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Nucleon scattering from 6,7Li is analyzed systematically over a wide range of incident energies up to
150 MeV with the continuum discretized coupled channels method (CDCC) capable of treating the breakup of
6,7Li. The continuum states of 6,7Li are discretized with the pseudostate method. Diagonal and coupling potentials
in the CDCC equation are obtained by folding the complex Jeukenne-Lejeune-Mahaux effective nucleon-nucleon
interaction with transition densities between corresponding bound and discretized continuum states of 6,7Li. The
normalization factors of the complex effective interaction are determined so as to reproduce experimental data
on neutron total and proton reaction cross sections for 6,7Li. CDCC calculations with the normalization factors
reproduce experimental differential cross sections for nucleon elastic and inelastic scattering from 6,7Li well.
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I. INTRODUCTION

Lithium isotopes 6,7Li are important tritium breeding mate-
rials in deuterium-tritium (D-T) fusion reactors. The tritium
breeding ratio, nuclear heating distribution, and radiation
damage of structural materials are affected significantly by
the interaction between neutrons and lithium nuclei in fusion
reactor blankets. Moreover, liquid lithium is a candidate for
target material in the intense neutron source of International
Fusion Materials Irradiation Facility (IFMIF) [1]. Accurate
nuclear data are therefore required for nucleon induced
reactions on 6,7Li at incident energies up to 150 MeV [2].
In addition, 6Li and 7Li are weakly bound nuclei, which
can easily break up into two fragments, namely, 6Li →
d + α and 7Li → t + α. The breakup process is, therefore,
important for nucleon induced reactions on 6,7Li. Systematic
understanding of the breakup mechanism is also an interesting
and meaningful subject from the viewpoint of nuclear physics.
Study of nucleon-induced reactions on 6,7Li targets is thus not
only of application value but also of theoretical significance.

The continuum discretized coupled channels method
(CDCC) [3,4] has so far been applied successfully to many
studies on breakup processes of weakly bound light nuclei
[3–10], which includes studies of projectile breakup reactions
of 6,7Li interacting with some medium and heavy target
nuclei. Elastic and inelastic scattering of 6,7Li have been
analyzed for various targets ranging from 12C to 208Pb with
CDCC [3] in which the real parts of the diagonal and coupling
potentials are obtained by folding the M3Y nucleon-nucleon
(NN) interaction and the imaginary parts are assumed to have
the same shape as the real part. Intensive studies [9,10] on
6,7Li interactions with 208Pb near the Coulomb barrier have
also been made with CDCC in order to explain the radiative
capture nucleosynthesis process in nuclear astrophysics.
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With regard to nucleon-induced reactions on 6,7Li,
Ichinkhorloo et al. have analyzed n + 6Li reaction for
incident energies from 7.47 to 24.0 MeV by using CDCC
with phenomenological proton optical potentials. However,
the agreement of the elastic cross sections at all the incident
neutron energies is insufficient because of the lack of informa-
tion on the optical potentials for n-d and n-α subsystems [11].
Matsumoto et al. [12] have investigated 6Li(n, n′)6Li∗ →
d + α reaction for incident energies below 24 MeV by using
CDCC with the complex Jeukenne-Lejeune-Mahaux (JLM)
effective nucleon-nucleon (NN) interaction [13]. They have
found that the CDCC calculation can reproduce well measured
angular distributions of neutron elastic and inelastic scattering
from 6Li and double differential (n, xn) cross sections at
relatively high emission energies. In their analysis of total
cross sections for n + 6Li reaction, it was suggested that an
energy-dependent trend appears in the normalization factors
of the JLM interaction as the incident energy increases. More
recently, Ichinkhorloo et al. [14] have analyzed n + 7Li
scattering for incident energies below 24 MeV by using
CDCC with the JLM NN interaction. Their CDCC calculation
reproduces experimental angular distributions for neutron
elastic and inelastic scattering from 7Li and double differential
(n, xn) cross sections at relatively high emission energies for
incident energies between 11.5 and 24.0 MeV.

In the present work, therefore, we extend CDCC analysis
of Refs. [12,14] to both neutrons and protons scattering from
6,7Li in a wide incident energy range up to 150 MeV, and
demonstrate the applicability of CDCC to nucleon scattering
from 6,7Li.

We analyze neutron total cross sections, proton reaction
cross sections, and differential cross sections for nucleon
elastic and inelastic scattering. 6Li and 7Li are considered
as d + α and t + α cluster, respectively. Continuum
states of 6Li and 7Li are discretized by the pseudostate
method [15,16]. Diagonal and coupling potentials in the
CDCC equation are obtained by folding the JLM effective
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NN interaction with the transition densities between corre-
sponding bound and discretized continuum states of 6,7Li.
The normalization factors of the JLM effective NN interaction
are determined so as to reproduce experimental data on the
neutron total cross sections and proton reaction cross sections.
CDCC yields consistent results with experimental data on
the angular distributions for nucleon elastic and inelastic
scattering.

Section II describes the theoretical model. In Sec. III,
CDCC results are compared with experimental data. Finally,
Sec. IV gives a summary and conclusions.

II. THEORETICAL MODEL

Nucleon scattering from 6,7Li is analyzed with the N0 +
x + α three-body model, where N0 denotes an incident
nucleon and x represents deuteron (d) for 6Li and triton (t)
for 7Li.

A. Bound- and discretized-state wave functions of 6,7Li

We assume that the wave functions of 6Li and 7Li are
expressed as

�Im
l (ξ ) = ψIm

l (r)ϕ(x)ϕ(α), (1)

where ξ represents a set of internal coordinates of Li. ϕ(x)
and ϕ(α) denote the internal wave functions of x and α,
respectively, which are assumed to be inert cores. ϕ(x) does
not include a spin degree of freedom. ψIm

l (r) is the x-α relative
wave function with relative coordinate r , orbital angular
momentum l, total spin I and its projection m on the z axis,
which is defined as

ψIm
l (r) = φI

l (r)[ilYl(�r ) ⊗ ηx]Im, (2)

with ηx denoting the spin wave function of x. The relative
Hamiltonian between x and α is described by

HLi = Kr + Vxα(r), (3)

where Kr is kinetic energy operator, and Vxα(r) is the
interaction between x and α.

In CDCC calculations, the wave functions of continuum
states of 6Li and 7Li are truncated and discretized into a finite
number of states. The bound and discretized relative internal
wave functions of 6Li and 7Li are then expressed as

ψ̂Im
nl (r) = φ̂I

nl(r)[ilYl(�r ) ⊗ ηx]Im, (n = 1, . . . , N ), (4)

where l is truncated by l � 2 (l � 3) for 6Li (7Li), and
odd (even) l states of 6Li (7Li) are ignored because their
contributions are much smaller than those of even (odd)
states [3]. N denotes the number of the bound and discretized
continuum states for each (l, I ).

The pseudostate method [15,16] with the Gaussian expan-
sion of wave function [17] is used to describe the discretized
continuum states of 6Li and 7Li. The radial part of the bound
and discretized continuum wave functions are then obtained
by

φ̂I
nl(r) =

∑
i

AI
nl,iϕ

C
il (r) +

∑
i

BI
nl,iϕ

S
il(r) (5)

TABLE I. Parameters of the interaction between d and α.

parameters l = 0 l = 2

r1,l [fm] 2.191 2.377
r2,l [fm] 1.607 1.852
v1,l [MeV] − 105.85 − 82.98
v2,l [MeV] 46.22 31.0
v

(so)
1,l [MeV] – − 2.31

v
(so)
2,l [MeV] – 1.42

RCL [fm] 3.0 3.0

with the coefficients, AI
nl,i and BI

nl,i , determined by diagonal-
izing HLi. Since the highest incident energy considered here
is 150 MeV, we need to calculate the discretized continuum
states up to a relatively high energy. The complex-range
Gaussian basis function [18] is more reliable than the real-
range Gaussian basis for describing the breakup states up to a
high energy [16]. We then adopt the complex-range Gaussian
basis as the basis function. ϕC

il and ϕS
il are the complex-range

Gaussian basis functions defined by

ϕC
il (r) = [ϕ∗

il(r) + ϕil(r)]/2,
(6)

ϕS
il(r) = [ϕ∗

il(r) − ϕil(r)]/(2i),

where

ϕil(r) = rl exp
[−(1 + ib)r2/a2

i

]
(7)

with a1 = 1.0 fm, aN = 20.0 fm, b = π/2, and ai =
a1(aN/a1)(i−1)/(N−1). φ̂I

nl satisfies〈
φ̂I

nl

∣∣HLi

∣∣φ̂I
n′l

〉 = εI
nlδnn′ (8)

and 〈
φ̂I

nl

∣∣φ̂I ′
n′l′

〉 = δnn′δll′δII ′, (9)

where εI
nl is the eigenenergy of the bound or discretized

continuum state. The interactions between x and α, Vxα in
HLi, have the same form as in Ref. [3] for both 6Li and 7Li.
Here we use a simple version of the orthogonal condition
model [3,19], namely, we regard the lowest bound state as the
forbidden state and adjust the strength of Vxα for the second
bound state to reproduce the measured binding energy of Li.
Therefore, the parameters of Vxα , which are listed in Tables I
and II, are slightly changed from the original ones.

Figure 1 shows the eigenenergies of the bound and dis-
cretized continuum states of 6,7Li for each (l, I ) with truncation
energy of 10.5 MeV, where the breakup thresholds of 6,7Li are

TABLE II. Parameters of the interaction between t and α.

parameters l = 1 l = 3

r1,l [fm] 2.447 2.608
v1,l [MeV] − 88.11 − 75.38
r

(so)
l [fm] 3.6538 2.466

v
(so)
l [MeV] − 6.0 − 2.736

a
(so)
l [fm] 0.6 –

RCL [fm] 2.0 2.0
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FIG. 1. Eigenenergies of the bound and discretized states of 6,7Li
for each (l, I ) with truncation energy of 10.5 MeV.

considered as 0 MeV. It is shown that the eigenenergies of the
bound states of 6,7Li are described well.

B. Three-body CDCC formulation for nucleon
scattering from 6,7Li

The Hamiltonian of the N0 + x + α three-body system is
described by

H = HLi + KR + UC(R) + U, (10)

where R represents the relative coordinate between the
incident nucleon and the center of mass of Li, and KR

represents the kinetic energy associated with R. The potential
between N0 and a Li target, U , is described as

U =
∑
j∈Li

v0j (11)

with v0j denoting the interaction between N0 and the j th
nucleon in Li. The Coulomb potential, UC, between N0 and Li
is treated approximately as a function of R.

The total wave function of the three-body system with total
angular momentum J and its projection M on the z axis can
be expanded in terms of the orthonormal set of eigenstates of
HLi. Using the bound and discretized internal wave functions
of 6,7Li obtained in Sec. II A, the total wave function of the
three-body system can be expressed as

�CDCC
JM =

∑
γ

Y lIL
JM φ̂I

nl(r)χ̂γ (P̂γ , R)/R, (12)

with

Y lIL
JM = {[ilYl(�r ) ⊗ ηx]I ⊗ iLYL(�R)}JMϕ(x)ϕ(α), (13)

where γ = (n, l, I, L, J ) represents the elastic, inelastic, and
breakup channels. The expansion coefficient χ̂γ describes the
relative motion between an incident nucleon and Li, and L is
the orbital angular momentum. The relative momentum P̂γ is
determined by the conservation of the total energy,

E = P̂ 2
γ /(2μ) + εI

nl, (14)

where μ is the reduced mass of the nucleon-Li system.
In the CDCC formalism, the Schrödinger equation

(H − E)�CDCC
JM = 0 (15)

is rewritten into a set of CDCC differential equations,[
d2

dR2
+ P̂ 2

γ − L(L + 1)

R2
− 2μ

h̄2 UC(R)

]
χ̂γ (P̂γ , R)

=
∑
γ ′

2μ

h̄2 Vγγ ′ (R)χ̂γ ′(P̂γ ′ , R). (16)

Here diagonal (γ ′ = γ ) and coupling (γ ′ �= γ ) potentials, Vγγ

and Vγ ′γ ′ , are obtained as

Vγγ ′(R) =
∫

ργγ ′(s,�R)v0j (r0j , ρ̄, E)dsd�R (17)

by folding the JLM effective NN interaction v0j [13] with
transition densities

ργγ ′ (s,�R) = 〈Y lIL
JM φ̂I

nl

∣∣ ∑
j∈Li

δ(s − sj )
∣∣Y l′I ′L′

JM φ̂I ′
n′l′

〉
, (18)

where

ρ̄(s) = 1

2

∫
[ργγ (s,�R) + ργ ′γ ′(s,�R)]d�sd�R (19)

with r0j (sj ) denoting the coordinate of j th nucleon in Li
relative to an incident nucleon N0 (the center of mass of Li).
The JLM effective NN interaction v0j is expressed as

v0j (r0j , ρ̄, E) = λV V (ρ̄, E) exp

(
−|r0j |2

t2
R

)

+ iλWW (ρ̄, E) exp

(
−|r0j |2

t2
I

)
(20)

with tR = tI = 1.2 fm. As suggested in Ref. [12], the nor-
malization factors λV and λW are energy dependent. They are
determined so as to reproduce the experimental data on neutron
total cross sections and proton reaction cross sections.
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C. Compound elastic and inelastic scattering contribution

The Hauser-Feshbach theory with the width fluctuation
correction [20] is applied to include the compound elastic
and inelastic scattering contribution in the present analysis.
The compound nucleus contribution is estimated with TALYS

code [21] with the nucleon optical potentials of Koning and
Delarosche [22] and the complex-particle optical potentials
obtained by folding the nucleon optical potentials. In the
calculation, the compound formation cross section is given
by

σCF = σR − σInel, (21)

where σR and σInel denote the reaction and inelastic scattering
cross sections calculated with CDCC, respectively.

III. CALCULATED RESULTS AND ANALYSIS

In this section, global analyses are made with CDCC for
neutron and proton scattering from 6,7Li at E � 150 MeV.
Particularly, we analyze the neutron total cross sections σtot,
the proton reaction cross sections σR, and the differential cross
sections for nucleon elastic and inelastic scattering from 6,7Li.

A. Energy dependence of normalization factors

We determine the normalization factors, λV and λW , of the
JLM effective NN interaction by fitting measured neutron total
cross sections and proton reaction cross sections. The proton
reaction cross sections are sensitive to λW , while the neutron
total cross sections are to both λV and λW . This means that
λV and λW can be determined uniquely from the two cross
sections for each target of 6,7Li.

Measured proton reaction cross sections [23] are not
sufficient enough to determine the energy dependence of λV

and λW up to 150 MeV. We then scale the measured reaction
cross sections σ

exp
R [24–27] for 9Be target to the corresponding

ones σ scaled
R for 6,7Li targets, assuming that the reaction cross

section is proportional to the effective collision area [28]. The
scaling formula is expressed as [7]

σ scaled
R (Li) = σ

emp
R (Li)

σ
emp
R (9Be)

σ
exp
R (9Be), (22)

where σ
emp
R is the reaction cross section estimated from the

effective collision area and depends on target mass number.
First we consider the case of 6Li target. Figures 2 and 3

show the neutron total cross section and proton reaction cross
section as a function of incident energy E, respectively. The
normalization factors, λV and λW , are determined by fitting the
measured cross sections [23–27,29]. The solid lines represent
the CDCC results calculated with the optimal values of λV

and λW , which are in good agreement with the measured cross
sections. The factors thus determined are

λV (E) = 1 + 0.0035E,
(23)

λW (E) =
{

0.015E E � 30
0.45 + 0.0075(E − 30) E � 30 .

FIG. 2. (Color online) Comparison of the calculated total cross
section for n + 6Li reaction with experimental data [29]. The solid
and dashed lines denote the CDCC result with the normalization
factors λV and λW determined in this work and that with λV = 1 and
λW = 0.1, respectively.

The real part λV has a weak E dependence. The imaginary
part λW is quite small at low E. This indicates that nucleon
scattering at low E are well described by the CDCC formalism
with the elastic, inelastic and breakup channels, i.e., excitations
of d and α in target 6Li are negligible. As E increases, the ex-
citations do not keep negligible in general, and eventually λW

becomes large there. This means that the 6Li breakup into n +
p + α channel is also considered roughly by λW . The dashed
line in Fig. 2 shows the CDCC results calculated with λV = 1
and λW = 0.1 used in Ref. [12] for n + 6Li reaction at E � 24
MeV. Above 24 MeV, the dashed line deviates considerably
from the corresponding measured cross sections. Therefore,
the E dependence of λV and λW is significant above 24 MeV.

Similar analysis is made for 7Li target. The optimal values
of the normalization factors are expressed as

λV (E) = 1 + 0.0035E,
(24)

λW (E) =
{

0.012E E � 30
0.36 + 0.0075(E − 30) E � 30 .

The real part is the same as in the 6Li case, while the imaginary
part is slightly smaller than the one in the 6Li case. This

FIG. 3. (Color online) Comparison of the calculated result (solid
line) of reaction cross section for p + 6Li reaction with experimental
data [23–27]. The solid squares and circles denote the experimental
data on p + 6Li reaction and the scaled experimental data
transformed from p + 9Be reaction.
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FIG. 4. (Color online) Same as Fig. 2 but for n + 7Li reaction.

is natural, since t in 7Li is harder than d in 6Li; note that
the imaginary part comes from excitations of t and α for
a 7Li target and excitations of d and α for a 6Li target.
Figures 4 and 5 show the comparisons of the calculated
results and experimental data [23–27,29] of the neutron total
cross section and proton reaction cross section for 7Li at
incident energies up to 150 MeV. The solid lines denote the
present results calculated with the normalization factors in
Eq. (24). They are in good agreement with the experimental
data. The dashed line in Fig. 4 shows the calculated results
with λV = 1 and λW = 0.1 used in Ref. [14] for n + 7Li
reaction at E � 24 MeV. Above 24 MeV, the dashed line
deviates considerably from the corresponding measured cross
section, which suggests that the energy dependence of the
normalization factors given by Eq. (24) is necessary.

B. Nucleon elastic scattering

CDCC calculations with the normalization factors deter-
mined in Sec. III A are applied to the angular distributions for
nucleon elastic scattering from 6,7Li.

First we discuss the case of 6Li target. Figure 6 shows
the angular distributions of proton elastic scattering from 6Li
at incident energies of 5 MeV � E � 72 MeV. CDCC results
(solid lines) are in reasonable agreement with the experimental
data [30–35]. The dashed lines represent results of the single
elastic-channel calculation in which the couplings of the elastic
channel to the breakup channels are ignored. Large deviation of
the dashed lines from the solid ones indicates that the breakup
effect is quite important.

FIG. 5. (Color online) Same as Fig. 3 but for p + 7Li reaction.

FIG. 6. Comparison of the calculated angular distributions (solid
lines) of proton elastic scattering from 6Li with experimental data
[30–35]. The solid and dashed lines denote the CDCC results and
the results of the single elastic-channel calculation, respectively. The
data are shifted downward by factors of 100, 10−1, 10−2, and so on.

Figure 7 shows the angular distributions of neutron elastic
scattering from 6Li at 5.05 MeV � E � 24 MeV. CDCC re-
sults (solid lines) are in good agreement with the experimental
data [36–41]. The present CDCC results almost agree with
the previous CDCC results [12] calculated with λV = 1 and
λW = 0.1, and the difference between the two calculations is
within 10%. The breakup effect is important also for n + 6Li
elastic scattering.

Next we consider the case of 7Li target. Figure 8 shows
the angular distributions of proton elastic scattering from 7Li
at incident energies of 5 MeV � E � 50 MeV. CDCC results
(solid lines) reproduce the experimental data [32–34,42] well.
7Li has two bound states, the ground state with Iπ = 3/2− and
the first-excited state with ε1 = 0.48 MeV and Iπ = 1/2−. In
Fig. 9, we show the relative importance of couplings to the
first-excited state and the continuum states. The solid lines
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FIG. 7. Comparison of the calculated angular distributions (solid
lines) of neutron elastic scattering from 6Li with experimental data
[36–41]. The data are shifted downward by factors of 100, 10−1, 10−2,
and so on.

denote results of full-fledged CDCC calculations in which all
the couplings are considered. The dotted lines represent CDCC
calculations including only the coupling between the elastic
and the first-excited channel, while the dashed lines denote re-
sults of single elastic-channel calculations with no coupling to
the first-excited and continuum states. The difference between
the dotted and dashed lines shows the effect of the coupling to
first-excited state. Although it can slightly improve the results
of the dashed lines, the results are still far from reproducing
the experimental data. However, once the breakup effect shown
by the difference between the solid and dotted lines is taken
into account, the calculated results (solid lines) can reproduce
the experimental data reasonably well. This indicates that the
breakup effect is quite important in proton elastic scattering
from 7Li. In addition, it can be seen from Figs. 6 and 9 that the
breakup effect becomes small as the incident energy increases.
This is a general property of the breakup effect [3].

FIG. 8. Comparison of the calculated angular distributions (solid
lines) of proton elastic scattering from 7Li with experimental data
[32–34,42]. The data are shifted downward by factors of 100, 10−1,
10−2, and so on.

Experimental data [39,43] on the angular distributions of
neutron elastic scattering from 7Li include the contribution
from the inelastic scattering to the first-excited state, because of
the poor experimental resolution. Summation of the calculated
elastic and first inelastic scattering angular distributions are
compared with the experimental data at 4 MeV � E �

FIG. 9. Comparison of calculated angular distributions of proton
elastic scattering from 7Li with different couplings and experimental
data. The solid lines denote the present calculated results with full
CDCC. The dotted lines denote the coupled-channel calculation with
the coupling only between the elastic and the first-excited channels.
The dashed lines denote the results of the single elastic-channel
calculation. The data are shifted downward by factors of 100, 10−1,
and 10−2.
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FIG. 10. Comparison of the calculated results (solid lines) of
the summation of differential cross sections for neutron elastic and
inelastic (the first 1/2−) scattering from 7Li with experimental data
[39,43]. The data are shifted downward by factors of 100, 10−1, 10−2,
and so on.

18 MeV in Fig. 10. The calculated results (solid lines) are in
reasonable agreement with the experimental data. The breakup
effect is important also for n + 7Li elastic scattering.

C. Contribution of compound processes in elastic scattering

We analyze the effect of compound processes in elastic
and inelastic scattering by using the Hauser-Feshbach theory
with the width fluctuation correction. Figure 11 shows the
differential cross sections for nucleon elastic scattering from
6,7Li around E = 5 MeV. The solid and dashed lines represent
CDCC results with and without compound contribution,
respectively. The compound contribution, shown by the dif-
ference between the solid and dashed lines, is small and only
seen around minima of the differential cross sections. The

FIG. 11. Comparison of the calculated angular distributions of
nucleon elastic scattering from 6,7Li with and without the compound
elastic scattering contribution. The solid and dashed lines denote the
calculated results with and without the compound elastic contribution,
respectively. The data are shifted downward by factors of 100, 10−1,
10−2, and 10−3.

compound contribution decreases as E increases and become
negligible at E � 14 MeV.

D. Nucleon inelastic scattering

Figure 12 shows the angular distributions of proton in-
elastic scattering to the first-excited state (3+) of 6Li at
4 MeV � E � 14 MeV. The theoretical result is obtained by
summing the inelastic cross sections to 3+ continuum states

FIG. 12. Comparison of the calculated angular distribution (solid
lines) of the proton inelastic scattering to the first-excited state (3+)
of 6Li with experimental data [44,45]. The data are shifted downward
by factors of 100, 10−1, 10−2, and so on.
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FIG. 13. Same as Fig. 12 but to the first-excited state (1/2−) of 7Li.

in the resonance energy region. This summation can be easily
made in the pseudostate method, since the continuum states
in the resonance region are described by a few discretized
states. CDCC results (solid lines) reproduce the experimental
data [44,45] reasonably well for all the incident energies.

Figure 13 shows angular distributions of proton inelas-
tic scattering to the first-excited state (1/2−) of 7Li at
5 MeV � E � 16 MeV. CDCC results (solid lines) are
consistent with the experimental data [32,42,46]. Agreement
becomes worse slightly at forward angles for the cases of
E = 12, 14 and 16 MeV. Similar comparisons are made for
neutron inelastic scattering to the first-excited state (3+) of

FIG. 14. Comparison of the calculated angular distribution (solid
lines) of the neutron inelastic scattering to the first-excited state
(3+) of 6Li with experimental data [37–39,45]. The data are shifted
downward by factors of 100, 10−1, 10−2, and so on.

FIG. 15. Same as Fig. 14 but to the second-excited state (7/2−)
of 7Li.

6Li at incident energies from 5.4 to 24 MeV in Fig. 14, and
neutron inelastic scattering to the second-excited state (7/2−)
of 7Li at incident energies from 6.6 to 24 MeV in Fig. 15. The
experimental data are taken from Refs. [37,39–41,43,47–49].
Rather good agreement is obtained for these cases. The
compound inelastic scattering contributions are also included
in all the calculations, resulting in improvement of pure CDCC
results by at most 10% at relatively low energies.

IV. SUMMARY AND CONCLUSION

We have analyzed systematically nucleon scattering from
6,7Li at incident energies up to 150 MeV by using the
continuum discretized coupled channels method (CDCC)
with the Jeukenne-Lejeune-Mahaux (JLM) interaction. Energy
dependence of the normalization factors, λV and λW , of
the JLM interaction is introduced and determined explic-
itly from measured neutron total and proton reaction cross
sections. The real part λV has no target dependence, while
λW has a weak one. The compound elastic and inelastic
scattering components have been calculated by using the
Hauser-Feshbach theory with the width fluctuation correction.
The compound contribution slightly improves CDCC results
at low incident energies. In most cases, CDCC results are
in good agreement with the experimental data on angular
distributions of nucleon elastic and inelastic scattering from
6,7Li. It is essential to take into account the breakup effect
of 6,7Li properly with CDCC in order to describe both the
elastic and inelastic scattering consistently. Good agreement of
CDCC results with experimental data shows the rationality of
the determined normalization factors of the JLM interaction,
and the importance of the breakup effect of 6,7Li indicates
the necessity of CDCC for systematic analyses of nucleon
scattering from 6,7Li over a wide range of incident energies.

Double-differential cross sections (DDXs) of secondary
nucleon and triton produced in these reactions are also very
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important physical quantities in the engineering design of D-T
fusion reactors and intense neutron sources with a lithium tar-
get. The present CDCC analysis has confirmed the importance
of breakup effect and has provided a good basis for predicting
these DDXs. In the next step, the production of secondary
nucleon and triton will be studied intensively with CDCC.
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