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FIG. 3. (Color online) Azimuthal average of the synchrotron radiation spectrum of u,d ,s quarks and their corresponding antiquarks. (a)
eB = m2

π , y = 0 compared to the experimental data from [36] divided by V t = 25π fm4 (dots) and V t = 9 × 25π fm4 (stars), (b) eB = m2
π ,

T = 200 MeV, y = 0 (solid line) compared to eB = 15m2
π , T = 400 MeV, y = 0 (dashed line). mu = 3 MeV, md = 5 MeV, ms = 92 MeV.
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Furthermore, using the conservation laws (3) we obtain in this
approximation

ε1± = 1

2ω sin2 θ
|2ef B(cos θ ± 1) − ω2 sin2 θ (cos θ ∓ 1)| ,

(26)

q± = 1

2ω sin2 θ
(2ef B − ω2 sin2 θ )(cos θ ± 1) , (27)

ε0± = |q| . (28)

The values of the nonvanishing matrix elements Ij,k defined
by Eq. (7) are

I1,0(x) = −x1/2e−x/2 , I0,0(x) = e−x/2 . (29)

For j = 1, k = 0 we write using Eq. (17) ωs,10 =√
2ef B/ sin θ . Then Eq. (8) implies x = ω2/ω2

s,10. Substitut-
ing Eqs. (25)–(29) into Eq. (24) gives

|M1,0
± |2 = 1

2
xe−x

[
1 − cos θ (1 + x) ± (1 − x)

cos θ (1 − x) ± (1 + x)
cos2 θ

− 2(1 − x) cos θ sin2 θ

cos θ (1 − x) ± (1 + x)

]
. (30)

According to Eq. (18) the contribution of the 1 → 0 transition
to the synchrotron radiation reads

dN synch,10

V dtd�dω
=

∑
f

2Ncz
2
f α

π
ω	

ef B

2π2

∑
±

f (ε1)

× [1 − f (ε0)]|M1,0
± |2 (1 − x) cos θ ± (1 + x)

−2x(cos θ ∓ 1)
×ϑ(ωs,10 − ω) . (31)

Consider radiation spectrum at θ = π/2, i.e., perpendicular
to the magnetic field. The spectrum increases with x and
reaches maximum at x = 1. Since x = ω2/(2ef B), spectrum
decreases with increase of B at fixed ω. This feature holds at
low x part of the spectrum for other emission angles and even
for transitions form higher excited states. However, at high
energies, it is no longer possible to approximate the spectrum
by the contribution of a few low Landau levels. In that case the
typical values of quantum numbers are j, k 	 1. For example,
to achieve the numerical accuracy of 5%, sum over j must
run up to a certain jmax. Some values of jmax are listed in
Table I.

B. High photon energy

The high energy tail of the photon spectrum is quasiclassical
and approximately continuous. In this case the Laguerre
polynomials can be approximated by the Airy functions or
the corresponding modified Bessel functions. The angular
distribution of the spectrum can be found in [39]:

dN synch

V dtd�dω
=

∑
f

z2
f α

π

nf ωm2

4T 3

√
ef BT sin θ

m3
e−ω/T , (32)

TABLE I. The upper summation limit in Eq. (18) that yields the
5% accuracy. jmax is the highest Landau level of the initial quark
that is taken into account at this accuracy. Throughout the table
y = 0.

f u u u u u u s u u s

eB/m2
π 1 1 1 1 1 1 1 15 15 15

T , GeV 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4

φ π
3

π
3

π
3

π
3

π
6

π
12

π
3

π
3

π
3

π
3

k⊥, GeV 0.1 1 2 3 1 1 1 1 2 1

x 0.096 9.6 38 86 29 35 19 0.64 2.6 1.3

jmax 30 40 90 150 120 200 90 8 12 16

provided that ω 	 m
√

mT/ef B sin θ . Here nf is number
density of flavor f , which is independent of B:

nf = 2 · 2Nc ef B

4π2

∞∑
j=0

∫ ∞

−∞
dp e−εj /T ≈ 4Nc

π2
T 3 . (33)

Here summation over j was replaced by integration. It follows
that this part of the spectrum increases with magnetic field
strength as

√
B and and with temperature as

√
T e−ω/T .

Therefore, variation of the spectrum with T is much stronger
than with B. The T dependence is shown in Fig. 4.

Unlike time-dependence of the magnetic field, time-
dependence of temperature is non-negligible even during the
first few fm/c. Final synchrotron spectrum, which is an average
over all temperatures, is dominated by high temperatures/early
times. However, the precise form of time-dependence of
temperature is model-dependent. Therefore, the spectrum is
presented at fixed temperatures, so that a reader can appreciate
its qualitative features in a model-independent way.

III. PAIR ANNIHILATION

The theory of one-photon pair annihilation was developed
in [43,44]. It was shown in [45] that in the supercritical
regime eB 	 m2 one-photon annihilations is much larger than
the two-photon annihilation. In this section the one-photon
annihilation of q and q̄ pairs in the QGP is calculated.
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FIG. 4. (Color online) Variation of the synchrotron spectrum with
plasma temperature. Lower line: T = 200 MeV, upper line: T =
250 MeV. Other parameters are the same as in Fig. 3(a).
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FIG. 5. (Color online) Photon spectrum in one-photon annihilation of u and ū quarks. eB = m2
π , y = 0. (a) k⊥ spectrum at φ = π/3, (b)

azimuthal angle distribution at k⊥ = 1 GeV.

For qq̄ pair annihilation the conservation of energy and
momentum is given by

εj + εk = ω , p + q = ω cos θ . (34)

The spectral density of the annihilation rate per unit volume
reads

dN annih

V dtdωd�
=

∑
f

αz2
f ωNc

4πef B

∞∑
j=0

∞∑
k=0

∫
dp

2ef B

2π2
f (εj )

×
∫

dq
2ef B

2π2
f (εk)δ(p + q − ω cos θ )

× δ(εj + εk − ω){|T⊥|2 + |T‖|2} , (35)

where the matrix elements T can be obtained from Eqs. (5),(6)
by making substitutions εk → −εk , q → −q and are given by

4εj εk|T⊥|2 = (εj εk − pq + m2)
[
I 2
j,k−1 + I 2

j−1,k

]
− 2

√
2jef B

√
2kef B[Ij,k−1Ij−1,k], (36)

4εj εk|T‖|2 = cos2 θ
{
(εj εk − pq + m2)

[
I 2
j,k−1 + I 2

j−1,k

]
+ 2

√
2jef B

√
2kef B[Ij,k−1Ij−1,k]

}
− 2 cos θ sin θ{−p

√
2kef B[Ij−1,kIj−1,k−1

+ Ij,k−1Ij,k] + q
√

2jef B

× [Ij,kIj−1,k + Ij−1,k−1Ij,k−1]}
+ sin2 θ

{
(εj εk + pq + m2)

[
I 2
j−1,k−1 + I 2

j,k

]
− 2

√
2jef B

√
2kef B(Ij−1,k−1Ij,k)

}
, (37)

with the same functions Ii,j as in Eq. (7). Integration over
q removes the δ function responsible for the conservation of
momentum along the field direction. The remaining δ function
is responsible for energy conservation and can be written in
exactly the same form as in Eq. (13) with particle energies
and momenta now obeying the conservation laws (34). It is
straightforward to see that momentum p∗

± is still given by
Eqs. (14),(15). The photon spectrum produced by annihilation
of quark in state j with antiquark in state k has a threshold
ωa,ij that is given by case (ii) in Eq. (16):

ω � ωa,ij = mj + mk

sin θ
=

√
m2 + 2jef B + √

m2 + 2kef B

sin θ
.

(38)

Thus, the spectral density of the annihilation rate per unit
volume is

dN annih

V dtdωd�
=

∑
f

αz2
f ωNc

4π5
ef B

∞∑
j=0

∞∑
k=0

ϑ(ω − ωa,ij )

×
∫

dp
∑
±

δ(p − p∗
±)∣∣ p

εj
− q

εk

∣∣ {|T⊥|2 + |T‖|2}

× f (εj )f (εk) . (39)

Passing to y and p⊥ variables in place of ω and θ is similar to
Eq. (21).

The results of the numerical calculations are represented
in Fig. 5. Panel (a) shows the spectrum of photons radiated
in annihilation of u and ū. We conclude that contribution
of the annihilation channel is negligible as compared to the
synchrotron radiation.

IV. CONCLUSIONS

Results of the calculations performed in this article indicate
that photon production by QGP due to its interaction with
external magnetic field give a considerable contribution to
the total photon multiplicity in heavy-ion collisions. This
is seen in Fig. 3 were the model calculation is compared
with the experimental data [36]. The two processes were
considered: synchrotron radiation and pair annihilation. In the
kinematic region relevant for the current high energy heavy-ion
experiments, contribution of the synchrotron radiation is about
two orders of magnitude larger than that of pair annihilation.
The largest contribution to the photon multiplicity arises from
photon momenta of the order of

√
eB. This may provide an

explanation of the photon excess observed by the PHENIX
experiment [36]. Similar mechanism is also responsible for
enhancement of low mass dilepton production that proceeds
via emission of virtual photon which subsequently decays into
dilepton pair. We plan to address this problem in a forthcoming
article.

One possible way to ascertain the contribution of electro-
magnetic radiation in external magnetic field is to isolate
the azimuthally symmetric component with respect to the
direction of the magnetic field. It seems that synchrotron
radiation dominates the photon spectrum at low k⊥. Thus,
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azimuthal symmetry can be easily checked by simply plotting
the multiplicity vs ω, θ and ϕ, where ω is photon energy,
θ is emission angle with respect to the magnetic field and
ϕ is azimuthal angle around the magnetic field direction
(which is perpendicular both to the collision axis and to
the impact parameter). In Fig. 1(a) it is also seen that in
these variables it may be possible to discern the cutoff
frequencies ωs,jk that appear as resonances (in Fig. 1 y = 0
so k⊥ = ω). Note that averaging over the azimuthal angle α
around the collision axis direction destroys these features, see
Fig. 3.

The greatest source of uncertainty in the present calculation
stems from treating the magnetic field as constant. It is
inevitable that it has spatial [5] and temporal variations, which
will modify the photon spectrum. Analytical calculations of
these effects present a serious challenge, but may be tackled
in the quasi-classical approximation. Novel computational
techniques, such as discussed in [46] is another promising
avenue for investigating the particle production in external
fields.
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APPENDIX: MAGNETIC COMPONENT OF THE QGP
ENERGY DENSITY

Energy density associated with magnetic field is (in Gauss
units)

εM = (eB)2/(8πα) . (A1)

Assume that the effect of magnetic field on the QGP is weak
and its energy density is much smaller than the total QGP
energy density εM � εQGP. Then energy density of ideal QGP
containing Nf quark flavors at temperature T is given by

εQGP = π2

30
T 4

(
2
(
N2

c − 1
) + 7

8
4NcNf

)
. (A2)

With Nc = 3, Nf = 2 we arrive at the following ratio:

εM

εQGP
= 0.45

(eB)2

T 4
. (A3)

At RHIC eB ∼ m2
π and T ∼ 2mπ , so that at early times about

3% of energy density of plasma resides in the magnetic field.
At LHC, eB ∼ 15m2

π and T ∼ 4mπ so that as much as 40%
is stored in magnetic field! This signals that magnetic field
plays a crucial role in QGP dynamics at LHC energies.
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