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Analysis of the nuclear potential for heavy-ion systems through large-angle quasi-elastic scattering
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A study on the surface diffuseness parameter of the nuclear potential for the reactions of 208Pb with 48Ti,
54Cr, 56Fe, 64Ni, and 70Zn is performed using large-angle quasi-elastic scattering experimental data. Diffuseness
parameters that are considerably lower than the standard value of around 0.63 fm are required in order to fit the
experimental data at deep sub-barrier energies, except for the 54Cr + 208Pb system, where the required diffuseness
parameter is in satisfactory agreement with (but still lower than) the standard value. Furthermore, when the
energies of the experimental data used in the fittings are increased from the deep sub-barrier region to the
energies closer to the Coulomb barrier height, the best fitted diffuseness parameters also increase. The increase
in the obtained diffuseness parameters as the energies are increased also seems to have a possible tendency to
be a function of the charge product of the target and projectile nuclei. We find that the phenomenon of threshold
anomaly might explain our findings here. The increase in the diffuseness parameters could also due to dynamical
effects, for example, due to neutron movements.

DOI: 10.1103/PhysRevC.87.024611 PACS number(s): 25.70.Bc, 21.30.Fe, 24.10.Eq

I. INTRODUCTION

The understanding of the nuclear potential is important
in order to describe nucleus-nucleus collisions. The nuclear
potential can be studied through both fusion and quasi-elastic
scattering. Quasi-elastic scattering is the sum of elastic scat-
tering, inelastic scattering, and nucleon transfer process. Thus,
quasi-elastic scattering and fusion are complementary to each
other. Large-angle quasi-elastic scattering has been shown to
be a valuable way to study the nuclear potential, particularly
since large-angle quasi-elastic scattering cross sections are
easier and more efficient to be measured experimentally
compared to fusion cross sections.

The nuclear potential of the Woods-Saxon form is widely
used, and is given by

VN (r) = −V0

1 + exp[(r − R0)/a]
, (1)

where V0 is the potential depth, a is the surface diffuseness
parameter, and R0 = r0(A1/3

T + A
1/3
P ), where r0 is the radius

parameter, while AT and AP are the mass numbers of the
target and the projectile, respectively. A surface diffuseness
parameter of around 0.63 fm is widely accepted [1]. This
is supported by recent studies [2–4], where the analyses on
the diffuseness parameter were performed using large-angle
quasi-elastic scattering experimental data. However, relatively
higher diffuseness parameters were required in order to fit
fusion experimental data [5]. The cause of the discrepancy
is still unclear. More investigations are certainly required in
order to further understand the nuclear potential for heavy-ion
systems.

At deep sub-barrier energies, channel couplings, which are
the couplings between the relative motion and the internal
degrees of freedom such as the rotational and vibrational states
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of the colliding nuclei, weakly influence a nucleus-nucleus
collision. Therefore, channel couplings can be justifiably
omitted in analyses at deep sub-barrier energies. According
to Ref. [2], this is true only for spherical collision systems. All
of our studied systems here are spherical, hence, neglecting
channel couplings at deep sub-barrier energies should be
acceptable. Neglecting channel coupling would simplify the
calculations, and could avoid numerical instabilities which
would affect the accuracy of the calculations.

Washiyama et al. [4] has pointed out that at deep sub-barrier
energies, the deviation of the elastic cross sections from the
Rutherford cross sections at backward angles is sensitive to
the surface region of the nuclear potential, particularly to the
surface diffuseness parameter. Thus, an accurate value of the
diffuseness parameter could be determined by using large-
angle quasi-elastic scattering experimental data at deep sub-
barrier energies. However, this could also represent a drawback
since small errors in the experimental data could significantly
affect the deduced diffuseness parameter. Nonetheless, it is
certainly attractive and advantageous to study the diffuseness
parameter through large-angle quasi-elastic scattering at deep
sub-barrier energies.

In order to make a comprehensive study on the diffuseness
parameter, it could be important to make comparisons, for
example, between the diffuseness parameters obtained for
different charge products of the target and projectile. In light
of this, we will perform analyses on the diffuseness parameter
at deep sub-barrier energy region and also at another energy
region in order to see the effect of collision energies on the
deduced diffuseness parameter.

In this article, we carry out a study on the nuclear potential,
particularly on the diffuseness parameter, for some heavy-ion
systems, namely, the 48Ti, 54Cr, 56Fe, 64Ni, and 70Zn + 208Pb
systems, through large-angle quasi-elastic scattering. The
procedures of the analyses are explained in Sec. II. In Secs. III
and IV, we present the results and the discussion, respectively.
The article is then summarized in Sec. V.
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II. PROCEDURES

The calculations of the quasi-elastic cross sections are
performed using CQEL [6], which is a modified version of
the computer code CCFULL [7]. In order to find the best fitted
value of the diffuseness parameter in comparison with the
experimental data, the chi square method χ2 is used. The
experimental data are taken from Ref. [8].

The inclusion of channel couplings in our calculations cre-
ates numerical instabilities in varying degrees, which depend
on the calculation inputs. This would affect the accuracy of
the analyses. Using the computer code, we check and find that
quasi-elastic cross sections at energies below the Coulomb
barrier height are less influenced by channel couplings and
by different coupling schemes compared to quasi-elastic cross
sections at energies above the barrier height. Therefore, in
order to maximize the accuracy of our analyses, we choose
to study and compare the diffuseness parameters obtained at
two different energy regions where both regions are below the
barrier height.

First, we perform analyses at the deep sub-barrier energy
region. For these analyses, only the experimental data with
dσqel/dσR � 0.94 should be included in the fittings [4], where
dσqel/dσR is the ratio of the quasi-elastic to the Rutherford
cross sections. Here, we also apply this procedure. As shown
later in Sec. III, relatively low values of the diffuseness
parameter are needed in order to analyze the experimental data
at deep sub-barrier energies. Low values of the diffuseness
parameter would produce significant numerical instabilities
in the calculations when channel couplings are taken into
account, which is undesirable. More importantly, since channel
couplings can be neglected at deep sub-barrier energies, we
only perform single-channel calculations in the analyses at
deep sub-barrier energies.

Second, we perform analyses at what we refer to as the
sub-barrier energy region where all the experimental data
up to 3 MeV below the Coulomb barrier height VB are
considered in the fittings. For each system in this study, the
limit of 3 MeV below the barrier height VB corresponds to
energies between 0.98VB and 0.99VB . Both single-channel and
coupled-channels calculations are performed in the analyses at
sub-barrier energies. The experimental data with dσqel/dσR >
1 are excluded in all fitting procedures, but included in the
figures for completeness.

In our calculations, we use an imaginary potential of the
Woods-Saxon form with a potential depth of 30 MeV, a radius
parameter of 1.0 fm, and a diffuseness parameter of 0.3 fm
to simulate compound nucleus formation. The calculations
are insensitive to the imaginary parameters provided that the
imaginary potential is confined inside the Coulomb barrier.
For the real part of the nuclear potential, the radius parameter
r0 is taken to be 1.22 fm. The value of the potential depth V0

depends on the diffuseness parameter a, where the Coulomb
barrier height VB for each system must be reproduced. The
calculations are carried out at a scattering angle of θc.m. =
170◦. The radii of the target and the projectile are taken as
RT = rT A

1/3
T and RP = rP A

1/3
P , respectively, with rT and rP

taken to be 1.2 fm in order to be consistent with the deformation
parameters taken from Refs. [9] and [10]. In order to ensure that

TABLE I. The properties of the single-phonon state for each
nucleus. I , π , h̄ω, and β are the angular momentum, parity, excitation
energy, and dynamical deformation parameter of the phonon state,
respectively.

Nucleus Iπ h̄ω (MeV) β

208Pb 3− 2.614 0.110a

48Ti 2+ 0.983 0.269b

54Cr 2+ 0.834 0.250b

56Fe 2+ 0.846 0.239b

64Ni 2+ 1.346 0.179b

70Zn 2+ 0.884 0.228b

aFrom Ref. [9].
bFrom Ref. [10].

the calculations are properly scaled according to the available
experimental data, we analyze and plot the calculated ratio of
the quasi-elastic to the Rutherford cross sections as functions
of effective energies Eeff [11,12].

In order to perform coupled-channels calculations, the
excited states of the colliding nuclei must be considered. The
properties of the single-phonon excitation and the deformation
parameter for each nucleus are taken from Refs. [9,10], and
shown in Table I. The deformation parameter is given by

βI = 4π

3ZRI
C

[
B(EI ) ↑

e2

]1/2

, (2)

where I is the multipolarity, which is associated with the
angular momentum of the excited state, B(EI ) ↑ is the electric
transition probability, Z is the atomic number, e is the proton
charge, and RC = rCA1/3, where rC is the Coulomb radius
parameter and is taken to be the same as the rT and rP , while
A is the mass number.

Table II shows the coupling scheme used in the coupled-
channels calculations and the Coulomb barrier height for
each system (taken from Ref. [13]). For the 54Cr, 56Fe, and
64Ni + 208Pb systems, we use triple-quadrupole phonon and
triple-octupole phonon excitations in the projectiles and the
targets, respectively. As found by Ref. [14] for the 54Cr + 208Pb
system, we find that the mentioned coupling scheme fits
the experimental data better than double-quadrupole phonon
excitations in the projectiles and triple-octupole phonon
excitations in the targets as found by Ref. [13]. For the 48Ti

TABLE II. The coupling scheme used in the coupled-channels
calculations and the Coulomb barrier height VB for each collision sys-
tem (taken from Ref. [13]). nP represents the number of quadrupole
phonon excitations used in the projectile, while nT represents the
number of octupole phonon excitations used in the target.

System [nP ,nT ] VB (MeV)

48Ti + 208Pb [1,3] 190.50
54Cr + 208Pb [3,3] 205.50
56Fe + 208Pb [3,3] 222.50
64Ni + 208Pb [3,3] 236.25
70Zn + 208Pb [2,3] 249.30
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and 70Zn + 208Pb systems, the coupling schemes are taken to
be same as found by Ref. [13].

III. RESULTS

A. 48Ti + 208Pb system

The best fitted diffuseness parameter for the 48Ti + 208Pb
system obtained at deep sub-barrier energies through a
single-channel calculation is 0.40 fm. The value is clearly
considerably lower than the standard value of around 0.63 fm.
The calculated ratio of the quasi-elastic to the Rutherford
cross sections using a = 0.40 fm is shown by the solid line in
Fig. 1. The χ2 value for the best fitted diffuseness parameter
in comparison with the experimental data is 0.20, and the
required potential depth to reproduce the barrier height is
303.5 MeV.

At sub-barrier energies, the best fitted diffuseness parameter
obtained using a single-channel calculation is 0.66 fm, with
χ2 = 3.21 and V0 = 82.6 MeV. This value is consistent with
the standard value. The solid line in Fig. 2(a) shows the calcu-
lated ratio of the quasi-elastic to the Rutherford cross sections
for a = 0.66 fm using a single-channel calculation. At energies
above the deep sub-barrier region, channel couplings start to
play an important role, and should be included in the analysis
at sub-barrier energies. Using the coupling scheme as shown
in Table II, the best fitted diffuseness parameter obtained at
sub-barrier energies through a coupled-channels calculation
is 0.43 fm [shown by the solid line in Fig. 2(b)], with
χ2 = 1.52 and V0 = 233.5 MeV. The diffuseness parameter
is considerably lower than the standard value. However, from
the resulting χ2 values, the best fitted diffuseness parameter
at sub-barrier energies obtained using a coupled-channels
calculation fits the experimental data better than the one
obtained using a single-channel calculation. Therefore, for
the analysis at sub-barrier energies, the best fitted diffuseness
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FIG. 1. The ratio of the quasi-elastic to the Rutherford cross
sections for the 48Ti + 208Pb system at deep sub-barrier energies. The
experimental data (taken from Ref. [8]) with dσqel/dσR � 0.94 are
shown and denoted by dots with error bars. The best fitted diffuseness
parameter is 0.40 fm, shown by the solid line. The calculation using
a = 0.50 fm is shown for comparison.
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FIG. 2. The ratio of the quasi-elastic to the Rutherford cross sec-
tions for the 48Ti + 208Pb system at sub-barrier energies. The analyses
in (a) the upper and (b) the lower panels are performed using single-
channel and coupled-channels calculations, respectively. The experi-
mental data (taken from Ref. [8]) with energies up to 3 MeV below the
Coulomb barrier height are shown and denoted by dots with error bars.
The best fitted diffuseness parameters obtained using single-channel
and coupled-channels calculations are 0.66 and 0.43 fm, respectively.
The single-channel and coupled-channels calculations using a = 0.75
and 0.65 fm, respectively, are shown for comparison.

parameter obtained through a coupled-channels calculation
should be accepted over the one obtained through a single-
channel calculation, which is expected.

B. 54Cr + 208Pb system

The best fitted diffuseness parameter for the 54Cr + 208Pb
system obtained at deep sub-barrier energies through a single-
channel calculation is 0.56 fm, which is in good agreement
with the standard value. The χ2 value for the best fitted
diffuseness parameter in comparison with the experimental
data is 0.18, and the required potential depth to reproduce the
barrier height is 114.5 MeV. The calculated ratio of the quasi-
elastic to the Rutherford cross sections using a = 0.56 fm is
shown by the solid line in Fig. 3.

At sub-barrier energies, the best fitted diffuseness parameter
obtained using a single-channel calculation is 0.80 fm, with
χ2 = 2.05 and V0 = 69.84 MeV. The best fitted diffuseness
parameter is considerably higher than the standard value.
The solid line in Fig. 4(a) shows the calculated ratio of the
quasi-elastic to the Rutherford cross sections for a = 0.80 fm
using a single-channel calculation. When a coupled-channels
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FIG. 3. Same as Fig. 1, but for the 54Cr + 208Pb system. The best
fitted diffuseness parameter is 0.56 fm, shown by the solid line. The
calculation using a = 0.65 fm is shown for comparison.

calculation is used, the best fitted diffuseness parameter
obtained at sub-barrier energies is 0.63 fm [shown by the solid
line in Fig. 4(b)], with χ2 = 1.36 and V0 = 91.7 MeV. The ob-
tained diffuseness parameter is in agreement with the standard
value. As before, the χ2 values show that the best fitted diffuse-
ness parameter obtained through a coupled-channels calcula-
tion fits the experimental data better than the best fitted diffuse-
ness parameter obtained using a single-channel calculation.
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FIG. 4. Same as Fig. 2, but for the 54Cr + 208Pb system. The
best fitted diffuseness parameters obtained using single-channel and
coupled-channels calculations are 0.80 and 0.63 fm, respectively. The
single-channel and coupled-channels calculations using a = 0.70 and
0.55 fm, respectively, are shown for comparison.
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FIG. 5. The ratio of the quasi-elastic to the Rutherford cross
sections for the 56Fe + 208Pb system at deep sub-barrier energies.
The experimental data (taken from Ref. [8]) with dσqel/dσR �
0.94 and 0.94 > dσqel/dσR � 0.90 are denoted by dots and tri-
angles with error bars, respectively. The best fitted diffuseness
parameters obtained through single-channel calculations using the
data with dσqel/dσR � 0.94 and dσqel/dσR � 0.90 are 0.38 and
0.49 fm, respectively, shown by the solid line and the dashed line,
respectively.

C. 56Fe + 208Pb system

For the 56Fe + 208Pb system, the best fitted diffuseness
parameter at deep sub-barrier energies using a single-channel
calculation is 0.38 fm, which is significantly lower than the
standard value. The χ2 value for the best fitted diffuseness
parameter in comparison with the experimental data is 0.17.
The value of the potential depth required to reproduce the
barrier height is 355.5 MeV. The calculated ratio of the
quasi-elastic to the Rutherford cross sections for a = 0.38 fm
using a single-channel calculation is shown by the solid line
in Fig. 5.

It can be seen in Fig. 5 that there are only four data
points available when the analysis is performed using the
experimental data with dσqel/dσR � 0.94. If we include all
the experimental data with dσqel/dσR � 0.90 in the fitting,
the best fitted diffuseness parameter obtained using a single-
channel calculation is 0.49 fm, with χ2 = 0.76 and V0 =
156 MeV. This is shown by the dashed line in Fig. 5. The
obtained diffuseness parameter is still quite low compared to
the standard value of around 0.63 fm.

At sub-barrier energies, the best fitted diffuseness parameter
using a single-channel calculation is 0.76 fm, with χ2 = 3.85
and V0 = 74.9 MeV. The obtained diffuseness parameter is
rather high compared to the standard value. The solid line
in Fig. 6(a) shows the calculated ratio of the quasi-elastic to
the Rutherford cross sections for a = 0.76 fm using a single-
channel calculation. Using a coupled-channels calculation,
the best fitted diffuseness parameter obtained at sub-barrier
energies is 0.59 fm, with χ2 = 1.66 and V0 = 103.6 MeV.
The value of the diffuseness parameter is in agreement with the
standard value. The solid line in Fig. 6(b) shows the calculated
ratio of the quasi-elastic to the Rutherford cross sections for
a = 0.59 fm using a coupled-channels calculation. Again,
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FIG. 6. Same as Fig. 2, but for the 56Fe + 208Pb system. The
best fitted diffuseness parameters obtained using single-channel and
coupled-channels calculations are 0.76 and 0.59 fm, respectively. The
single-channel and coupled-channels calculations using a = 0.63 and
0.70 fm, respectively, are shown for comparison.

from the obtained χ2 values, a coupled-channels calculation is
more accurate than a single-channel calculation for the analysis
at sub-barrier energies.

D. 64Ni + 208Pb system

The best fitted diffuseness parameter for the 64Ni + 208Pb
system obtained at deep sub-barrier energies through a single-
channel calculation is 0.32 fm, with χ2 = 0.06 and V0 =
752 MeV. The plot for the best fitted diffuseness parameter
is indicated by the solid line in Fig. 7. The obtained value
is significantly lower than the standard value. In order to
reproduce the barrier height, the potential depth also needs
to be relatively high.

At sub-barrier energies, the best fitted diffuseness parameter
for the 64Ni + 208Pb system obtained using a single-channel
calculation is 0.82 fm [shown by the solid line in Fig. 8(a)],
with χ2 = 13.28 and V0 = 73.97 MeV. The obtained diffuse-
ness parameter is clearly considerably higher than the standard
value. When a coupled-channels procedure is employed,
the best fitted diffuseness parameter is 0.66 fm, which is
in agreement with the standard value, with χ2 = 3.99 and
V0 = 89.05 MeV. The solid line in Fig. 8(b) shows the
calculated ratio of the quasi-elastic to the Rutherford cross
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FIG. 7. Same as Fig. 1, but for the 64Ni + 208Pb system. The
best fitted diffuseness parameter obtained using a single-channel
calculation is 0.32 fm, denoted by the solid line. The single-channel
calculation using a = 0.50 fm is shown for comparison.

sections for a = 0.66 fm using a coupled-channels procedure.
It can be seen by comparing Fig. 8(a) with Fig. 8(b) that the
best fitted diffuseness parameter obtained through a coupled-
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FIG. 8. Same as Fig. 2, but for the 64Ni + 208Pb system. The
best fitted diffuseness parameters obtained using single-channel and
coupled-channels calculations are 0.82 and 0.66 fm, respectively. The
single-channel and coupled-channels calculations using a = 0.70 and
0.60 fm, respectively, are shown for comparison.
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FIG. 9. Same as Fig. 1, but for the 70Zn + 208Pb system. The best
fitted diffuseness parameter obtained using a single-channel analysis
is 0.42 fm, denoted by the solid line. The single-channel calculation
using a = 0.55 fm is shown for comparison.

channels procedure fits the experimental better than the best
fitted diffuseness parameter obtained through a single-channel
procedure. This fact is very clearly indicated by the values of
the χ2 obtained from the analyses.

E. 70Zn + 208Pb

At deep sub-barrier energies, the best fitted diffuseness
parameter for the 70Zn + 208Pb system obtained through a
single-channel calculation is 0.42 fm, with χ2 = 0.48 and
V0 = 302.5 MeV. The obtained diffuseness parameter is
significantly lower than the standard value. The calculated
ratio of the quasi-elastic to the Rutherford cross sections for
the best fitted diffuseness parameter is shown by the solid line
in Fig. 9.

At sub-barrier energies, the best fitted diffuseness parameter
for the 70Zn + 208Pb system obtained using a single-channel
procedure is 0.64 fm [shown by the solid line in Fig. 10(a)],
with χ2 = 2.41 and V0 = 105.5 MeV. The obtained dif-
fuseness parameter is in agreement with the standard value.
However, the results for previous systems show that channel
couplings should be considered in the analysis at sub-barrier
energies. Using a coupled-channels calculation, the best
fitted diffuseness parameter for the 70Zn + 208Pb system at
sub-barrier energies is 0.51 fm [shown by the solid line in
Fig. 10(b)], with χ2 = 1.11 and V0 = 168.3 MeV. The best
fitted diffuseness parameter is considerably lower than the
standard value. However, the best fitted diffuseness parameter
at sub-barrier energies obtained through a coupled-channels
analysis again fits the experimental data better than the one
obtained through a single-channel analysis.

IV. DISCUSSION

For all of the studied systems, the best fitted diffuseness
parameters at sub-barrier energies obtained through coupled-
channels and single-channel calculations differ considerably.
In light of this, the best fitted diffuseness parameters obtained
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FIG. 10. Same as Fig. 2, but for the 70Zn + 208Pb system. The
best fitted diffuseness parameters obtained using single-channel and
coupled-channels calculations are 0.64 and 0.51 fm, respectively. The
single-channel and coupled-channels calculations using a = 0.55 and
0.63 fm, respectively, are shown for comparison.

through coupled-channels calculations are taken as the correct
parameters for the analyses at sub-barrier energies since they
produce better fits to the experimental data than the ones
obtained through single-channel calculations. This is actually
expected since the effect of channel couplings is significant
and should be taken into account at energies above the deep
sub-barrier region. For the 56Fe + 208Pb system, the best fitted
diffuseness parameter obtained using the experimental data
with dσqel/dσR � 0.94 is accepted for the analysis at deep
sub-barrier energies, even though there are only four data
points available. This is mainly because channel couplings
might be required in order to analyze the experimental data
with 0.90 � dσqel/dσR < 0.94. Figure 11 summarizes the best
fitted diffuseness parameter as a function of the charge product
of the target and projectile.

At deep sub-barrier energies, the best fitted diffuseness
parameters for all of the studied systems are considerably
lower than the standard value, except for the 54Cr + 208Pb
system, where the best fitted diffuseness parameter can be
considered to be in satisfactory agreement with (but still lower
than) the standard value. At sub-barrier energies, the best fitted
diffuseness parameters for the 54Cr, 56Fe, and 64Ni + 208Pb
systems are in good agreement with the standard value.
However, the best fitted diffuseness parameters at sub-barrier
energies for the 48Ti and 70Zn + 208Pb systems are significantly
low and rather low, respectively, compared to the standard
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FIG. 11. The best fitted diffuseness parameters at deep sub-barrier
energies (denoted by circles) and at sub-barrier energies (denoted by
triangles) as functions of charge products of the target and projectile
ZT ZP . The dashed line indicates a = 0.63 fm.

value. It can be seen from Fig. 11 that the best fitted diffuseness
parameters obtained at sub-barrier energies are generally quite
significantly closer to the standard value compared to the
diffuseness parameters obtained at deep sub-barrier energies.

It is also interesting to observe that higher diffuseness
parameters are required in order to fit the experimental data
as the energies are increased closer to the Coulomb barrier
heights. This can be clearly seen in Fig. 11 by comparing the
diffuseness parameters obtained at deep sub-barrier energies
with the ones obtained at sub-barrier energies. It must be
remembered that the fittings at sub-barrier energies also
include the data at deep sub-barrier energies. If the data at
deep sub-barrier energies are excluded from the fittings at
sub-barrier energies, one can see more prominent increases
in the best fitted diffuseness parameters. An increase in
the diffuseness parameter also leads to a lower potential
depth in order to reproduce the barrier height. Therefore, an
inconsistency between the diffuseness parameters obtained at
the two studied energy regions basically would lead to an
inconsistency between values of the potential depth obtained
at the studied regions.

It can also be seen from Fig. 11 that there is a possible
tendency that a higher charge product of the target and
projectile leads to a higher increase in the best fitted diffuseness
parameter from the one obtained at deep sub-barrier energies to
the one obtained at sub-barrier energies. However, the increase
for the 70Zn + 208Pb system is lower than the increases for both
the 56Fe and 64Ni + 208Pb systems.

A. Effect of Coulomb barrier height

As found in Ref. [4], we find that a small variation in the
value of the Coulomb barrier height VB has a small effect on the
best fitted diffuseness parameter obtained at deep sub-barrier
energies. To illustrate this, Fig. 12 compares the best fitted
diffuseness parameters at deep sub-barrier energies for the
64Ni + 208Pb system using VB = 236.25 MeV as originally
used, with VB = 237.25 MeV. For an increase of 1 MeV
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VB = 236.25 MeV, a = 0.32 fm
VB = 237.25 MeV, a = 0.34 fm

exp.

FIG. 12. The calculated ratio of the quasi-elastic to the Rutherford
cross sections for the best fitted diffuseness parameters at deep
sub-barrier energies for the 64Ni + 208Pb system using two different
values of the Coulomb barrier height VB . When VB = 236.25 and
237.25 MeV are used, the best fitted diffuseness parameters are
0.32 and 0.34 fm, respectively. The calculations are performed using
single-channel procedure.

in the barrier height from the value that is originally used,
the best fitted diffuseness parameter increases by 0.02 fm,
from a = 0.32 fm to a = 0.34 fm. Therefore, slight variations
or uncertainties in the values of the barrier height can be
dismissed as a cause for the low values of the diffuseness
parameter obtained at deep sub-barrier energies.

However, at sub-barrier energies, the effect of the variation
of the Coulomb barrier height on the best fitted diffuseness
parameter is considerably stronger than the effect at deep
sub-barrier energies. For a decrease of 1 MeV in the barrier
height from the value that is originally used (i.e., 236.25 MeV),
the best fitted diffuseness parameter for the 64Ni + 208Pb
system obtained at sub-barrier energies decreases by 0.08 fm,
from a = 0.66 fm to a = 0.58 fm (see Fig. 13). When
VB = 235.25 MeV is used, only the experimental data with
energies equal to or lower than 232.25 MeV are used in the
fittings. Therefore, it is important to accurately and precisely
know the value of the barrier height in order to obtain the
diffuseness parameter at sub-barrier energies. Furthermore, it
is possible that the actual barrier heights are slightly lower
than ones that are used here. However, the uncertainty in the
barrier heights still cannot account for the discrepancy between
the diffuseness parameters obtained at the two studied energy
regions, such as the discrepancies for the 56Fe and 64Ni + 208Pb
systems.

B. Effect of rT and rP

The variations in the target radius parameter rT and the
projectile radius parameter rP basically have no effect on
the calculated quasi-elastic cross sections when using single-
channel calculations. This is understandable since varying the
rT and rP , which would change the radii of the colliding nuclei,
mainly affects the deformation parameters [see Eq. (2)] which
are not used in a single-channel calculation.
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FIG. 13. The calculated ratio of the quasi-elastic to the Rutherford
cross sections for the best fitted diffuseness parameters obtained at
sub-barrier energies through coupled-channels calculations for the
64Ni + 208Pb system using two different values of the Coulomb barrier
height VB . When VB = 236.25 and 235.25 MeV are used, the best
fitted diffuseness parameters are 0.66 and 0.58 fm, respectively.

However, when coupled-channels calculations are used, the
effect of varying the rT and rP is significant at energies above
the deep sub-barrier region. To illustrate this, Fig. 14 shows
a comparison between the calculated ratio of the quasi-elastic
to the Rutherford cross sections for the 64Ni + 208Pb system
using rT = rP = 1.3 fm and rT = rP = 1.2 fm. When using
rT = rP = 1.3 fm, the deformation parameters are modified
according to Eq. (2) with β2 = 0.153 for 64Ni and β3 = 0.087
for 208Pb. It can be seen from Fig. 14 that changing rT and rP

has a very small effect at deep sub-barrier energies, even when
coupled-channels calculations are used. Again, this can be
explained from the fact that the deformation parameters affect
channel couplings, which are weak and can be neglected at
deep sub-barrier energies. Hence, the effect of varying rT and
rP is weak at deep sub-barrier energies. Therefore, the choice
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FIG. 14. Comparison between the calculated ratio of the quasi-
elastic to the Rutherford cross sections for the 64Ni + 208Pb system
using rT = rP = 1.3 fm (dashed line) and rT = rP = 1.2 fm (solid
line). Both calculations are performed using a = 0.63 fm and the
coupling scheme as shown in Table II.

in the values of rT and rP can be dismissed as a cause for
the low values of the diffuseness parameter obtained at deep
sub-barrier energies.

Lower rT and rP would produce lower calculated quasi-
elastic cross sections, particularly at energies above the deep
sub-barrier region (see Fig. 14, for example). Hence, a lower
diffuseness parameter is required to best fit the experimental
data at sub-barrier energies when lower rT and rP are used.
Therefore, it is possible to make the best fitted diffuseness
parameters obtained at sub-barrier energies to be consistent
with the ones obtained at deep sub-barrier energies by lowering
the values of rT and rP appropriately. However, several things
must be remembered and considered, and this would present
difficulties. First, since all of the studied systems have the same
target nucleus, the same rT should be used. Second, the ranges
of rT and rP are likely to lie between 1.06 and 1.2 fm [2].
Furthermore, it must be remembered that all of the colliding
nuclei here are spherical. Therefore, it is natural to feel that rP

for each projectile nucleus as well as rT for 208Pb should not
differ significantly from each other.

According to the results for the 48Ti + 208Pb system, rT ≈
1.2 fm should be used in order to make the best fitted
diffuseness parameters obtained at the two studied energy
regions to be consistent with each other. However, when
rT ≈ 1.2 fm is used for the 56Fe and 64Ni + 208Pb systems,
for example, the consistency in the values of the diffuseness
parameter at the two studied regions can only be achieved
if the rP ’s for 56Fe and 64Ni are significantly lower than
1.06 fm. This effort would also make the value of rT and
rP for each of the studied nucleus to differ significantly.
Therefore, an inconsistency in the values of rT and rP would
be created in order to achieve a consistency in the values of
the diffuseness parameter obtained at the two studied energy
regions. Furthermore, this effort would also make the best
fitted diffuseness parameters obtained at sub-barrier energies
to be much more inconsistent with the standard value.

In order to support our discussion above, when rT =
1.2 fm and rP = 1.06 fm are used, the best fitted diffuseness
parameter at sub-barrier energies for the 56Fe + 208Pb system
using a coupled-channels calculation is 0.57 fm (shown in
Fig. 15). As usual, the deformation parameter for 56Fe is
modified based on Eq. (2). This means that the value of the best
fitted diffuseness parameter is reduced by only 0.02 fm from
the value when rT = rP = 1.2 fm are used. This shows that
when rT = 1.2 fm is used, rP with a value much lower than
1.06 fm is required for the 56Fe + 208Pb system to make the best
fitted diffuseness parameter obtained at sub-barrier energies
to be consistent with the one obtained at deep sub-barrier
energies, if it is possible.

It must be stressed that it is very important to accurately
and precisely know rT and rP in order to correctly determine
the diffuseness parameter at sub-barrier energies. The values
of rT = rP = 1.2 fm that we use here are widely used for the
studied nuclei, including by Refs. [9,10]. Therefore, based on
the available data that we have, this study suggests that higher
values of the diffuseness parameter are required in order to fit
the experimental data as the energies increase from the deep
sub-barrier region to the energies closer to the Coulomb barrier
height.
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C. São Paulo potential

From our results, it seems that there is an effect that is
not considered in a typical nucleus-nucleus collision (and also
in our study here) that makes the nuclear potential appear
to be energy dependent. This could be the reason for the
diffuseness parameters at deep sub-barrier energies to appear
to be considerably lower than the diffuseness parameters at
sub-barrier energies and the standard value in general. It
was shown that the effect of Pauli nonlocality would make
the nuclear potential to be energy dependent [15–17]. For
nucleus-nucleus collisions, the nuclear potential due to Pauli
nonlocality (called the São Paulo potential VS-P) is given
by [15–17]

VS-P(r; E) = VF (r) exp{−γ [E − VC(r) − VS-P(r; E)]}, (3)

where VF is the nuclear potential without the effect of Pauli
nonlocality, VC is the Coulomb potential, E is the relative
motion energy, and γ is a system-dependent constant.

For heavy-ion systems, the São Paulo potential should
be negligible at near-barrier energies since E ≈ VC(RB) +
VS-P(RB) [17], where RB is the location of the barrier height,
and γ is very small [16]. From first impressions, it seems that
the results found in this study are negligibly affected by the
effect of Pauli nonlocality.

However, let us still consider this effect. In order to employ
the nuclear potential of Eq. (3), we need the values of γ for
our studied systems, which we do not know. For heavy-ion
systems, when VC + VS-P is small in comparison with E, we
can expand Eq. (3) and write [16]

VS-P(r; E) ≈ VF (r)[1 − γE]. (4)

From Eq. (4), Ref. [16] showed that

VS-P(r; E) = VF (r)

[
1 − λ

Elab

AP

]
, (5)

where λ is a system-independent constant that is equal
to 0.0086 MeV−1. Equation (5) enables us to explicitly
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FIG. 15. The calculated ratio of the quasi-elastic to the Rutherford
cross sections for the best fitted diffuseness parameter (a = 0.57 fm)
for the 56Fe + 208Pb system when rT = 1.2 fm and rP = 1.06 fm
are used. The calculation is performed using the coupled-channels
procedure as shown in Table II.

investigate the effect of Pauli nonlocality in our study. A
quick check for the 56Fe + 208Pb system at E = 212 MeV
(Elab = 269 MeV) gives VS-P = 0.96VF . It is important to
remember that in this present study, the actual VS-P should
be less energy dependent than Eq. (5) since VC + VS-P is not
small compared to E. Hence, the actual ratio of VS-P/VF for
the 56Fe + 208Pb system at E = 212 MeV should be larger than
0.96 (i.e., closer to 1).

In order to explicitly see whether the nuclear potential based
on Pauli nonlocality can or cannot explain our results, we
replace the Woods-Saxon potential [Eq. (1)] with the São Paulo
potential [Eq. (5)] in our calculations. VF should basically
be the double folding potential. However, in order to serve
our purpose, which is to study the nuclear potential in the
Woods-Saxon form, we use the Woods-Saxon form for VF in
our calculations. Therefore, the São Paulo potential used in
our calculations reads

VS-P(r; E) = −V0(1 − λElab/AP )

1 + exp[(r − R0)/a]
. (6)

As usual, the barrier height must be reproduced in the
calculations. Hence, for the same diffuseness parameter, V0

when using the São Paulo potential [Eq. (6)] is higher than V0

when using purely the Woods-Saxon potential [Eq. (1)]. For
example, for a = 0.59 fm, the São Paulo potential requires
V0 = 108.3 MeV while the Woods-Saxon potential requires
V0 = 103.6 MeV.

Figures 16 and 17 show the results of our calculations for the
56Fe + 208Pb system. The differences between the quasi-elastic
cross sections obtained using the São Paulo potential and the
Woods-Saxon potential for the same diffuseness parameter are
very small (less than 1%). If all the plots in Figs. 16 and 17
are shown by lines, it is hard to distinguish between the plots
using the São Paulo potential and the Woods-Saxon potential
for the same diffuseness parameter.
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FIG. 16. Same as Fig. 5. W-S and S-P denote the Woods Saxon
potential [Eq. (1)] and the São Paulo potential [Eq. (6)], respectively.
The plots using the Woods-Saxon potential (solid and dotted lines)
are the same as in Fig. 5. The plots using the São Paulo potential
shown by squares and triangles are obtained using single-channel
calculations with a = 0.38 and 0.49 fm, respectively.
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FIG. 17. Same as Fig. 6(b). W-S and S-P denote the Woods Saxon
potential [Eq. (1)] and the São Paulo potential [Eq. (6)], respectively.
The plots using the Woods-Saxon potential (solid and dotted lines)
are the same as in Fig. 6(b). The plots using the São Paulo potential
shown by squares and triangles are obtained using coupled-channels
calculations (as shown in Table II) with a = 0.59 and 0.70 fm,
respectively.

If the effect of Pauli nonlocality is able to explain the
relatively low diffuseness parameter obtained at deep sub-
barrier energies, then the best fitted diffuseness parameter
should be consistent with the standard value when using the
VS-P [Eq. (6)]. However, we show that the VS-P still produces
a best fitted diffuseness parameter that is considerably lower
than the standard value (practically the same as the best fitted
diffuseness parameter when using purely the Woods-Saxon
potential). Similarly, if the Pauli nonlocality is able to explain
the discrepancy found in this study, then VS-P [Eq. (6)] should
produce (almost) the same best fitted diffuseness parameter
when fitting the experimental data at deep sub-barrier energies
and when fitting the data at sub-barrier energies. However,
the calculations show that this is not the case. In conclusion,
we demonstrate that the effect of Pauli nonlocality is clearly
negligible in our study.

D. Effect of threshold anomaly

One of the well-known phenomena in the scattering of
heavy ions is the threshold anomaly [18]. This phenomenon is
related to the variation of the real part of the nuclear potential
due to a dispersion relation that arises from the causality
principle [19]. The dispersion relation takes the form [18,19]


VN (r; E) = P

π

∫ ∞

0

WN (r; E′)
E′ − E

dE′, (7)

where P denotes principal value, WN is the imaginary part of
the nuclear potential, and 
VN is the real part of the nuclear
potential that depends on the imaginary part.

If the effect of the threshold anomaly is present and
influences the studied collisions, then the nuclear potential
obtained from the fitting of the experimental data at deep
sub-barrier energies VN(deep) can be written as

VN(deep)(r; E) = VN(O)(r) + 
VN(deep)(r; E), (8)

where 
VN(deep) is 
VN at the deep sub-barrier region, and
VN(O) is the original nuclear potential that is not affected by the
threshold anomaly. For the nuclear potential obtained through
the fitting of experimental data, E in Eqs. (7) and (8) can be
regarded as the average energy of the experimental data points
that are used in the fitting.

Unfortunately, we do not have the experimental data to
determine WN as a function of energy. Thus, the actual value
of 
VN(deep) cannot be determined. However, if |WN | (where
WN � 0) rises rapidly as a function of energy over some energy
range, the contribution to 
VN will be attractive (
VN < 0)
in that same energy range [19].

For all nucleus-nucleus collisions, it is natural to think
that |WN | (where WN � 0) definitely rises from (almost) zero
at energies well below the barrier height to some value at
energies in the vicinity of the barrier height, and this value of
|WN | is approximately maintained for all energies above the
barrier height. This behavior of WN has been shown by many
studies [18–21]. Therefore, generally speaking, the integral of
Eq. (7) leads to a negative (attractive) 
VN (since WN � 0).
Furthermore, the dispersion relation makes the modulus of
the real part of the nuclear potential to have a bell-shaped
maximum in the vicinity of the Coulomb barrier height [18,19].
Hence, the contribution by the dispersion relation at E = VB

should be stronger (more negative) than the contribution at
deep sub-barrier energies. From Eq. (8), we can generally
write

VN(deep) − VN(O) � 0, (9)

where less than zero and equals to zero indicate the presence
and the absence of the threshold anomaly at deep sub-barrier
energies, respectively.

Now, let us use the results for the 56Fe + 208Pb system
to illustrate our discussion. Using the best fitted diffuseness
parameter and the required potential depth to reproduce the
barrier height (as obtained in Sec. III), we can write the best
fitted nuclear potential at deep sub-barrier energies as

VN(deep)(r) = − 355.5

1 + exp[(r − 11.9 fm)/0.38 fm]
MeV. (10)

In order to explain the relatively low diffuseness parameter
obtained at deep sub-barrier energies, our aim is to see that the
VN(O) has a diffuseness parameter that agrees with the standard
value. Let us say that the VN(O) has a = 0.63 fm, and the
required potential depth to reproduce the barrier height for the
56Fe + 208Pb system when a = 0.63 fm is 92.85 MeV (without
considering the contribution by the dispersion relation). It
is important to notice that if there is a contribution by the
dispersion relation at barrier height energy (E = VB), the
potential depth should be lower than 92.85 MeV in order to
reproduce the barrier height. For now, let us write the VN(O)

for the 56Fe + 208Pb system as

VN(O)(r) = − V0

1 + exp[(r − 11.9 fm)/0.63 fm]
MeV. (11)

Let us evaluate the nuclear potentials at r = 14.4 fm, which
is approximately the turning point for the average deep sub-
barrier energies of our experimental data. This gives VN(deep) =
−0.49 MeV and VN(O) = −1.72 MeV when the V0 for Eq. (11)
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is 92.85 MeV. It can be seen that when V0 = 92.85 MeV
(i.e., without considering the contribution by the dispersion
relation), the VN(O) of Eq. (11) does not satisfy Eq. (9).

However, as mentioned before, the V0 for Eq. (11) could
be lower than 92.85 MeV due to the contribution by the
dispersion relation. For example, if the threshold anomaly
is negligible at deep sub-barrier energies but very strong at
E = VB , Eq. (9) can be satisfied at r = 14.4 fm if the V0 for
Eq. (11) is approximately 26.5 MeV. Hence, we show that the
threshold anomaly could explain the relatively low diffuseness
parameters obtained at deep sub-barrier energies, or at least
make the VN(O) to have a higher diffuseness parameter than the
one obtained at deep sub-barrier energies. This is due to the
fact that the contribution by the dispersion relation at E = VB

is stronger than the contribution at deep sub-barrier energies.
However, a more detailed analysis must be done in order to
know the actual contribution by the dispersion relation for each
of the studied systems. This is required in order to see whether
the dispersion relation can lead the VN(O) to have a diffuseness
parameter that agrees or disagrees with the standard value.

Now let us see if the effect of the threshold anomaly can
explain the discrepancy between the diffuseness parameters
obtained at sub-barrier and deep sub-barrier energies. Since
the sub-barrier region should effectively be closer to the
location of the bell-shaped maximum than the deep sub-barrier
region, |
VN(sub)| > |
VN(deep)|, where 
VN(sub) is 
VN at
sub-barrier region. The nuclear potential obtained from the
fitting of the experimental data at sub-barrier energies VN(sub)

can be written as

VN(sub) = VN(O) + 
VN(sub). (12)

In order to eliminate the discrepancy, the VN(O)’s in Eqs. (8)
and (12) should be the same. Eliminating the VN(O) through
Eqs. (8) and (12), and using the fact that 
VN(sub) is more
negative than 
VN(deep), we can write

VN(sub) − VN(deep) < 0. (13)

From the result in Sec. III, we can write the VN(sub) for the
56Fe + 208Pb system as

VN(sub)(r) = − 103.6

1 + exp[(r − Rsub)/0.59 fm]
MeV. (14)

The Rsub in Eq. (14) is the sum of R0 and coupling components
due to vibrational excitations, and should therefore be slightly
higher than 11.9 fm. However, let us also use Rsub = 11.9 fm
since this would not invalidate our discussion here. Evaluating
VN(sub) [Eq. (14)] and VN(deep) [Eq. (10)] at r = 15 fm, we
get VN(sub) − VN(deep) = −0.437 MeV. Therefore, Eq. (13) is
satisfied and it is thus possible to eliminate or at least reduce the
discrepancy through the dispersion relation. However, again, it
is important to know the actual contribution by the dispersion
relation, so we can determine how much the discrepancy can
be reduced.

E. Dynamical effects

It is also likely that the discrepancy could due to the
same factors that might cause the diffuseness parameters

obtained through fusion experimental data to be higher than
those obtained through scattering experimental data (see
Ref. [5]). In a fusion process, the colliding nuclei would
penetrate deeper into the nuclear potential region than in
scattering. Similarly, the colliding nuclei generally approach
each other closer in scattering at sub-barrier energies than in
scattering at deep sub-barrier energies. Hence, it is apparent
to make a connection between the obtained diffuseness
parameters and how close the colliding nuclei approach each
other.

Reference [5] has discussed several reasons that might
cause the discrepancy between the diffuseness parameters
obtained through fusion and scattering. One reason that might
be related to scatterings at different energies is the dynamical
effects, particularly regarding neutron movements towards the
other nucleus when the colliding nuclei come close together.
This would reduce the dynamical barrier compared to the
normal static barrier [22]. The reduction in the barrier clearly
would increase the fusion cross sections, thus decreasing the
scattering cross sections.

So, if the neutron movements are stronger at sub-barrier
energies than at deep sub-barrier energies, then the scattering
cross sections obtained at sub-barrier energies would be
lower than expected in comparison with the scattering cross
sections at deep sub-barrier energies. As can be seen from
the calculations (see Sec. III), a higher diffuseness parameter
is required in order to fit experimental data with lower
quasi-elastic cross sections for given energies. This could at
least partly explain the increase in the diffuseness parameters
obtained in this present study as the energies increase.

V. SUMMARY

The surface diffuseness parameters of the nuclear potential
for heavy-ion systems of the 48Ti, 54Cr, 56Fe, 64Ni, and
70Zn + 208Pb reactions have been studied through large-angle
quasi-elastic scattering at sub-barrier and deep sub-barrier
energies. At deep sub-barrier energies, the diffuseness pa-
rameters required to fit the experimental data are between
0.32 and 0.56 fm. The deduced diffuseness parameters for
all of the studied systems are clearly significantly lower
than the standard value of around 0.63 fm, except for
the 56Cr + 208Pb system, where the best fitted diffuseness
parameter is in satisfactory agreement with (but still lower
than) the standard value. We find that the phenomenon of
threshold anomaly might explain the relatively low diffuseness
parameters obtained at deep sub-barrier energies. However, the
actual contribution of the dispersion relation must be known
in order to know how well we can explain the results.

At sub-barrier energies, the diffuseness parameters required
to fit the experimental data are between 0.43 and 0.66 fm. The
diffuseness parameters obtained at sub-barrier energies agree
with the standard value better than the ones obtained at deep
sub-barrier energies. It is found that the target radius parameter
rT , the projectile radius parameter rP , and the Coulomb barrier
height VB play quite significant roles in determining the
diffuseness parameters at sub-barrier energies.
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Our results also show that higher diffuseness parameters are
required in order to fit the experimental data as the energies
are increased from the deep sub-barrier region to the energies
closer to the Coulomb barrier height. The increase in the
best fitted diffuseness parameters occurs for all of the studied
collision systems. The increase in the diffuseness parameters
also leads to the decrease in the potential depths. There is also a
possible tendency that a higher charge product of the target and
projectile leads to a higher increase in the best fitted diffuseness
parameter from the one obtained at deep sub-barrier energies
to the one obtained at sub-barrier energies.

We show that the effect of Pauli nonlocality is negligible
in this present study. In contrast, we find that the phenomenon
of threshold anomaly could at least reduce the discrepancy
between the diffuseness parameters obtained at the two studied
regions. It is also possible that the discrepancy is due to
the same factors that might cause the diffuseness parameters

obtained through fusion experimental data to be higher than
those obtained through scattering experimental data [5],
particularly regarding neutron movements. Experimental data
that enable the determination of the actual contribution by the
dispersion relation on the studied systems will be helpful for
future studies. Further studies on many other collision systems
will also be helpful to support or disprove our findings here.
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